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Independent Random Variables
Based on a chapter by Chris Piech

1 Independence with Multiple RVs (Discrete Case)
Two discrete random variables X and Y are called independent if:

P(X = x,Y = y) = P(X = x)P(Y = y) for all x, y

Intuitively: knowing the value of X tells us nothing about the distribution of Y . If two variables are
not independent, they are called dependent. This is a similar conceptually to independent events,
but we are dealing with multiple variables. Make sure to keep your events and variables distinct.

Example 1
Let N be the number of requests to a web server/day and that N ∼ Poi(λ). Each request comes from
a human (probability = p) or from a “bot” (probability = (1− p)), independently. Define X to be the
number of requests from humans/day and Y to be the number of requests from bots/day.

Since requests come in independently, the probability of X conditioned on knowing the number of
requests is a Binomial. Specifically, conditioned:

(X |N) ∼ Bin(N, p)
(Y |N) ∼ Bin(N, 1 − p)

Calculate the probability of getting exactly i human requests and j bot requests. Start by expanding
using the chain rule:

P(X = i,Y = j) = P(X = i,Y = j |X + Y = i + j)P(X + Y = i + j)

We can calculate each term in this expression:

P(X = i,Y = j |X + Y = i + j) =
(
i + j

i

)
pi(1 − p) j

P(X + Y = i + j) = e−λ
λi+ j

(i + j)!

Now we can put those together and simplify:

P(X = i,Y = j) =
(
i + j

i

)
pi(1 − p) je−λ

λi+ j

(i + j)!

As an exercise you can simplify this expression into two independent Poisson distributions.
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2 Symmetry of Independence
Independence is symmetric. That means that if random variables X and Y are independent, X is
independent of Y and Y is independent of X . This claim may seem meaningless but it can be very
useful. Imagine a sequence of events X1, X2, . . . . Let Ai be the event that Xi is a “record value" (eg
it is larger than all previous values). Is An+1 independent of An? It is easier to answer that An is
independent of An+1. By symmetry of independence both claims must be true.

3 Sums of Independent Random Variables
Independent Binomials with equal p
For any two Binomial random variables with the same “success" probability: X ∼ Bin(n1, p) and
Y ∼ Bin(n2, p) the sum of those two random variables is another binomial: X+Y ∼ Bin(n1+n2, p).
This does not hold when the two distributions have different parameters p.

Independent Poissons
For any two Poisson random variables: X ∼ Poi(λ1) and Y ∼ Poi(λ2) the sum of those two random
variables is another Poisson: X + Y ∼ Poi(λ1 + λ2). This holds even if λ1 is not the same as λ2.

Example 2
Let’s say we have two independent random Poisson variables for requests received at a web server
in a day: X = number of requests from humans/day, X ∼ Poi(λ1) and Y = number of requests from
bots/day, Y ∼ Poi(λ2). Since the convolution of Poisson random variables is also a Poisson we know
that the total number of requests (X + Y ) is also a Poisson: (X + Y ) ∼ Poi(λ1 + λ2). What is the
probability of having k human requests on a particular day given that there were n total requests?

P(X = k | X + Y = n) = P(X = k,Y = n − k)
P(X + Y = n) =

P(X = k)P(Y = n − k)
P(X + Y = n)

=
e−λ1λk

1
k!

·
e−λ2λn−k

2
(n − k)! · n!

e−(λ1+λ2)(λ1 + λ2)n

=

(
n
k

) (
λ1

λ1 + λ2

) k (
λ2

λ1 + λ2

)n−k

∴ (X | X + Y = n) ∼ Bin
(
n,
λ1

λ1 + λ2

)
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Convolution: Sum of independent random variables
So far, we have had it easy: If our two independent random variables are both Poisson, or both
Binomial with the same probability of success, then their sum has a nice, closed form. In the
general case, however, the distribution of two independent random variables can be calculated as a
convolution of probability distributions.

For two independent random variables, you can calculate the CDF or the PDF of the sum of two
random variables using the following formulas:

FX+Y (n) = P(X + Y ≤ n) =
∞∑

k=−∞
FX(k)FY (n − k)

pX+Y (n) =
∞∑

k=−∞
pX(k)pY (n − k)

Most importantly, convolution is the process of finding the sum of the random variables themselves,
and not the process of adding together probabilities.

Example 3
Let’s go about proving that the sum of two independent Poisson random variables is also Poisson.
Let X ∼ Poi(λ1) and Y ∼ Poi(λ2) be two independent random variables, and Z = X + Y . What is
P(Z = n)?

P(Z = n) = P(X + Y = n) =
∞∑

k=−∞
P(X = k)P(Y = n − k) (Convolution)

=

n∑
k=0

P(X = k)P(Y = n − k) (Range of X and Y )

=

n∑
k=0

e−λ1
λk

1
k!

e−λ2
λn−k

2
(n − k)! (Poisson PMF)

= e−(λ1+λ2)
n∑

k=0

λk
1λ

n−k
2

k!(n − k)!

=
e−(λ1+λ2)

n!

n∑
k=0

n!
k!(n − k)!λ

k
1λ

n−k
2

=
e−(λ1+λ2)

n!
(λ1 + λ2)n (Binomial theorem)

Note that the Binomial Theorem (which we did not cover in this class, but is often used in
contexts like expanding polynomials) says that for two numbers a and b and positive integer n,
(a + b)n = ∑n

k=0
(n
k

)
ak bn−k .
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