Lecture Notes #12 May 1, 2020

Independent Random Variables

Based on a chapter by Chris Piech

1 Independence with Multiple RVs (Discrete Case)

Two discrete random variables *X* and *Y* are called **independent** if:

$$P(X = x, Y = y) = P(X = x)P(Y = y)$$
 for all x, y

Intuitively: knowing the value of X tells us nothing about the distribution of Y. If two variables are not independent, they are called dependent. This is a similar conceptually to independent events, but we are dealing with multiple *variables*. Make sure to keep your events and variables distinct.

Example 1

Let *N* be the number of requests to a web server/day and that $N \sim \text{Poi}(\lambda)$. Each request comes from a human (probability = *p*) or from a "bot" (probability = (1 - p)), independently. Define *X* to be the number of requests from humans/day and *Y* to be the number of requests from bots/day.

Since requests come in independently, the probability of *X* conditioned on knowing the number of requests is a Binomial. Specifically, conditioned:

$$(X|N) \sim \operatorname{Bin}(N, p)$$

 $(Y|N) \sim \operatorname{Bin}(N, 1-p)$

Calculate the probability of getting exactly i human requests and j bot requests. Start by expanding using the chain rule:

$$P(X = i, Y = j) = P(X = i, Y = j | X + Y = i + j)P(X + Y = i + j)$$

We can calculate each term in this expression:

$$P(X = i, Y = j | X + Y = i + j) = {\binom{i+j}{i}} p^{i} (1-p)^{j}$$
$$P(X + Y = i + j) = e^{-\lambda} \frac{\lambda^{i+j}}{(i+j)!}$$

Now we can put those together and simplify:

$$P(X=i,Y=j) = \binom{i+j}{i} p^i (1-p)^j e^{-\lambda} \frac{\lambda^{i+j}}{(i+j)!}$$

As an exercise you can simplify this expression into two independent Poisson distributions.

Independence is symmetric. That means that if random variables X and Y are independent, X is independent of Y and Y is independent of X. This claim may seem meaningless but it can be very useful. Imagine a sequence of events X_1, X_2, \ldots Let A_i be the event that X_i is a "record value" (eg it is larger than all previous values). Is A_{n+1} independent of A_n ? It is easier to answer that A_n is independent of A_{n+1} . By symmetry of independence both claims must be true.

3 Sums of Independent Random Variables

Independent Binomials with equal p

For any two Binomial random variables with the same "success" probability: $X \sim Bin(n_1, p)$ and $Y \sim Bin(n_2, p)$ the sum of those two random variables is another binomial: $X + Y \sim Bin(n_1 + n_2, p)$. This does not hold when the two distributions have different parameters p.

Independent Poissons

For any two Poisson random variables: $X \sim \text{Poi}(\lambda_1)$ and $Y \sim \text{Poi}(\lambda_2)$ the sum of those two random variables is another Poisson: $X + Y \sim \text{Poi}(\lambda_1 + \lambda_2)$. This holds even if λ_1 is not the same as λ_2 .

Example 2

Let's say we have two independent random Poisson variables for requests received at a web server in a day: X = number of requests from humans/day, $X \sim \text{Poi}(\lambda_1)$ and Y = number of requests from bots/day, $Y \sim \text{Poi}(\lambda_2)$. Since the convolution of Poisson random variables is also a Poisson we know that the total number of requests (X + Y) is also a Poisson: $(X + Y) \sim \text{Poi}(\lambda_1 + \lambda_2)$. What is the probability of having k human requests on a particular day given that there were n total requests?

$$P(X = k \mid X + Y = n) = \frac{P(X = k, Y = n - k)}{P(X + Y = n)} = \frac{P(X = k)P(Y = n - k)}{P(X + Y = n)}$$
$$= \frac{e^{-\lambda_1}\lambda_1^k}{k!} \cdot \frac{e^{-\lambda_2}\lambda_2^{n-k}}{(n-k)!} \cdot \frac{n!}{e^{-(\lambda_1 + \lambda_2)}(\lambda_1 + \lambda_2)^n}$$
$$= \binom{n}{k} \left(\frac{\lambda_1}{\lambda_1 + \lambda_2}\right)^k \left(\frac{\lambda_2}{\lambda_1 + \lambda_2}\right)^{n-k}$$
$$\therefore (X \mid X + Y = n) \sim \operatorname{Bin}\left(n, \frac{\lambda_1}{\lambda_1 + \lambda_2}\right)$$

Convolution: Sum of independent random variables

So far, we have had it easy: If our two independent random variables are both Poisson, or both Binomial with the same probability of success, then their sum has a nice, closed form. In the general case, however, the distribution of two independent random variables can be calculated as a **convolution** of probability distributions.

For two independent random variables, you can calculate the CDF or the PDF of the sum of two random variables using the following formulas:

$$F_{X+Y}(n) = P(X+Y \le n) = \sum_{k=-\infty}^{\infty} F_X(k)F_Y(n-k)$$
$$p_{X+Y}(n) = \sum_{k=-\infty}^{\infty} p_X(k)p_Y(n-k)$$

Most importantly, convolution is the process of finding the sum of the random variables themselves, and not the process of adding together probabilities.

Example 3

Let's go about proving that the sum of two independent Poisson random variables is also Poisson. Let $X \sim \text{Poi}(\lambda_1)$ and $Y \sim \text{Poi}(\lambda_2)$ be two independent random variables, and Z = X + Y. What is P(Z = n)?

$$P(Z = n) = P(X + Y = n) = \sum_{k=-\infty}^{\infty} P(X = k)P(Y = n - k)$$
(Convolution)
$$= \sum_{k=0}^{n} P(X = k)P(Y = n - k)$$
(Range of X and Y)
$$= \sum_{k=0}^{n} e^{-\lambda_1} \frac{\lambda_1^k}{k!} e^{-\lambda_2} \frac{\lambda_2^{n-k}}{(n-k)!}$$
(Poisson PMF)
$$= e^{-(\lambda_1 + \lambda_2)} \sum_{k=0}^{n} \frac{\lambda_1^k \lambda_2^{n-k}}{k!(n-k)!}$$
$$= \frac{e^{-(\lambda_1 + \lambda_2)}}{n!} \sum_{k=0}^{n} \frac{n!}{k!(n-k)!} \lambda_1^k \lambda_2^{n-k}$$
(Binomial theorem)

Note that the Binomial Theorem (which we did not cover in this class, but is often used in contexts like expanding polynomials) says that for two numbers *a* and *b* and positive integer *n*, $(a + b)^n = \sum_{k=0}^n {n \choose k} a^k b^{n-k}$.