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Conditional Paradigm
For any events A, B, and E, you can condition consistently on E,

and all formulas still hold:

Axiom 1 0 ≤ 𝑃 𝐴 𝐸 ≤ 1
Corollary 1 (complement) 𝑃 𝐴 𝐸 = 1 − 𝑃 𝐴!|𝐸
Transitivity 𝑃 𝐴𝐵 𝐸 = 𝑃(𝐵𝐴|𝐸)
Chain Rule 𝑃 𝐴𝐵 𝐸 = 𝑃(𝐵|𝐸)𝑃 𝐴 𝐵𝐸

Bayes’ Theorem

4

𝑃 𝐴 𝐵𝐸 =
𝑃 𝐵 𝐴𝐸 𝑃 𝐴|𝐸

𝑃(𝐵|𝐸) ‘s theorem?
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Conditional Independence

5

Conditional Probability Independence
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Conditional Independence

6

Two events 𝐴 and 𝐵 are defined as conditionally independent given 𝐸 if:
𝑃 𝐴𝐵|𝐸 = 𝑃 𝐴|𝐸 𝑃(𝐵|𝐸)

An equivalent definition:

A. 𝑃 𝐴 𝐵 = 𝑃 𝐴
B. 𝑃 𝐴 𝐵𝐸 = 𝑃 𝐴
C. 𝑃 𝐴 𝐵𝐸 = 𝑃 𝐴|𝐸

𝑃 𝐸|𝐹 = 𝑃(𝐸)
𝑃 𝐸𝐹 = 𝑃 𝐸 𝑃(𝐹)Independent

events 𝐸 and 𝐹

🤔
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Conditional Independence

7

Two events 𝐴 and 𝐵 are defined as conditionally independent given 𝐸 if:
𝑃 𝐴𝐵|𝐸 = 𝑃 𝐴|𝐸 𝑃(𝐵|𝐸)

An equivalent definition:

A. 𝑃 𝐴 𝐵 = 𝑃 𝐴
B. 𝑃 𝐴 𝐵𝐸 = 𝑃 𝐴
C. 𝑃 𝐴 𝐵𝐸 = 𝑃 𝐴|𝐸

𝑃 𝐸|𝐹 = 𝑃(𝐸)
𝑃 𝐸𝐹 = 𝑃 𝐸 𝑃(𝐹)Independent

events 𝐸 and 𝐹
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Conditional Independence

8

Conditional Probability Independence

Independence relations can change with conditioning.

(additional reading in lecture notes)

does NOT always 
mean

A and B 
independent

A and B 
independent

given E.⚠ ⚠
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Netflix and Condition
Let 𝐸 = a user watches Life is Beautiful.
Let 𝐹 = a user watches Amelie.
What is 𝑃 𝐸 ?

𝑃 𝐸 ≈ # people who have watched movie
# people on Netflix = $%,'(),'($

*%,+'(,$'(
≈ 0.20

What is the probability that a user watches
Life is Beautiful, given they watched Amelie?

𝑃 𝐸|𝐹 =

9

𝑃 𝐸𝐹
𝑃(𝐹)

=
# people who have watched both

# people who have watched Amelie
≈ 0.42

Review
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Netflix and Condition

Let 𝐸 be the event that a user watches the given movie.
Let 𝐹 be the event that the same user watches Amelie.

10

𝑃 𝐸 = 0.19 𝑃 𝐸 = 0.32 𝑃 𝐸 = 0.20 𝑃 𝐸 = 0.20𝑃 𝐸 = 0.09

𝑃 𝐸|𝐹 = 0.14 𝑃 𝐸|𝐹 = 0.35 𝑃 𝐸|𝐹 = 0.20 𝑃 𝐸|𝐹 = 0.72 𝑃 𝐸|𝐹 = 0.42
Independent!

Review
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What if 𝐸$𝐸'𝐸(𝐸) are not independent? (e.g., all international emotional comedies)

Watched: Will they 
watch?

𝐸( 𝐸) 𝐸* 𝐸+

Netflix and Condition (on many movies)

11

𝑃 𝐸)|𝐸$𝐸'𝐸( =

We need to keep track of an exponential number of movie-watching statistics

𝑃 𝐸$𝐸'𝐸(𝐸)
𝑃 𝐸$𝐸'𝐸(

=
# people who have watched all 4

# people who have watched those 3
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Netflix and Condition (on many movies)

Assume: 𝐸$𝐸'𝐸(𝐸) are conditionally independent given 𝐾

12

Watched: Will they 
watch?

𝐸( 𝐸) 𝐸* 𝐸+

𝐾: likes international emotional comedies

𝑃 𝐸)|𝐸$𝐸'𝐸(𝐾 = 𝑃 𝐸)|𝐾
𝑃 𝐸)|𝐸$𝐸'𝐸( =

𝑃 𝐸$𝐸'𝐸(𝐸)
𝑃 𝐸$𝐸'𝐸( An easier probability to store and compute!
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Conditional independence is a Big Deal

Conditional independence is a practical, real-world way of 
decomposing hard probability questions.

“Exploiting conditional independence to generate fast 
probabilistic computations is one of the main 

contributions CS has made to probability theory.” 
–Judea Pearl wins 2011 Turing Award,

“For fundamental contributions to artificial intelligence
through the development of a calculus for probabilistic and causal reasoning” 

13
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Dependent events can become conditionally independent.
And vice versa: Independent events can become conditionally dependent.

Netflix and Condition

14

𝐸( 𝐸) 𝐸* 𝐸+

𝐾: likes international emotional comedies

𝐸$𝐸'𝐸(𝐸) are
dependent

𝐸$𝐸'𝐸(𝐸) are
conditionally independent 

given 𝐾

Challenge: How 
do we determine 
𝐾? Stay tuned in 
6 weeks’ time!



Random 
Variables

15

06b_random_variables
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Conditional independence review

16

Next Episode Playing in 5 seconds

𝑃(𝑋
= 𝑘

) 𝐸[𝑋]
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Random variables are like typed 
variables (with uncertainty)

int a = 5;

double b = 4.2;

bit c = 1;

𝐴 is the number of Pokemon we 
bring to our future battle.

𝐴 ∈ 1, 2, … , 6

𝐵 is the amount of money we get 
after we win a battle.

𝐵 ∈ ℝ,

𝐶 is 1 if we successfully beat the 
Elite Four. 0 otherwise.

𝐶 ∈ {0,1}

17

Random variables are like typed variables

type name value

Random 
variablesCS variables
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Random Variable
A random variable is a real-valued function defined on a sample space.

18

Experiment 𝑋 = 𝑘

2. What is the event (set of outcomes) where 𝑋 = 2?

Outcome

Example:

3 coins are flipped.
Let 𝑋 = # of heads.
𝑋 is a random variable.

1. What is the value of 𝑋 for the outcomes:
• (T,T,T)?
• (H,H,T)?

3. What is 𝑃 𝑋 = 2 ? 🤔
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Random Variable
A random variable is a real-valued function defined on a sample space.

19

Experiment 𝑋 = 𝑘

2. What is the event (set of outcomes) where 𝑋 = 2?

Outcome

1. What is the value of 𝑋 for the outcomes:
• (T,T,T)?
• (H,H,T)?

3. What is 𝑃 𝑋 = 2 ?

Example:

3 coins are flipped.
Let 𝑋 = # of heads.
𝑋 is a random variable.
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Random variables are NOT events!
It is confusing that random variables and events use the same notation.
• Random variables ≠ events.
• We can define an event to be a particular assignment

of a random variable.

20

event

𝑋 = 2
probability

(number b/t 0 and 1)

𝑃(𝑋 = 2)

Example:

3 coins are flipped.
Let 𝑋 = # of heads.
𝑋 is a random variable.
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Random variables are NOT events!
It is confusing that random variables and events use the same notation.
• Random variables ≠ events.
• We can define an event to be a particular assignment

of a random variable.

21

Example:

3 coins are flipped.
Let 𝑋 = # of heads.
𝑋 is a random variable.

𝑋 = 𝟏 {(H, T, T), (T, H, T), 
(T, T, H)}

3/8

𝑋 = 𝟐 {(H, H, T), (H, T, H), 
(T, H, H)}

3/8

𝑋 = 𝟑 {(H, H, H)} 1/8
𝑋 ≥ 4 { } 0

𝑋 = 𝑥 Set of outcomes 𝑃 𝑋 = 𝑘
𝑋 = 𝟎 {(T, T, T)} 1/8



PMF/CDF

22

06c_pmf_cdf
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So far
3 coins are flipped. Let 𝑋 = # of heads. 𝑋 is a random variable.

23

Experiment 𝑋 = ___Outcome
(flip __ heads) 𝑃 𝑋 = ___

Can we get a “shorthand” for 
this last step?

Seems like it might be useful!
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Probability Mass Function
3 coins are flipped. Let 𝑋 = # of heads. 𝑋 is a random variable.

24

𝑃(𝑋 = 𝑘)
return value/output
number between
0 and 1

parameter/input 𝑘

A function on 𝑘
with range [0,1]

What would be a useful function to define?
The probability of the event that a random variable 𝑋 takes on the value 𝑘!

For discrete random variables, this is a probability mass function.
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Probability Mass Function
3 coins are flipped. Let 𝑋 = # of heads. 𝑋 is a random variable.

25

𝑃(𝑋 = 𝑘)

2

0.375
return value/output:
probability of the event

𝑋 = 𝑘

parameter/input 𝑘:
a value of 𝑋

N = 3
P = 0.5

def prob_event_y_equals(k):
n_ways = scipy.special.binom(N, k)
p_way = np.power(P, k) * np.power(1 - P, N-k)
return n_ways * p_way

A function on 𝑘
with range [0,1]

probability mass function
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A random variable 𝑋 is discrete if it can take on countably many values.
• 𝑋 = 𝑥, where 𝑥 ∈ 𝑥$, 𝑥', 𝑥(, …

The probability mass function (PMF) of a discrete random variable is
𝑃 𝑋 = 𝑥

• Probabilities must sum to 1: 
This last point is a 
good way to verify 
any PMF you create.

Discrete RVs and Probability Mass Functions

26

=
89$

:

𝑝 𝑥8 = 1

shorthand notation

= 𝑝 𝑥 = 𝑝!(𝑥)
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PMF for a single 6-sided die

Let 𝑋 be a random variable that 
represents the result of a single
dice roll.

• Support of 𝑋 : 1, 2, 3, 4, 5, 6
• Therefore 𝑋 is a discrete

random variable.
• PMF of X:

𝑝 𝑥 = A 1/6 𝑥 ∈ {1,… , 6}
0 otherwise

27

1/6

1 2 3 4 5 6
0

𝑋 = 𝑥

𝑃
𝑋
=
𝑥
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Cumulative Distribution Functions

For a random variable 𝑋, the cumulative distribution function (CDF) is 
defined as

𝐹 𝑎 = 𝐹? 𝑎 = 𝑃 𝑋 ≤ 𝑎 ,where −∞ < 𝑎 < ∞

For a discrete RV 𝑋, the CDF is:

𝐹 𝑎 = 𝑃 𝑋 ≤ 𝑎 = =
all @AB

𝑝(𝑥)

28
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Let 𝑋 be a random variable that 
represents the result of a single 
dice roll.

29

1/6

1 2 3 4 5 60

𝑋 = 𝑥

𝑃
𝑋
=
𝑥

CDFs as graphs
CDF (cumulative 

distribution function) 𝐹 𝑎 = 𝑃 𝑋 ≤ 𝑎

𝐹
𝑎

𝑋 = 𝑥

5/6

4/6

3/6

2/6

1/6

PMF of 𝑋

CDF of 𝑋

𝑃 𝑋 ≤ 0 = 0

𝑃 𝑋 ≤ 6 = 1



Expectation
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06d_expectation
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Discrete random variables

31

Discrete 
Random 

Variable, 𝑋

Experiment 
outcomes

PMF
𝑃 𝑋 = 𝑥 = 𝑝(𝑥)

Definition

Properties

Support

CDF 𝐹 𝑥

Without performing the experiment:
• The support gives us a ballpark of 

what values our RV will take on
• Next up: How do we report the 

“average” value?
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Expectation

The expectation of a discrete random variable 𝑋 is defined as:

𝐸 𝑋 = 5
":$ " %&

𝑝 𝑥 ⋅ 𝑥

• Note: sum over all values of 𝑋 = 𝑥 that have non-zero probability.

• Other names: mean, expected value, weighted average,
center of mass, first moment

32
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Expectation of a die roll

What is the expected value of a 6-sided die roll?

33

Expectation 
of 𝑋

𝐸 𝑋 = E
!:# ! $%

𝑝 𝑥 ⋅ 𝑥

1. Define random 
variables

2. Solve

𝑃 𝑋 = 𝑥 = A 1/6 𝑥 ∈ {1,… , 6}
0 otherwise

𝑋 = RV for value of roll

𝐸 𝑋 = 1
1
6
+ 2

1
6
+ 3

1
6
+ 4

1
6
+ 5

1
6
+ 6

1
6

=
7
2
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Important properties of expectation
1. Linearity:

𝐸 𝑎𝑋 + 𝑏 = 𝑎𝐸 𝑋 + 𝑏

2. Expectation of a sum = sum of expectation:

𝐸 𝑋 + 𝑌 = 𝐸 𝑋 + 𝐸 𝑌

3. Unconscious statistician:

𝐸 𝑔 𝑋 =)
$

𝑔 𝑥 𝑝(𝑥)

34

• Let 𝑋 = 6-sided dice roll,
𝑌 = 2𝑋 − 1.

• 𝐸 𝑋 = 3.5
• 𝐸 𝑌 = 6

Sum of two dice rolls:
• Let 𝑋 = roll of die 1

𝑌 = roll of die 2
• 𝐸 𝑋 + 𝑌 = 3.5 + 3.5 = 7

These properties let you avoid 
defining difficult PMFs.



Proofs (OK to 
stop here)

35
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Important properties of expectation
1. Linearity:

𝐸 𝑎𝑋 + 𝑏 = 𝑎𝐸 𝑋 + 𝑏

2. Expectation of a sum = sum of expectation:

𝐸 𝑋 + 𝑌 = 𝐸 𝑋 + 𝐸 𝑌

3. Unconscious statistician:

𝐸 𝑔 𝑋 =)
$

𝑔 𝑥 𝑝(𝑥)

36

Review
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Linearity of Expectation proof

𝐸 𝑎𝑋 + 𝑏 = 𝑎𝐸 𝑋 + 𝑏

Proof:

𝐸 𝑎𝑋 + 𝑏 ==
@

𝑎𝑥 + 𝑏 𝑝 𝑥 ==
@

𝑎𝑥𝑝 𝑥 + 𝑏𝑝 𝑥

= 𝑎=
@

𝑥𝑝(𝑥) + 𝑏=
@

𝑝 𝑥

= 𝑎 𝐸 𝑋 + 𝑏 ⋅ 1

37

𝐸 𝑋 = $
!:# ! $%

𝑝 𝑥 ⋅ 𝑥
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Expectation of Sum intuition

𝐸 𝑋 + 𝑌 = 𝐸 𝑋 + 𝐸 𝑌

38

(we’ll prove this 
in two weeks)

𝑋 𝑌 𝑋 + 𝑌
3 6 9

2 4 6

6 12 18

10 20 30

-1 -2 -3

0 0 0

8 16 24

(
/

(28)

Average:
1
𝑛
E
&'(

)

𝑥&
1
𝑛
E
&'(

)

𝑦&
1
𝑛
E
&'(

)

𝑥& + 𝑦&

Intuition 
for now:

+ =

+ =(
/

(56) (
/

(84)

𝐸 𝑋 = $
!:# ! $%

𝑝 𝑥 ⋅ 𝑥
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LOTUS proof

39

Let 𝑌 = 𝑔(𝑋), where 𝑔 is a real-valued function.

𝐸 𝑔 𝑋 = 𝐸 𝑌 = =
K

𝑦K𝑝(𝑦K)

= 8
0

𝑦0 8
1:3 4! 56"

𝑝(𝑥1)

= 8
0

8
1:3 4! 56"

𝑦0 𝑝(𝑥1)

= 8
0

8
1:3 4! 56"

𝑔(𝑥1) 𝑝(𝑥1)

==
8

𝑔(𝑥8) 𝑝(𝑥8)

Expectation 
of 𝑔 𝑋

𝐸 𝑔 𝑋 =E
!

𝑔 𝑥 𝑝(𝑥)

For you to review
so that you can

sleep at night
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Reminders: Lecture with
• Turn on your camera if you are able, mute your mic in the big room
• Virtual backgrounds are encouraged (classroom-appropriate)

Breakout Rooms for meeting your classmates
◦ Just like sitting next to someone new
◦ This experience is optional: You should be comfortable leaving the room at any time.

We will use Ed instead of Zoom chat

41

Today’s discussion thread: https://us.edstem.org/courses/109/discussion/24491

https://us.edstem.org/courses/109/discussion/24491
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Discrete random variables

42

Discrete 
Random 

Variable, 𝑋

Experiment 
outcomes

𝑃 𝑋 = 𝑥 = 𝑝(𝑥)

𝐸 𝑋

Definition

Properties

Review

Note: Random Variables
also called distributions

Support
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Event-driven probability
• Relate only binary events
◦ Either happens (𝐸)
◦ or doesn’t happen (𝐸*)

• Can only report probability

• Lots of combinatorics

Random Variables
• Link multiple similar events 

together (𝑋 = 1, 𝑋 = 2,… , 𝑋 = 6)

• Can compute statistics: report the 
“average” outcome

• Once we have the PMF (discrete 
RVs), we can do regular math

43

A Whole New World with Random Variables
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PMF for the sum of two dice

Let 𝑌 be a random variable that represents the sum of
two independent dice rolls.

Support of 𝑌: 2, 3, … , 11, 12

𝑝 𝑦 =

67(
*8 𝑦 ∈ ℤ, 2 ≤ 𝑦 ≤ 6
(*76
*8 𝑦 ∈ ℤ, 7 ≤ 𝑦 ≤ 12
0 otherwise

Sanity check:

44

6/36

0

𝑌 = 𝑦

5/36

2 3 4 5 6 7 8 9 10 11 12

4/36

3/36

2/36

1/36

𝑃
𝑌
=
𝑦

=
R9'

$'

𝑝 𝑦 = 1



Think, 
then 
Breakout 
Rooms

Then check out the question on the next 
slide (Slide 46). Post any clarifications here!

https://us.edstem.org/courses/109/discussion/27280

Think by yourself: 1 min

Breakout rooms: 5 min. Introduce yourself!
(or leave)

45

🤔

https://us.edstem.org/courses/109/discussion/27280
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Example random variable
Consider 5 flips of a coin which comes up heads with probability 𝑝.
Each coin flip is an independent trial. Let 𝒀 = # of heads on 5 flips.
1. What is the support of 𝑌? In other words, what are the values that 𝑌 can 

take on with non-zero probability?

2. Define the event 𝑌 = 2. What is 𝑃 𝑌 = 2 ?

3. What is the PMF of 𝑌? In other words, what
is 𝑃 𝑌 = 𝑘 , for 𝑘 in the support of 𝑌?

46

🤔
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Example random variable
Consider 5 flips of a coin which comes up heads with probability 𝑝.
Each coin flip is an independent trial. Let 𝒀 = # of heads on 5 flips.
1. What is the support of 𝑌? In other words, what are the values that 𝑌 can 

take on with non-zero probability?

2. Define the event 𝑌 = 2. What is 𝑃 𝑌 = 2 ?

3. What is the PMF of 𝑌? In other words, what
is 𝑃 𝑌 = 𝑘 , for 𝑘 in the support of 𝑌?

47

0, 1, 2, 3, 4, 5

𝑃 𝑌 = 𝑘 = 5
2 𝑝' 1 − 𝑝 (

𝑃 𝑌 = 𝑘 = 5
𝑘 𝑝S 1 − 𝑝 *TS
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Expectation

Remember that the expectation of a die roll is 3.5.

48

𝑋 = RV for value of roll

𝐸 𝑋 = 1
1
6
+ 2

1
6
+ 3

1
6
+ 4

1
6
+ 5

1
6
+ 6

1
6

=
7
2

Review

𝐸 𝑋 = =
@:V @ W%

𝑝 𝑥 ⋅ 𝑥 Expectation: The average value
of a random variable
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Lying with statistics

49

“There are three kinds of lies:
lies, damned lies, and statistics” 

–popularized by Mark Twain, 1906



Lisa Yan, CS109, 2020

Lying with statistics
A school has 3 classes with 5, 10, and 150 students.
What is the average class size?

50

1. Interpretation #1
• Randomly choose a class

with equal probability.
• 𝑋 = size of chosen class

𝐸 𝑋 = 5
1
3
+ 10

1
3
+ 150

1
3

=
165
3

= 55

2. Interpretation #2
• Randomly choose a student

with equal probability.
• 𝑌 = size of chosen class

𝐸 𝑌 = 5
5
165

+ 10
10
165

+ 150
150
165

=
22635
165

≈ 137

Average student perception of class sizeWhat universities usually report



Interlude for 
jokes/announcements

51
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Your voices

52

• Every quarter, students report counting 
as the hardest topic in this class.

• We are making psets shorter to reflect 
the additional time you spend on lecture. 
PS2 has just 10 problems.

• More practice resources: Textbook’s Self-
Test Problems
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The pedagogy behind concept checks
• Spaced practice (vs. ”practice makes perfect”): better memory retention
• Low-stakes testing: better concept retrieval, actively connect concepts

It is okay if you don’t understand material off-the-bat. In fact, 
learning research suggests that you will learn more in the long run.

Announcements

53

Problem Set 2

Out: today
Due: Monday 4/27
Covers: through today

Problem Set 1

Due: ~an hour ago
On-time grades: next Friday
Solutions: next Friday

https://www.dartmouth.edu/~cogedlab/pubs/Kang(2016,PIBBS).pdf
http://learninglab.psych.purdue.edu/downloads/2006_Roediger_Karpicke_PsychSci.pdfJOKE HERE

https://www.dartmouth.edu/~cogedlab/pubs/Kang(2016,PIBBS).pdf
http://learninglab.psych.purdue.edu/downloads/2006_Roediger_Karpicke_PsychSci.pdf
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Important properties of expectation
1. Linearity:

𝐸 𝑎𝑋 + 𝑏 = 𝑎𝐸 𝑋 + 𝑏

2. Expectation of a sum = sum of 
expectation:

𝐸 𝑋 + 𝑌 = 𝐸 𝑋 + 𝐸 𝑌

3. Unconscious statistician:

𝐸 𝑔 𝑋 =)
$

𝑔 𝑥 𝑝(𝑥)
55

Roll a die, outcome is 𝑋. You win $2𝑋 − 1.
What are your expected winnings?

Review

Let 𝑋 = 6-sided dice roll.
𝐸 2𝑋 − 1 = 2 3.5 − 1 = 6
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Important properties of expectation
1. Linearity:

𝐸 𝑎𝑋 + 𝑏 = 𝑎𝐸 𝑋 + 𝑏

2. Expectation of a sum = sum of 
expectation:

𝐸 𝑋 + 𝑌 = 𝐸 𝑋 + 𝐸 𝑌

3. Unconscious statistician:

𝐸 𝑔 𝑋 =)
$

𝑔 𝑥 𝑝(𝑥)
56

Roll a die, outcome is 𝑋. You win $2𝑋 − 1.
What are your expected winnings?

Review

What is the expectation of the sum of
two dice rolls?

Let 𝑋 = 6-sided dice roll.
𝐸 2𝑋 − 1 = 2 3.5 − 1 = 6

Let 𝑋 = roll of die 1, 𝑌 = roll of die 2.
𝐸 𝑋 + 𝑌 = 3.5 + 3.5 = 7
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Important properties of expectation
1. Linearity:

𝐸 𝑎𝑋 + 𝑏 = 𝑎𝐸 𝑋 + 𝑏

2. Expectation of a sum = sum of 
expectation:

𝐸 𝑋 + 𝑌 = 𝐸 𝑋 + 𝐸 𝑌

3. Unconscious statistician:

𝐸 𝑔 𝑋 =)
$

𝑔 𝑥 𝑝(𝑥)
57

Roll a die, outcome is 𝑋. You win $2𝑋 − 1.
What are your expected winnings?

Review

What is the expectation of the sum of
two dice rolls?

Let 𝑋 = 6-sided dice roll.
𝐸 2𝑋 − 1 = 2 3.5 − 1 = 6

(next up)

Let 𝑋 = roll of die 1, 𝑌 = roll of die 2.
𝐸 𝑋 + 𝑌 = 3.5 + 3.5 = 7



Think, 
then 
Breakout 
Rooms

Then check out the question on the next 
slide (Slide 58). Post any clarifications here!

https://us.edstem.org/courses/109/discussion/27280

Think by yourself: 1 min

Breakout rooms: 5 min. Introduce yourself!

58

🤔

https://us.edstem.org/courses/109/discussion/27280
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Being a statistician unconsciously
Let 𝑋 be a discrete random variable.
• 𝑃 𝑋 = 𝑥 = $

(
for 𝑥 ∈ {−1, 0, 1}

Let 𝑌 = |𝑋|. What is 𝐸 𝑌 ?

59

Expectation 
of 𝑔 𝑋

𝐸 𝑔 𝑋 =E
!

𝑔 𝑥 𝑝(𝑥)

A. !
"
⋅ 1 + !

"
⋅ 0 + !

"
⋅ −1 = 0

B. 𝐸 𝑌 = 𝐸 0 = 0

C. !
"
⋅ 0 + #

"
⋅ 1 = #

"

D. !
"
⋅ −1 + !

"
⋅ 0 + !

"
1 = #

"
E. C and D 🤔
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A. !
"
⋅ 1 + !

"
⋅ 0 + !

"
⋅ −1 = 0

B. 𝐸 𝑌 = 𝐸 0 = 0

C. !
"
⋅ 0 + #

"
⋅ 1 = #

"

D. !
"
⋅ −1 + !

"
⋅ 0 + !

"
1 = #

"
E. C and D

Being a statistician unconsciously
Let 𝑋 be a discrete random variable.
• 𝑃 𝑋 = 𝑥 = $

(
for 𝑥 ∈ {−1, 0, 1}

Let 𝑌 = |𝑋|. What is 𝐸 𝑌 ?

60

Expectation 
of 𝑔 𝑋

𝐸 𝑔 𝑋 =E
!

𝑔 𝑥 𝑝(𝑥)

𝐸 𝑋

1. Find PMF of 𝑌: 𝑝9 0 = (
*
, 𝑝9 1 = )

*
2. Compute 𝐸[𝑌]

Use LOTUS by using PMF of X:
1. 𝑃 𝑋 = 𝑥 ⋅ 𝑥
2. Sum up

𝐸 𝐸 𝑋

❌
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I want to play a game

61

Expectation 
of 𝑔 𝑋

𝐸 𝑔 𝑥 =E
!

𝑔 𝑥 𝑝(𝑥)



Think

Then check out the question on the next 
slide (Slide 30). Post any clarifications here!

https://us.edstem.org/courses/109/discussion/27280

Think by yourself: 2 min

62

🤔(by yourself)

https://us.edstem.org/courses/109/discussion/27280
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St. Petersburg Paradox
• A fair coin (comes up “heads” with 𝑝 = 0.5)
• Define 𝑌 = number of coin flips (“heads”) before first “tails”
• You win $2X

How much would you pay to play? (How much you expect to win?)

63

Expectation 
of 𝑔 𝑋

A. $10000
B. $∞
C. $1
D. $0.50
E. $0 but let me play
F. I will not play

𝐸 𝑔 𝑥 =E
!

𝑔 𝑥 𝑝(𝑥)

🤔(by yourself)
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• A fair coin (comes up “heads” with 𝑝 = 0.5)
• Define 𝑌 = number of coin flips (“heads”) before first “tails”
• You win $2X

How much would you pay to play? (How much you expect to win?)

64

St. Petersburg Paradox

1. Define random 
variables

2. Solve

For 𝑖 ≥ 0:

Let 𝑊 = your winnings, 2X.

𝐸 𝑊 = 𝐸 2X =
1
2

$

2% +
1
2

'

2$ +
1
2

(

2' +⋯

𝑃 𝑌 = 𝑖 =
1
2

8,$

==
89%

:
1
2

8,$

28 ==
89%

:
1
2 = ∞

Expectation 
of 𝑔 𝑋

𝐸 𝑔 𝑥 =E
!

𝑔 𝑥 𝑝(𝑥)
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St. Petersburg + Reality

1. Define random 
variables

2. Solve 𝐸 𝑊 =
1
2

$

2% +
1
2

'

2$ +
1
2

(

2' +⋯

==
89%

S
1
2

8,$

28 ==
89%

$Y
1
2 = 8.5

Expectation 
of 𝑔 𝑋

𝐸 𝑔 𝑥 =E
!

𝑔 𝑥 𝑝(𝑥)

What if Lisa has only $65,536?
• Same game

• If you win over $65,536, I leave the country

• Define 𝑌 = # heads before first tails
• You win 𝑊 = $2X

𝑘 = log) 65,536
= 16

For 𝑖 ≥ 0:

Let 𝑊 = your winnings, 2X.

𝑃 𝑌 = 𝑖 =
1
2

8,$


