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Chain Rule

Definition of conditional probability:

𝑃 𝐸|𝐹 =
𝑃 𝐸𝐹
𝑃(𝐹)

The Chain Rule:

𝑃 𝐸𝐹 = 𝑃 𝐸 𝐹 𝑃(𝐹)

4
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Generalized Chain Rule

𝑃 𝐸!𝐸"𝐸#…𝐸$
= 𝑃 𝐸! 𝑃 𝐸" 𝐸! 𝑃 𝐸# 𝐸!𝐸" …𝑃 𝐸$|𝐸!𝐸"…𝐸$%!

5
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Quick check
You are going to a friend’s Halloween party.
Let 𝐶 = there is candy

𝑀 = there is music
An awesome party means that all of these events must occur.
What is 𝑃 awesome party = 𝑃(𝐶𝑀𝑊𝐸)?

6

A. 𝑃 𝐶 𝑃 𝑀 𝐶)𝑃 𝑊 𝐶𝑀 𝑃(𝐸|𝐶𝑀𝑊)
B. 𝑃 𝑀 𝑃 𝐶 𝑀)𝑃 𝑊 𝑀𝐶 𝑃(𝐸|𝑀𝐶𝑊)
C. 𝑃 𝑊 𝑃 𝐸 𝑊)𝑃 𝐶𝑀 𝐸𝑊
D. A, B, and C
E. None/other

𝑊 = you wear a costume
𝐸 = no one wears your costume

Chain
Rule

𝑃 𝐸!𝐸"𝐸#…𝐸$ =
𝑃 𝐸! 𝑃 𝐸" 𝐸! …𝑃 𝐸$|𝐸!𝐸"…𝐸$%!

🤔
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Quick check
You are going to a friend’s Halloween party.
Let 𝐶 = there is candy

𝑀 = there is music
An awesome party means that all of these events must occur.
What is 𝑃 awesome party = 𝑃(𝐶𝑀𝐸𝑊)?
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A. 𝑃 𝐶 𝑃 𝑀 𝐶)𝑃 𝐸 𝐶𝑀 𝑃(𝑊|𝐶𝑀𝐸)
B. 𝑃 𝑀 𝑃 𝐶 𝑀)𝑃 𝐸 𝑀𝐶 𝑃(𝑊|𝑀𝐶𝐸)
C. 𝑃 𝑊 𝑃 𝐸 𝑊)𝑃 𝐶𝑀 𝐸𝑊
D. A, B, and C
E. None/other

𝐸 = no one wears your costume
𝑊 = you wear a costume

Chain
Rule

𝑃 𝐸!𝐸"𝐸#…𝐸$ =
𝑃 𝐸! 𝑃 𝐸" 𝐸! …𝑃 𝐸$|𝐸!𝐸"…𝐸$%!

Chain Rule is a way of introducing “order” 
and “procedure” into probability.
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Think of the children
Two parents both have an (A, a) gene pair.
• Each parent will pass on one of their genes

(each gene equally likely) to their child.
• The probability of a single child having

curly hair (recessive trait) is 0.25.
• There are three children.

What is the probability that all three children have curly hair?

8

𝑃 𝐸!𝐸"𝐸# = 𝑃 𝐸! 𝑃 𝐸"|𝐸! 𝑃 𝐸#|𝐸!𝐸"
Let 𝐸&, 𝐸', 𝐸( be the 
events that child 1, 2,
and 3 have curly hair, 
respectively. 🤔
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Independence

Two events 𝐸 and 𝐹 are defined as independent if:
𝑃 𝐸𝐹 = 𝑃 𝐸 𝑃(𝐹)

Otherwise 𝐸 and 𝐹 are called dependent events.

If 𝐸 and 𝐹 are independent, then:
𝑃 𝐸 𝐹 = 𝑃(𝐸)

10
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Intuition through proof
Statement:

If 𝐸 and 𝐹 are independent, then 𝑃 𝐸 𝐹 = 𝑃 𝐸 .

Proof:

Definition of
conditional probability

Independence of 𝐸 and 𝐹

Taking the bus to cancellation city

11

𝑃 𝐸 𝐹 =
𝑃 𝐸𝐹
𝑃(𝐹)

=
𝑃 𝐸 𝑃 𝐹
𝑃(𝐹)

= 𝑃(𝐸)
Knowing that 𝐹 happened does not 
change our belief that 𝐸 happened.

𝑃 𝐸𝐹 = 𝑃 𝐸 𝑃(𝐹)Independent
events 𝐸 and 𝐹
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Dice, our misunderstood friends
• Roll two 6-sided dice, yielding values 𝐷& and 𝐷'.
• Let event 𝐸: 𝐷& = 1

event 𝐹: 𝐷' = 6
event 𝐺: 𝐷& + 𝐷' = 5

12

1. Are 𝐸 and 𝐹 independent? 2. Are 𝐸 and 𝐺 independent?

dependentindependent

𝑃 𝐸 = 1/6
𝑃 𝐹 = 1/6
𝑃 𝐸𝐹 = 1/36

𝐺 = { 1,4 , 2,3 , 3,2 , 4,1 }

𝑃 𝐸 = 1/6
𝑃 𝐺 = 4/36 = 1/9
𝑃 𝐸𝐺 = 1/36 ≠ 𝑃 𝐸 𝑃(𝐺)

𝑃 𝐸|𝐹 = 𝑃(𝐸)
𝑃 𝐸𝐹 = 𝑃 𝐸 𝑃(𝐹)Independent

events 𝐸 and 𝐹
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Generalizing independence

Three events 𝐸, 𝐹, and 𝐺
are independent if:

𝑛 events 𝐸&, 𝐸', … , 𝐸* are
independent if:

13

𝑃 𝐸𝐹𝐺 = 𝑃 𝐸 𝑃 𝐹 𝑃 𝐺 , and 
𝑃 𝐸𝐹 = 𝑃 𝐸 𝑃(𝐹), and 
𝑃 𝐸𝐺 = 𝑃 𝐸 𝑃(𝐺), and 
𝑃 𝐹𝐺 = 𝑃 𝐹 𝑃(𝐺)

for 𝑟 = 1,… , 𝑛:
for every subset 𝐸(, 𝐸), … , 𝐸*: 

𝑃 𝐸(, 𝐸), … , 𝐸* = 𝑃 𝐸( 𝑃 𝐸) ⋯𝑃 𝐸*
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Dice, increasingly misunderstood (still our friends)
• Each roll of a 6-sided die is an independent trial.
• Two rolls: 𝐷& and 𝐷'.
• Let event 𝐸: 𝐷& = 1

event 𝐹: 𝐷' = 6
event 𝐺: 𝐷& + 𝐷' = 7

14

2. Are 𝐸 and 𝐺
independent?

3. Are 𝐹 and 𝐺
independent?

4. Are 𝐸, 𝐹, 𝐺
independent?

1. Are 𝐸 and 𝐹
independent?

𝐺 = { 1,6 , 2,5 , 3,4 , 4,3 , 5,2 , 6,1 }

𝑃 𝐸𝐹 = 1/36

🤔
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Dice, increasingly misunderstood (still our friends)
• Each roll of a 6-sided die is an independent trial.
• Two rolls: 𝐷& and 𝐷'.
• Let event 𝐸: 𝐷& = 1

event 𝐹: 𝐷' = 6
event 𝐺: 𝐷& + 𝐷' = 7
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1. Are 𝐸 and 𝐹
independent?

2. Are 𝐸 and 𝐺
independent?

3. Are 𝐹 and 𝐺
independent?

4. Are 𝐸, 𝐹, 𝐺
independent?✅

𝐺 = { 1,6 , 2,5 , 3,4 , 4,3 , 5,2 , 6,1 }

Pairwise independence is not sufficient to prove independence of >2 events!

𝑃 𝐸𝐹 = 1/36



Independence II
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Independent trials
We often are interested in experiments consisting of 𝑛 independent trials.
• 𝑛 trials, each with the same set of possible outcomes
• 𝑛-way independence: an event in one subset of trials is independent of 

events in other subsets of trials 

Examples:
• Flip a coin 𝑛 times
• Roll a die 𝑛 times
• Send a multiple choice survey to 𝑛 people
• Send 𝑛 web requests to 𝑘 different servers

17
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Think of the children as independent trials
Two parents both have an (A, a) gene pair.
• Each parent will pass on one of their genes

(each gene equally likely) to their child.
• The probability of a single child having

curly hair (recessive trait) is 0.25.
• There are three children. Each child is an independent trial.

What is the probability that all three children have curly hair?

18

𝑃 𝐸!𝐸"𝐸# = 𝑃 𝐸! 𝑃 𝐸"|𝐸! 𝑃 𝐸#|𝐸!𝐸"
Let 𝐸&, 𝐸', 𝐸( be the 
events that child 1, 2,
and 3 have curly hair, 
respectively.
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Consider the following parallel network:
• 𝑛 independent routers, each with

probability 𝑝+ of functioning (where 1 ≤ 𝑖 ≤ 𝑛)
• 𝐸 = functional path from A to B exists. 

What is 𝑃 𝐸 ?

19

Network reliability
𝑝(
𝑝)

𝑝,
…

𝐴 𝐵

🤔
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Consider the following parallel network:
• 𝑛 independent routers, each with

probability 𝑝+ of functioning (where 1 ≤ 𝑖 ≤ 𝑛)
• 𝐸 = functional path from A to B exists. 

What is 𝑃 𝐸 ?

20

Network reliability
𝑝(
𝑝)

𝑝,
…

𝐴 𝐵

𝑃 𝐸 = 𝑃 ≥ 1 one router works
= 1 − 𝑃 all routers fail
= 1 − 1 − 𝑝& 1 − 𝑝' ⋯ 1 − 𝑝*

= 1 −E
+,&

*

1 − 𝑝+ ≥ 1 with independent trials: 
take complement
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Independence

Two events 𝐸 and 𝐹 are defined as independent if:
𝑃 𝐸𝐹 = 𝑃 𝐸 𝑃(𝐹)

For independent events 𝐸 and 𝐹,
• 𝑃 𝐸 𝐹 = 𝑃(𝐸)

22

Review



Think
Slide 24 has two questions to think over by 
yourself. We’ll go over it together afterwards.

Post any clarifications here!
https://us.edstem.org/courses/109/discussion/27279

Think by yourself: 2 min

23

🤔(by yourself)

https://us.edstem.org/courses/109/discussion/27279
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Independence?
1. Two events 𝐸 and 𝐹 are independent if:

A. Knowing that 𝐹 happens means that 𝐸 can’t happen.
B. Knowing that 𝐹 happens doesn’t change probability that 𝐸 happened.

2. Are 𝐸 and 𝐹 independent in the following pictures?

24

S
F

E

S

E

F

A. B.

1/4

2/9

1/9

4/91/4

🤔(by yourself)

𝑃 𝐸|𝐹 = 𝑃(𝐸)
𝑃 𝐸𝐹 = 𝑃 𝐸 𝑃(𝐹)Independent

events 𝐸 and 𝐹
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Independence?
1. Two events 𝐸 and 𝐹 are independent if:

A. Knowing that 𝐹 happens means that 𝐸 can’t happen.
B. Knowing that 𝐹 happens doesn’t change probability that 𝐸 happened.

2. Are 𝐸 and 𝐹 independent in the following pictures?

25

S
F

E

S

E

F

A. B.

1/4

2/9

1/9

4/91/4

Be careful:
• Independence is NOT mutual exclusion.
• Independence is difficult to visualize graphically.

𝑃 𝐸|𝐹 = 𝑃(𝐸)
𝑃 𝐸𝐹 = 𝑃 𝐸 𝑃(𝐹)Independent

events 𝐸 and 𝐹
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Independence

Two events 𝐸 and 𝐹 are defined as independent if:
𝑃 𝐸𝐹 = 𝑃 𝐸 𝑃(𝐹)

For independent events 𝐸 and 𝐹,
• 𝑃 𝐸 𝐹 = 𝑃(𝐸)
• 𝐸 and 𝐹- are independent.

26

new
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Independence of complements
Statement:

If 𝐸 and 𝐹 are independent, then 𝐸 and 𝐹& are independent.
Proof:

Intersection
Independence of 𝐸 and 𝐹
Factoring
Complement
Definition of independence

27

𝑃 𝐸𝐹- = 𝑃 𝐸 − 𝑃(𝐸𝐹)
= 𝑃 𝐸 − 𝑃 𝐸 𝑃(𝐹)

= 𝑃 𝐸 𝑃(𝐹-)
= 𝑃 𝐸 1 − 𝑃(𝐹)

𝐸 and 𝐹- are independent

Knowing that 𝐹 did or didn’t happen does not 
change our belief that 𝐸 happened.
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Independence

Two events 𝐸 and 𝐹 are defined as independent if:
𝑃 𝐸𝐹 = 𝑃 𝐸 𝑃(𝐹)

For independent events 𝐸 and 𝐹,
• 𝑃 𝐸 𝐹 = 𝑃(𝐸)
• 𝐸 and 𝐹- are independent

Independent trials are when we observe independent sub-experiments, 
each of which has the same set of possible outcomes.

28

Review



Breakout 
Rooms

Check out the questions on the next slide 
(Slide 30). Post any clarifications here!

https://us.edstem.org/courses/109/discussion/27279

Breakout rooms: 5 min. Introduce yourself!

29

🤔

https://us.edstem.org/courses/109/discussion/27279
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(biased) Coin Flips
Suppose we flip a coin 𝑛 times. Each coin flip is an independent trial with 
probability 𝑝 of coming up heads. Write an expression for the following:

1. 𝑃(𝑛 heads on 𝑛 coin flips)
2. 𝑃(𝑛 tails on 𝑛 coin flips)
3. 𝑃(first 𝑘 heads, then 𝑛 − 𝑘 tails)
4. 𝑃(exactly 𝑘 heads on 𝑛 coin flips)

30

🤔
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(biased) Coin Flips
Suppose we flip a coin 𝑛 times. Each coin flip is an independent trial with 
probability 𝑝 of coming up heads. Write an expression for the following:

1. 𝑃(𝑛 heads on 𝑛 coin flips)
2. 𝑃(𝑛 tails on 𝑛 coin flips)
3. 𝑃(first 𝑘 heads, then 𝑛 − 𝑘 tails)
4. 𝑃(exactly 𝑘 heads on 𝑛 coin flips)

31

𝑛
𝑘 𝑝. 1 − 𝑝 */.

# of mutually
exclusive

outcomes

𝑃(a particular outcome’s
𝑘 heads on 𝑛 coin flips)

Make sure you understand #4! It will come up again.



Interlude for 
jokes/announcements

32
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Announcements

33

Still confused about Monty Hall? Check out the code!
https://us.edstem.org/courses/109/discussion/27277?comment=93040

Sections start today!

Late signups/change form: end of day

Free Online CTL Tutoring
CTL offers appointment tutoring for CS 109, in addition to tutoring for a number of other courses. 
For more information and to schedule an appointment, visit our tutoring appointments and drop-in 
schedule page. We also have a variety of remote learning resources and academic 
coaching available to assist with all of your learning needs!

Problem Set 1

due: 10am Friday (not 10:30am)

https://us.edstem.org/courses/109/discussion/27277%3Fcomment=93040
https://learningconnection.stanford.edu/appointments-and-drop-schedule
https://learningconnection.stanford.edu/remotelearning
https://learningconnection.stanford.edu/academic-skills-coaching
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Probability of events

34

E or F
𝑃 𝐸 ∪ 𝐹

E and F
𝑃 𝐸𝐹

Just add!
Inclusion-
Exclusion 
Principle

Just multiply! Chain Rule

Mutually 

exclusive? Independent?

𝑃 𝐸 + 𝑃(𝐹) 𝑃 𝐸 + 𝑃 𝐹 − 𝑃(𝐸 ∩ 𝐹)
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Probability of events

35

E or F
𝑃 𝐸 ∪ 𝐹

E and F
𝑃 𝐸𝐹

Just add!
Inclusion-
Exclusion 
Principle

Just multiply! Chain Rule

Mutually 

exclusive? Independent?

𝑃 𝐸 + 𝑃(𝐹) 𝑃 𝐸 + 𝑃 𝐹 − 𝑃(𝐸 ∩ 𝐹)
𝑃 𝐸 𝑃 𝐹 𝐸

or 
𝑃 𝐹 𝑃(𝐸|𝐹)

𝑃 𝐸 𝑃 𝐹
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Probability of events

36

E or F
𝑃 𝐸 ∪ 𝐹

E and F
𝑃 𝐸𝐹

Just add!
Inclusion-
Exclusion 
Principle

Just multiply! Chain Rule

De Morgan’s

Mutually 

exclusive? Independent?
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Augustus De Morgan
Augustus De Morgan (1806–1871):

British mathematician who wrote the book Formal Logic (1847).

37

He looked remarkably similar to Jason Alexander (George from Seinfeld)
(but that’s not important right now)
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Great if 𝐸+- mutually exclusive!

Great if 𝐸+ independent!

De Morgan’s Laws

38

E F

S 𝐸 ∩ 𝐹 - = 𝐸- ∪ 𝐹-

;
+.(

,

𝐸+

-

=<
+.(

,

𝐸+-

In probability:
𝑃 𝐸&𝐸'⋯𝐸*
= 1 − 𝑃 𝐸&𝐸'⋯𝐸* -

= 1 − 𝑃 𝐸&- ∪ 𝐸'2 ∪⋯∪ 𝐸*2

𝐸 ∪ 𝐹 - = 𝐸- ∩ 𝐹-

E F

S

<
+.(

,

𝐸+

-

=;
+.(

,

𝐸+-

In probability:
𝑃 𝐸& ∪ 𝐸' ∪⋯∪ 𝐸*

= 1 − 𝑃 𝐸& ∪ 𝐸' ∪⋯∪ 𝐸* -

= 1 − 𝑃 𝐸&2𝐸'2⋯𝐸*2

DeMorgan’s lets you switch from AND to OR.



Think, 
then 
Breakout 
Rooms

Check out the questions on the next slide 
(Slide 40). These are challenging problems.
Post any clarifications here!

https://us.edstem.org/courses/109/discussion/27279

Think by yourself: 2 min

Breakout rooms: 5 min

39

🤔

https://us.edstem.org/courses/109/discussion/27279
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Hash table fun
• 𝑚 strings are hashed (unequally) into a hash table with 𝑛 buckets.
• Each string hashed is an independent trial w.p. 𝑝+ of getting hashed into bucket 𝑖.

What is 𝑃 𝐸 if
1. 𝐸 = bucket 1 has ≥ 1 string hashed into it?

2. 𝐸 = at least 1 of buckets 1 to 𝑘 has ≥ 1 string hashed into it?

40

🤔
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Hash table fun
• 𝑚 strings are hashed (unequally) into a hash table with 𝑛 buckets.
• Each string hashed is an independent trial w.p. 𝑝+ of getting hashed into bucket 𝑖.

What is 𝑃 𝐸 if
1. 𝐸 = bucket 1 has ≥ 1 string hashed into it?

41

Define 𝑆+ = string 𝑖 is
hashed into bucket 1
𝑆+- = string 𝑖 is not
hashed into bucket 1

𝑃 𝑆& = 𝑝!
𝑃 𝑆&' = 1 − 𝑝!
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Hash table fun
• 𝑚 strings are hashed (unequally) into a hash table with 𝑛 buckets.
• Each string hashed is an independent trial w.p. 𝑝+ of getting hashed into bucket 𝑖.

What is 𝑃 𝐸 if
1. 𝐸 = bucket 1 has ≥ 1 string hashed into it?

42

𝑃 𝐸 = 𝑃(𝑆& ∪ 𝑆' ∪⋯∪ 𝑆7)
= 1 − 𝑃 𝑆& ∪ 𝑆' ∪⋯∪ 𝑆7 - Complement

= 1 − 𝑃 𝑆&-𝑆'-⋯𝑆7- De Morgan’s Law

= 1 − 𝑃 𝑆&- 𝑃 𝑆'- ⋯𝑃 𝑆7- = 1 − 𝑃 𝑆&-
7

𝑆+ independent trials

= 1 − (1 − 𝑝&)7

Define 𝑆+ = string 𝑖 is
hashed into bucket 1
𝑆+- = string 𝑖 is not
hashed into bucket 1

𝑃 𝑆& = 𝑝!
𝑃 𝑆&' = 1 − 𝑝!

WTF (not-real acronym for Want To Find):



Lisa Yan, CS109, 2020

More hash table fun: Possible approach?
• 𝑚 strings are hashed (unequally) into a hash table with 𝑛 buckets.
• Each string hashed is an independent trial w.p. 𝑝+ of getting hashed into bucket 𝑖.

What is 𝑃 𝐸 if
1. 𝐸 = bucket 1 has ≥ 1 string hashed into it?
2. 𝐸 = at least 1 of buckets 1 to 𝑘 has ≥ 1 string hashed into it?

43

⚠ 𝐹+ bucket events are dependent!
So we cannot approach with complement. 

Define 𝐹+ = bucket 𝑖 has at 
least one string in it𝑃 𝐸 = 𝑃 𝐹& ∪ 𝐹' ∪⋯∪ 𝐹.

= 1 − 𝑃 𝐹& ∪ 𝐹' ∪⋯∪ 𝐹. -

= 1 − 𝑃 𝐹&-𝐹'-⋯𝐹.-

?= 1 − 𝑃 𝐹&- 𝑃 𝐹'- ⋯𝑃 𝐹.2
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= 𝑃 no strings hashed to buckets 1 to 𝑘
= 𝑃 string hashed outside bkts 1 to 𝑘

/

= (1 − 𝑝( − 𝑝)…– 𝑝0)/

More hash table fun
• 𝑚 strings are hashed (unequally) into a hash table with 𝑛 buckets.
• Each string hashed is an independent trial w.p. 𝑝+ of getting hashed into bucket 𝑖.

What is 𝑃 𝐸 if
1. 𝐸 = bucket 1 has ≥ 1 string hashed into it?
2. 𝐸 = at least 1 of buckets 1 to 𝑘 has ≥ 1 string hashed into it?
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Define 𝐹+ = bucket 𝑖 has at 
least one string in it𝑃 𝐸 = 𝑃 𝐹& ∪ 𝐹' ∪⋯∪ 𝐹.

= 1 − 𝑃 𝐹& ∪ 𝐹' ∪⋯∪ 𝐹. -

= 1 − 𝑃 𝐹&-𝐹'-⋯𝐹.-

= 1 − (1 − 𝑝& − 𝑝'…– 𝑝.)7
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The fun never stops with hash tables
• 𝑚 strings are hashed (unequally) into a hash table with 𝑛 buckets.
• Each string hashed is an independent trial w.p. 𝑝+ of getting hashed into bucket 𝑖.

What is 𝑃 𝐸 if
1. 𝐸 = bucket 1 has ≥ 1 string hashed into it?
2. 𝐸 = at least 1 of buckets 1 to 𝑘 has ≥ 1 string hashed into it?

Looking for a challenge? J
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✅
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The fun never stops with hash tables
• 𝑚 strings are hashed (unequally) into a hash table with 𝑛 buckets.
• Each string hashed is an independent trial w.p. 𝑝+ of getting hashed into bucket 𝑖.

What is 𝑃 𝐸 if
1. 𝐸 = bucket 1 has ≥ 1 string hashed into it?
2. 𝐸 = at least 1 of buckets 1 to 𝑘 has ≥ 1 string hashed into it?

3. 𝐸 = each of of buckets 1 to 𝑘 has ≥ 1 string hashed into it?

46

Hint: Use Part 2’s event definition:

Check out the Lecture Notes for a solution!

Define 𝐹+ = bucket 𝑖 has at 
least one string in it


