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Independent Random Variables

Based on a chapter by Chris Piech

1 Independence with Multiple RVs (Discrete Case)

Two discrete random variables X and Y are called independent if:
P(X=x,Y=y)=P(X =x)P(Y =y)forall x,y

Intuitively: knowing the value of X tells us nothing about the distribution of Y. If two variables are
not independent, they are called dependent. This is a similar conceptually to independent events,
but we are dealing with multiple variables. Make sure to keep your events and variables distinct.

Example 1

Let N be the number of requests to a web server/day and that N ~ Poi(1). Each request comes from
a human (probability = p) or from a “bot” (probability = (1 — p)), independently. Define X to be the
number of requests from humans/day and Y to be the number of requests from bots/day.

Since requests come in independently, the probability of X conditioned on knowing the number of
requests is a Binomial. Specifically, conditioned:

(X|N) ~ Bin(N, p)
(Y|N) ~ Bin(N, 1 - p)

Calculate the probability of getting exactly i human requests and j bot requests. Start by expanding
using the chain rule:
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Now we can put those together and simplify:
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As an exercise you can simplify this expression into two independent Poisson distributions.



2 Symmetry of Independence

Independence is symmetric. That means that if random variables X and Y are independent, X is
independent of Y and Y is independent of X. This claim may seem meaningless but it can be very
useful. Imagine a sequence of events X, X», . ... Let A; be the event that X; is a “record value" (eg
it is larger than all previous values). Is A, independent of A,? It is easier to answer that A, is
independent of A,. By symmetry of independence both claims must be true.

3 Sums of Independent Random Variables
Independent Binomials with equal p

For any two Binomial random variables with the same “success" probability: X ~ Bin(ny, p) and
Y ~ Bin(ny, p) the sum of those two random variables is another binomial: X +Y ~ Bin(n; +ny, p).
This does not hold when the two distributions have different parameters p.

Independent Poissons

For any two Poisson random variables: X ~ Poi(4;) andY ~ Poi(A;) the sum of those two random
variables is another Poisson: X +Y ~ Poi(4; + A»). This holds even if A; is not the same as A5.

Example 2

Let’s say we have two independent random Poisson variables for requests received at a web server
in a day: X = number of requests from humans/day, X ~ Poi(4;) and Y = number of requests from
bots/day, Y ~ Poi(A;). Since the convolution of Poisson random variables is also a Poisson we know
that the total number of requests (X + Y) is also a Poisson: (X + Y) ~ Poi(4; + A;). What is the
probability of having £ human requests on a particular day given that there were n total requests?
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Convolution: Sum of independent random variables

So far, we have had it easy: If our two independent random variables are both Poisson, or both
Binomial with the same probability of success, then their sum has a nice, closed form. In the
general case, however, the distribution of two independent random variables can be calculated as a
convolution of probability distributions.

For two independent random variables, you can calculate the CDF or the PDF of the sum of two
random variables using the following formulas:
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Most importantly, convolution is the process of finding the sum of the random variables themselves,
and not the process of adding together probabilities.

Example 3

Let’s go about proving that the sum of two independent Poisson random variables is also Poisson.
Let X ~ Poi(4;) and Y ~ Poi(4;) be two independent random variables, and Z = X + Y. What is
P(Z = n)?
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Note that the Binomial Theorem (which we did not cover in this class, but is often used in
contexts like expanding polynomials) says that for two numbers a and b and positive integer n,
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