o5: Independence

Lisa Yan April 15, 2020

Quick slide reference

- 3 Generalized Chain Rule
- 9 Independence
- 16 Independent Trials

Exercises and deMorgan's Laws

05a_chain

05b_independence_i

05c_independence_ii

LIVE

05a_chain

Generalized Chain Rule

Review

Definition of conditional probability:

$$P(E|F) = \frac{P(EF)}{P(F)}$$

The Chain Rule:

P(EF) = P(E|F)P(F)

Generalized Chain Rule

$P(E_1 E_2 E_3 \dots E_n) = P(E_1) P(E_2 | E_1) P(E_3 | E_1 E_2) \dots P(E_n | E_1 E_2 \dots E_{n-1})$

Lisa Yan, CS109, 2020

Quick check

You are going to a friend's Halloween party.

Let C = there is candy M = there is music

W = you wear a costume

E = no one wears your costume

An awesome party means that all of these events must occur.

What is P(awesome party) = P(CMWE)?

- A. P(C)P(M|C)P(W|CM)P(E|CMW)
- B. P(M)P(C|M)P(W|MC)P(E|MCW)
- C. P(W)P(E|W)P(CM|EW)
- D. A, B, and C
- E. None/other

Quick check

You are going to a friend's Halloween party.

Let C = there is candy M = there is music

E = no one wears your costume W = you wear a costume

An awesome party means that all of these events must occur.

What is P(awesome party) = P(CMEW)?

- A. P(C)P(M|C)P(E|CM)P(W|CME)
- **B.** P(M)P(C|M)P(E|MC)P(W|MCE)
- C. P(W)P(E|W)P(CM|EW)
- D. A, B, and C
- E. None/other

Chain Rule is a way of introducing "order" and "procedure" into probability.

Think of the children

Two parents both have an (A, a) gene pair.

- Each parent will pass on one of their genes (each gene equally likely) to their child.
- The probability of a single child having curly hair (recessive trait) is 0.25.
- There are three children.

What is the probability that all three children have curly hair?

Let E_1, E_2, E_3 be the events that child 1, 2, and 3 have curly hair, respectively.

 $P(E_1E_2E_3) = P(E_1)P(E_2|E_1)P(E_3|E_1E_2)$

05b_independence_i

Independence I

Two events *E* and *F* are defined as independent if: P(EF) = P(E)P(F)

Otherwise *E* and *F* are called <u>dependent</u> events.

If *E* and *F* are independent, then:

P(E|F) = P(E)

Intuition through proof

Statement:

If E and F are independent, then P(E|F) = P(E).

Proof:

$$P(E|F) = \frac{P(EF)}{P(F)}$$
$$= \frac{P(E)P(F)}{P(F)}$$
$$= P(E)$$

Definition of conditional probability

Independence of *E* and *F*

') Ta

Taking the bus to cancellation city

Independent

events E and F

Knowing that *F* happened does not change our belief that *E* happened.

P(EF) = P(E)P(F)

Dice, our misunderstood friends

- Roll two 6-sided dice, yielding values D_1 and D_2 .
 - Let event E: $D_1 = 1$ event F: $D_2 = 6$ event G: $D_1 + D_2 = 5$
- **1.** Are *E* and *F* independent? **2.** Are *E*
 - P(E) = 1/6P(F) = 1/6P(EF) = 1/36
 - independent

2. Are *E* and *G* independent?

 $G = \{(1,4), (2,3), (3,2), (4,1)\}$

P(E) = 1/6 P(G) = 4/36 = 1/9 $P(EG) = 1/36 \neq P(E)P(G)$

<u>dependent</u>

events *E* and *F* P(EF) = P(E)P(F)P(E|F) = P(E)

Generalizing independence

Three events *E*, *F*, and *G* are independent if:

$$P(EFG) = P(E)P(F)P(G)$$
, and
 $P(EF) = P(E)P(F)$, and
 $P(EG) = P(E)P(G)$, and
 $P(FG) = P(F)P(G)$
for $r = 1, ..., n$:

n events
$$E_1, E_2, \dots, E_n$$
 are independent if:

for r = 1, ..., n: for every subset $E_1, E_2, ..., E_r$: $P(E_1, E_2, ..., E_r) = P(E_1)P(E_2) \cdots P(E_r)$

$G = \{(1,6), (2,5), (3,4), (4,3), (5,2), (6,1)\}$

independent?

independent?

1. Are E and F **2.** Are E and G **3.** Are F and G **4.** Are E, F, G independent? independent?

P(EF) = 1/36

Dice, increasingly misunderstood (still our friends)

- Each roll of a 6-sided die is an independent trial.
- Two rolls: D_1 and D_2 .
- Let event E: $D_1 = 1$ event F: $D_2 = 6$ event *G*: $D_1 + D_2 = 7$

Dice, increasingly misunderstood (still our friends)

- Each roll of a 6-sided die is an independent trial.
- Two rolls: D_1 and D_2 .
- Let event E: $D_1 = 1$ event F: $D_2 = 6$ event *G*: $D_1 + D_2 = 7$

• ,

 $G = \{(1,6), (2,5), (3,4), (4,3), (5,2), (6,1)\}$

independent?

v independent?

1. Are E and F **2.** Are E and G **3.** Are F and G **4.** Are E, F, Gindependent? independent?

P(EF) = 1/36

Pairwise independence is not sufficient to prove independence of >2 events!

Lisa Yan, CS109, 2020

05b_independence_ii

Independence II

Independent trials

We often are interested in experiments consisting of *n* independent trials.

- *n* trials, each with the same set of possible outcomes
- n-way independence: an event in one subset of trials is independent of events in other subsets of trials

Examples:

- Flip a coin *n* times
- Roll a die *n* times
- Send a multiple choice survey to *n* people
- Send *n* web requests to *k* different servers

Think of the children as independent trials

Two parents both have an (A, a) gene pair.

- Each parent will pass on one of their genes (each gene equally likely) to their child.
- The probability of a single child having curly hair (recessive trait) is 0.25.

• There are three children. Each child is an independent trial.

What is the probability that all three children have curly hair?

Let E_1, E_2, E_3 be the events that child 1, 2, and 3 have curly hair, respectively.

$$P(E_1 E_2 E_3) = P(E_1) P(E_2 | E_1) P(E_3 | E_1 E_2)$$

Network reliability

Consider the following parallel network:

- *n* independent routers, each with probability p_i of functioning (where $1 \le i \le n$)
- E = functional path from A to B exists.

What is P(E)?

Network reliability

Consider the following parallel network:

- *n* independent routers, each with probability p_i of functioning (where $1 \le i \le n$)
- E = functional path from A to B exists.

What is P(E)?

 $P(E) = P(\ge 1 \text{ one router works})$ = 1 - P(all routers fail) = 1 - (1 - p₁)(1 - p₂) ... (1 - p_n) = 1 - $\prod_{i=1}^{n} (1 - p_i)$

 \geq 1 with independent trials: take complement

o5: Independence

Lisa Yan April 15, 2020

Two events *E* and *F* are defined as independent if: P(EF) = P(E)P(F)

For independent events *E* and *F*,

• P(E|F) = P(E)

Think

Slide 24 has two questions to think over by yourself. We'll go over it together afterwards.

Post any clarifications here!

https://us.edstem.org/courses/109/discussion/27279

Think by yourself: 2 min

Independence?

Independent events E and F P(EF) = P(E)P(F)P(E|F) = P(E)

- **1.** Two events *E* and *F* are independent if:
 - A. Knowing that F happens means that E can't happen.
 - B. Knowing that F happens doesn't change probability that E happened.
- 2. Are *E* and *F* independent in the following pictures?

Independence?

Independent events E and F P(EF) = P(E)P(F)P(E|F) = P(E)

- **1.** Two events *E* and *F* are independent if:
 - A. Knowing that F happens means that E can't happen.
 - B. Knowing that F happens doesn't change probability that E happened.
- 2. Are *E* and *F* independent in the following pictures?

Be careful:

- Independence is NOT mutual exclusion.
- Independence is difficult to visualize graphically.

Two events *E* and *F* are defined as <u>independent</u> if:

$$P(EF) = P(E)P(F)$$

For independent events *E* and *F*,

- P(E|F) = P(E)
- E and F^{C} are independent.

new

Statement:

If E and F are independent, then E and F^{C} are independent.

Proof:

 $P(EF^{C}) = P(E) - P(EF)$ = P(E) - P(E)P(F)= P(E)[1 - P(F)]= $P(E)P(F^{C})$

E and F^{C} are independent

Intersection

Independence of *E* and *F*

Factoring

Complement

Definition of independence

Knowing that *F* did or didn't happen does not change our belief that *E* happened.

Review

Two events *E* and *F* are defined as <u>independent</u> if:

$$P(EF) = P(E)P(F)$$

For independent events *E* and *F*,

- P(E|F) = P(E)
- *E* and *F^C* are independent

Independent trials are when we observe independent sub-experiments, each of which has the same set of possible outcomes.

Breakout Rooms

Check out the questions on the next slide (Slide 30). Post any clarifications here!

https://us.edstem.org/courses/109/discussion/27279

Breakout rooms: 5 min. Introduce yourself!

(biased) Coin Flips

Suppose we flip a coin n times. Each coin flip is an **independent trial** with probability p of coming up heads. Write an expression for the following:

- **1.** P(n heads on n coin flips)
- 2. P(n tails on n coin flips)
- **3.** P(first k heads, then n k tails)
- **4.** *P*(exactly *k* heads on *n* coin flips)

(biased) Coin Flips

Suppose we flip a coin n times. Each coin flip is an **independent trial** with probability p of coming up heads. Write an expression for the following:

- **1.** P(n heads on n coin flips)
- 2. P(n tails on n coin flips)
- **3.** P(first k heads, then n k tails)
- **4.** *P*(exactly *k* heads on *n* coin flips)

$$\binom{n}{k} p^k (1-p)^{n-k}$$

of mutually exclusive outcomes P(a particular outcome's k heads on n coin flips)

Make sure you understand #4! It will come up again.

Lisa Yan, CS109, 2020

Interlude for jokes/announcements

Announcements

Free Online CTL Tutoring

CTL offers appointment tutoring for CS 109, in addition to tutoring for a number of other courses. For more information and to schedule an appointment, visit our <u>tutoring appointments and drop-in</u> <u>schedule page</u>. We also have a variety of <u>remote learning resources</u> and <u>academic</u> <u>coaching</u> available to assist with all of your learning needs!

Sections start today!		<u>Problem Set 1</u>
Late signups/change form:	end of day	due: 10am Friday (not 10:30am)

Still confused about Monty Hall? Check out the code! <u>https://us.edstem.org/courses/109/discussion/27277?comment=93040</u>

Probability of events

Probability of events

Probability of events

Augustus De Morgan

Augustus De Morgan (1806–1871):

British mathematician who wrote the book Formal Logic (1847).

He looked remarkably similar to Jason Alexander (George from Seinfeld) (but that's not important right now)

Lisa Yan, CS109, 2020

De Morgan's Laws

$(E \cap F)^C$:	$= E^C \cup F^C$
$\left(\bigcap_{i=1}^{n} E_i\right)^C =$	$= \bigcup_{i=1}^{n} E_i^C$

n probability:

$$P(E_1E_2 \cdots E_n)$$

$$= 1 - P((E_1E_2 \cdots E_n)^C)$$

$$= 1 - P(E_1^C \cup E_2^C \cup \cdots \cup E_n^C)$$
Great if E_i^C mutually exclusive!

S E F

$$(E \cup F)^{C} = E^{C} \cap F^{C}$$
$$\left(\bigcup_{i=1}^{n} E_{i}\right)^{C} = \bigcap_{i=1}^{n} E_{i}^{C}$$

In probability: $P(E_{1} \cup E_{2} \cup \dots \cup E_{n})$ $= 1 - P((E_{1} \cup E_{2} \cup \dots \cup E_{n})^{C})$ $= 1 - P(E_{1}^{C}E_{2}^{C} \cdots E_{n}^{C})$ Great if E_{i} independent! Stanford University 38 Think, then Breakout Rooms

Check out the questions on the next slide (Slide 40). These are challenging problems. Post any clarifications here!

https://us.edstem.org/courses/109/discussion/27279

Think by yourself: 2 min

Breakout rooms: 5 min

Hash table fun

- *m* strings are hashed (unequally) into a hash table with *n* buckets.
- Each string hashed is an independent trial w.p. p_i of getting hashed into bucket *i*.

What is P(E) if **1**. E = bucket 1 has \geq 1 string hashed into it?

2. E = at least 1 of buckets 1 to k has ≥ 1 string hashed into it?

Hash table fun

- *m* strings are hashed (unequally) into a hash table with *n* buckets.
- Each string hashed is an independent trial w.p. p_i of getting hashed into bucket *i*.

What is P(E) if

1. E =bucket 1 has ≥ 1 string hashed into it?

Define $S_i = \text{string } i \text{ is}$ hashed into bucket 1 $S_i^C = \text{string } i \text{ is } \underline{\text{not}}$ hashed into bucket 1 $P(S_i) = p_1$ $P(S_i^C) = 1 - p_1$

Hash table fun

- *m* strings are hashed (unequally) into a hash table with *n* buckets.
- Each string hashed is an independent trial w.p. p_i of getting hashed into bucket *i*.

What is P(E) if **1.** E = bucket 1 has \geq 1 string hashed into it?

hashed into bucket 1 <u>WTF</u> (not-real acronym for Want To Find): S_i^C = string *i* is <u>not</u> hashed into bucket 1 $P(E) = P(S_1 \cup S_2 \cup \cdots \cup S_m)$ $= 1 - P((S_1 \cup S_2 \cup \cdots \cup S_m)^C)$ Complement $P(S_i) = p_1$ $= 1 - P(S_1^C S_2^C \cdots S_m^C)$ $P(S_i^C) = 1 - p_1$ De Morgan's Law $= 1 - P(S_1^C)P(S_2^C) \cdots P(S_m^C) = 1 - (P(S_1^C))^m \quad S_i \text{ independent trials}$ $= 1 - (1 - p_1)^m$ Lisa Yan, CS109, 2020

Define

 S_i = string *i* is

More hash table fun: Possible approach?

- *m* strings are hashed (unequally) into a hash table with *n* buckets.
- Each string hashed is an independent trial w.p. p_i of getting hashed into bucket *i*.

Lisa Yan, CS109, 2020

What is P(E) if 1. E = bucket 1 has ≥ 1 string hashed into it? 2. E = at least 1 of buckets 1 to k has ≥ 1 string hashed into it?

$$P(E) = P(F_1 \cup F_2 \cup \cdots \cup F_k)$$

= $1 - P((F_1 \cup F_2 \cup \cdots \cup F_k)^C)$
= $1 - P(F_1^C F_2^C \cdots F_k^C)$
? = $1 - P(F_1^C) P(F_2^C) \cdots P(F_k^C)$

Define F_i = bucket *i* has at least one string in it

 F_i bucket events are dependent! So we cannot approach with complement.

More hash table fun

- *m* strings are hashed (unequally) into a hash table with *n* buckets.
- Each string hashed is an independent trial w.p. p_i of getting hashed into bucket *i*.

What is P(E) if 1. E = bucket 1 has ≥ 1 string hashed into it? 2. E = at least 1 of buckets 1 to k has ≥ 1 string hashed into it?

$$P(E) = P(F_1 \cup F_2 \cup \dots \cup F_k)$$

$$= 1 - P((F_1 \cup F_2 \cup \dots \cup F_k)^C)$$

$$= 1 - P(F_1^C F_2^C \cdots F_k^C) \longrightarrow P(no \text{ strings hashed to buckets } 1 \text{ to } k)$$

$$= (P(\text{string hashed outside bkts } 1 \text{ to } k))^m$$

$$= (1 - p_1 - p_2 \dots - p_k)^m$$

The fun never stops with hash tables

- *m* strings are hashed (unequally) into a hash table with *n* buckets.
- Each string hashed is an independent trial w.p. p_i of getting hashed into bucket *i*.

What is P(E) if

1. E = bucket 1 has ≥ 1 string hashed into it?

2. $E = \text{at least 1 of buckets 1 to } k \text{ has } \geq 1 \text{ string hashed into it?}$

Looking for a challenge? ©

The fun never stops with hash tables

- *m* strings are hashed (unequally) into a hash table with *n* buckets.
- Each string hashed is an independent trial w.p. p_i of getting hashed into bucket i.

What is P(E) if

1. E = bucket 1 has ≥ 1 string hashed into it?

2. E = at least 1 of buckets 1 to k has ≥ 1 string hashed into it?

3. $E = \operatorname{each} \operatorname{of}$ of buckets 1 to k has ≥ 1 string hashed into it?

Hint: Use Part 2's event definition:

Define F_i = bucket *i* has at least one string in it

Check out the Lecture Notes for a solution!

Lisa Yan, CS109, 2020

Stanford University 46