06: Random Variables

Lisa Yan April 17, 2020

Quick slide reference

3 Conditional Independence 06a_cond_indep

- 15 Random Variables 06b_random_variables
- 22 PMF/CDF 06c_pmf_cdf
- 30 Expectation 06d_expectation
- 40 Exercises LIVE

06a_cond_indep

Conditional Independence

Conditional Paradigm

For any events A, B, and E, you can condition consistently on E, and all formulas still hold:

Axiom 1 $0 \leq P(A|E) \leq 1$ Corollary 1 (complement) $P(A|E) = 1 - P(A^C|E)$ Transitivity $P(AB|E) = P(BA|E)$

Bayes' Theorem

Chain Rule $P(AB|E) = P(B|E)P(A|BE)$ $P(A|BE) =$ $P(B|AE)P(A|E)$

Conditional Independence

Conditional Probability **Independence**

Lisa Yan, CS109, 2020

events E and $F \longrightarrow P(E|F) = P(E)$ Independent $P(EF) = P(E)P(F)$

Two events A and B are defined as conditionally independent given E if: $P(AB|E) = P(A|E)P(B|E)$

An equivalent definition:

A.
$$
P(A|B) = P(A)
$$

\nB. $P(A|BE) = P(A)$
\nC. $P(A|BE) = P(A|E)$

Two events A and B are defined as conditionally independent given E if: $P(AB|E) = P(A|E)P(B|E)$

An equivalent definition:

A.
$$
P(A|B) = P(A)
$$

\nB. $P(A|BE) = P(A)$
\nC. $P(A|BE) = P(A|E)$

Conditional Independence

Independence relations can change with conditioning.

A and B independent

does NOT always mean A and B does NOT always independent independent independent and the street of the

A and B

(additional reading in lecture notes)

Conditional Probability **Independence**

Lisa Yan, CS109, 2020

Netflix and Condition

Let $E = a$ user watches Life is Beautiful. Let $F = a$ user watches Amelie. What is $P(E)$? $P(E) \approx$ # people who have watched movie $\frac{1}{2}$ who have watched movie $=$ 10,234,231 50,923,123 ≈ 0.20

What is the probability that a user watches Life is Beautiful, given they watched Amelie?

> $P(E|F) =$ $P(EF)$ $P(F)$ = # people who have watched both # people who have watched Amelie ≈ 0.42

Review

nery Turrent

Let E be the event that a user watches the given movie. Let F be the event that the same user watches Amelie.

Netflix and Condition (on many movies)

What if $E_1 E_2 E_3 E_4$ are not independent? (e.g., all international emotional comedies)

$$
P(E_4|E_1E_2E_3) = \frac{P(E_1E_2E_3E_4)}{P(E_1E_2E_3)} = \frac{\text{# people who have watched all 4}}{\text{# people who have watched those 3}}
$$

We need to keep track of an exponential number of movie-watching statistics

Lisa Yan, CS109, 2020

Netflix and Condition (on many movies)

$$
P(E_4|E_1E_2E_3) = \frac{P(E_1E_2E_3E_4)}{P(E_1E_2E_3)} \quad \text{An easier}
$$

$$
P(E_4|E_1E_2E_3K) = P(E_4|K)
$$

probability to store and compute!

Conditional independence is a Big Deal

Conditional independence is a practical, real-world way of decomposing hard probability questions.

"Exploiting conditional independence to generate fast probabilistic computations is one of the main contributions CS has made to probability theory."
Judea Pearl wins 2011 Turing Award,

"For fundamental contributions to artificial intelligence through the development of a calculus for probabilistic and causal reasoning"

Netflix and Condition

Challenge: How do we determine K ? Stay tuned in 6 weeks' time!

 $E_1 E_2 E_3 E_4$ are dependent

$E_1 E_2 E_3 E_4$ are conditionally independent given K

Dependent events can become conditionally independent. And vice versa: Independent events can become conditionally dependent.

Lisa Yan, CS109, 2020

06b_random_variables

Random Variables

Next Episode Playing in 5 seconds

Back to Browse

More Episodes

Lisa Yan, CS109, 2020

Stanford University

Random variables are like typed variables

Random

double $b = 4.2$;

bit $c = 1$;

CS variables variables

A is the number of Pokemon we bring to our *future* battle. $A \in \{1, 2, ..., 6\}$

 B is the amount of money we get *after* we win a battle. $B \in \mathbb{R}^+$

C is 1 *if* we successfully beat the Elite Four. 0 otherwise. $C \in \{0,1\}$

Lisa Yan, CS109, 2020

Random variables are like typed variables (with uncertainty)

Random Variable

A random variable is a real-valued function defined on a sample space.

Example:

3 coins are flipped. Let $X = #$ of heads. X is a random variable.

- What is the value of X for the outcomes:
- (T,T,T) ?
- (H,H,T) ?
- 2. What is the event (set of outcomes) where $X = 2$?

3. What is
$$
P(X = 2)
$$
?

Random Variable

A random variable is a real-valued function defined on a sample space.

Example:

3 coins are flipped. Let $X = #$ of heads. X is a random variable.

- What is the value of X for the outcomes:
- (T, T, T) ?
- (H,H,T) ?
- 2. What is the event (set of outcomes) where $X = 2$?

3. What is
$$
P(X = 2)
$$
?

Random variables are NOT events!

It is confusing that random variables and events use the same notation.

- Random variables \neq events.
- We can define an event to be a particular assignment of a random variable.

Example:

3 coins are flipped. Let $X = #$ of heads. X is a random variable.

 $X = 2$

event

 $P(X = 2)$

probability (number b/t 0 and 1)

Random variables are NOT events!

It is confusing that random variables and events use the same notation.

- Random variables \neq events.
- We can define an event to be a particular assignment of a random variable.

06c_pmf_cdf

PMF/CDF

So far

3 coins are flipped. Let $X = #$ of heads. X is a random variable.

$$
\begin{array}{ccc}\n\text{Experiment} & \text{Outcome} \\
\text{[flip _ heads]} & \text{[right _ heads]} & \text{[right _ 0, 0]} \\
\end{array}
$$

Can we get a "shorthand" for this last step? Seems like it might be useful!

Probability Mass Function

3 coins are flipped. Let $X = #$ of heads. X is a random variable.

parameter/input k

A function on k with range $[0,1]$

What would be a *useful* function to define? The probability of the event that a random variable X takes on the value $k!$ For discrete random variables, this is a probability mass function.

Probability Mass Function

3 coins are flipped. Let $X = #$ of heads. X is a random variable.

A function on k with range [0,1]

Discrete RVs and Probability Mass Functions

A random variable X is discrete if it can take on countably many values. • $X = x$, where $x \in \{x_1, x_2, x_3, \dots\}$

The probability mass function (PMF) of a discrete random variable is

$$
P(X = x) = p(x) = p_X(x)
$$

shorthand notation

• Probabilities must sum to 1:

$$
\sum_{i=1}^{\infty} p(x_i) = 1
$$

This last point is a good way to verify any PMF you create.

Let X be a random variable that represents the result of a single dice roll.

- Support of $X: \{1, 2, 3, 4, 5, 6\}$
- Therefore X is a discrete random variable.

PMF of X:

$$
p(x) = \begin{cases} 1/6 & x \in \{1, ..., 6\} \\ 0 & \text{otherwise} \end{cases}
$$

For a random variable X , the cumulative distribution function (CDF) is defined as

$$
F(a) = F_X(a) = P(X \le a)
$$
, where $-\infty < a < \infty$

For a discrete RV X , the CDF is:

$$
F(a) = P(X \le a) = \sum_{\text{all } x \le a} p(x)
$$

1/6

 \mathbf{a}

 $\bm{\times}$

 \parallel

 \asymp

CDFs as graphs CDF (cumulative distribution function) $F(a) = P(X \le a)$

Let X be a random variable that represents the result of a single dice roll.

Stanford University 29

06d_expectation

Expectation

Discrete random variables

Expectation

The expectation of a discrete random variable X is defined as:

$$
E[X] = \sum_{x:p(x)>0} p(x) \cdot x
$$

- Note: sum over all values of $X = x$ that have non-zero probability.
- Other names: mean, expected value, weighted average, center of mass, first moment

What is the expected value of a 6-sided die roll?

1. Define random variables

$$
X = \text{RV}
$$
 for value of roll

$$
P(X = x) = \begin{cases} 1/6 & x \in \{1, ..., 6\} \\ 0 & \text{otherwise} \end{cases}
$$

2. Solve

$$
E[X] = 1\left(\frac{1}{6}\right) + 2\left(\frac{1}{6}\right) + 3\left(\frac{1}{6}\right) + 4\left(\frac{1}{6}\right) + 5\left(\frac{1}{6}\right) + 6\left(\frac{1}{6}\right) = \frac{7}{2}
$$

1. Linearity:

$$
E[aX + b] = aE[X] + b
$$

2. Expectation of a sum = sum of expectation: $E[X + Y] = E[X] + E[Y]$

• Let $X = 6$ -sided dice roll,

$$
Y = 2X - 1.
$$

\n- $$
E[X] = 3.5
$$
\n- $E[Y] = 6$
\n

Sum of two dice rolls:

Let $X =$ roll of die 1 $Y =$ roll of die 2

•
$$
E[X + Y] = 3.5 + 3.5 = 7
$$

3. Unconscious statistician:

$$
E[g(X)] = \sum_{x} g(x)p(x)
$$

These properties let you avoid defining difficult PMFs.

Proofs (OK to stop here)

1. Linearity:

$$
E[aX + b] = aE[X] + b
$$

2. Expectation of a sum = sum of expectation: $E[X + Y] = E[X] + E[Y]$

3. Unconscious statistician:

$$
E[g(X)] = \sum_{x} g(x)p(x)
$$

Review

$$
E[aX + b] = aE[X] + b
$$

Proof:

$$
E[aX + b] = \sum_{x} (ax + b)p(x) = \sum_{x} axp(x) + bp(x)
$$

$$
= a \sum_{x} xp(x) + b \sum_{x} p(x)
$$

$$
= a E[X] + b \cdot 1
$$

Expectation of Sum intuition

Lisa Yan, CS109, 2020

LOTUS proof

$$
E[g(X)] = \sum_{x} g(x)p(x) \quad \begin{array}{c} \text{Expectation} \\ \text{of } g(X) \end{array}
$$

Let $Y = g(X)$, where g is a real-valued function.

$$
E[g(X)] = E[Y] = \sum_{j} y_{j} p(y_{j})
$$

=
$$
\sum_{j} y_{j} \sum_{i:g(x_{i}) = y_{j}} p(x_{i})
$$

=
$$
\sum_{j} \sum_{i:g(x_{i}) = y_{j}} y_{j} p(x_{i})
$$

=
$$
\sum_{j} \sum_{i:g(x_{i}) = y_{j}} g(x_{i}) p(x_{i})
$$

=
$$
\sum_{i} g(x_{i}) p(x_{i})
$$

For you to review so that you can sleep at night

(live) 06: Random Variables

Lisa Yan April 15, 2020

Reminders: Lecture with **Q Zoom**

- Turn on your camera if you are able, mute you
- Virtual backgrounds are encouraged (classro

Breakout Rooms for mee[ting your classmates](https://us.edstem.org/courses/109/discussion/24491)

- Just like sitting next to someone new
- This experience is optional: You should be comfortable leaving

We will use Ed instead of Zoom chat

Today's discussion thread: https://us.edstem.org/courses/10091001

Discrete random variables

Review

Event-driven probability

- Relate only binary events
	- Either happens (E)
	- or doesn't happen (E^C)
- Can only report probability

• Lots of combinatorics

Random Variables

- Link multiple similar events together $(X = 1, X = 2, ..., X = 6)$
- Can compute statistics: report the "average" outcome
- Once we have the PMF (discrete RVs), we can do regular math

Lisa Yan, CS109, 2020

PMF for the sum of two dice

Let Y be a random variable that represents the sum of two independent dice rolls.

Support of $Y: \{2, 3, ..., 11, 12\}$

$$
p(y) = \begin{cases} \frac{y-1}{36} & y \in \mathbb{Z}, 2 \le y \le 6\\ \frac{13-y}{36} & y \in \mathbb{Z}, 7 \le y \le 12\\ 0 & \text{otherwise} \end{cases}
$$

Sanity check:

$$
\sum_{y=2}^{12} p(y) = 1
$$

Think, then Breakout Rooms

Then check out the slide (Slide 46). Post

https://us.edstem.org/d

Think by yourself: Breakout rooms: 5

Example random variable

Consider 5 flips of a coin which comes up heads with probability p . Each coin flip is an independent trial. Let $Y = #$ of heads on 5 flips.

- 1. What is the support of Y ? In other words, what are the values that Y can take on with non-zero probability?
- 2. Define the event $Y = 2$. What is $P(Y = 2)$?

3. What is the PMF of Y ? In other words, what is $P(Y = k)$, for k in the support of Y?

Example random variable

Consider 5 flips of a coin which comes up heads with probability p . Each coin flip is an independent trial. Let $Y = #$ of heads on 5 flips.

- 1. What is the support of Y ? In other words, what are the values that Y can take on with non-zero probability? $\{0, 1, 2, 3, 4, 5\}$
- 2. Define the event $Y = 2$. What is $P(Y = 2)$? $P(Y = k) =$ 5 $\binom{5}{2} p^2 (1-p)^3$

3. What is the PMF of Y ? In other words, what is $P(Y = k)$, for k in the support of Y?

$$
P(Y = k) = {5 \choose k} p^{k} (1-p)^{5-k}
$$

Expectation

Review

$$
E[X] = \sum_{x:p(x)>0} p(x) \cdot x
$$

Expectation: The average value of a random variable

Remember that the expectation of a die roll is 3.5.

$$
X = \text{RV}
$$
 for value of roll

$$
E[X] = 1\left(\frac{1}{6}\right) + 2\left(\frac{1}{6}\right) + 3\left(\frac{1}{6}\right) + 4\left(\frac{1}{6}\right) + 5\left(\frac{1}{6}\right) + 6\left(\frac{1}{6}\right) = \frac{7}{2}
$$

Lying with statistics

"There are three kinds of lies: lies, damned lies, and statistics" –popularized by Mark Twain, 1906

Lying with statistics

A school has 3 classes with 5, 10, and 150 students. What is the average class size?

- 1. Interpretation #1
- Randomly choose a class with equal probability.
- $X =$ size of chosen class $E[X] = 5$ 1 $\frac{1}{3}$ + 10 1 $\frac{2}{3}$ + 150 1 3 = 165 3 $= 55$
	-
- 2. Interpretation #2
- Randomly choose a student with equal probability.

•
$$
Y = \text{size of chosen class}
$$

$$
E[Y] = 5\left(\frac{5}{165}\right) + 10\left(\frac{10}{165}\right) + 150\left(\frac{150}{165}\right)
$$

$$
= \frac{22635}{165} \approx 137
$$

Stanford University 50 What universities usually report Nettleburn and Average student perception of class size

Lisa Yan, CS109, 2020

Interlude for jokes/announcements

Your voices

Announcements

The pedagogy behind concept checks

- Spaced practice (vs. "practice makes perfect"): better memory of
- Low-stakes testing: better concept retrieval, activel

It is okay if you don't understand materia learning research suggests that you will learn n

1. Linearity: $E[aX + b] = aE[X] + b$

Roll a die, outcome is X. You win $$2X - 1$. What are your expected winnings?

> Let $X = 6$ -sided dice roll. $E[2X - 1] = 2(3.5) - 1 = 6$

- 2. Expectation of a sum = sum of expectation: $E[X + Y] = E[X] + E[Y]$
- 3. Unconscious statistician:

$$
E[g(X)] = \sum_{x} g(x)p(x)
$$

Review

1. Linearity: $E[aX + b] = aE[X] + b$

Roll a die, outcome is X. You win $$2X - 1$. What are your expected winnings?

> Let $X = 6$ -sided dice roll. $E[2X - 1] = 2(3.5) - 1 = 6$

What is the expectation of the sum of two dice rolls?

> Let $X =$ roll of die 1, $Y =$ roll of die 2. $E[X + Y] = 3.5 + 3.5 = 7$

2. Expectation of a sum = sum of expectation: $E[X + Y] = E[X] + E[Y]$

3. Unconscious statistician:

$$
E[g(X)] = \sum_{x} g(x)p(x)
$$

Review

1. Linearity: $E[aX + b] = aE[X] + b$

2. Expectation of a sum = sum of

Roll a die, outcome is X. You win $$2X - 1$. What are your expected winnings?

> Let $X = 6$ -sided dice roll. $E[2X - 1] = 2(3.5) - 1 = 6$

What is the expectation of the sum of two dice rolls?

Let $X =$ roll of die 1, $Y =$ roll of die 2. $E[X + Y] = 3.5 + 3.5 = 7$

3. Unconscious statistician:

expectation:

 $E[g(X)] = \sum g(x)p(x)$ $\boldsymbol{\chi}$

 $E[X + Y] = E[X] + E[Y]$

(next up)

Review

Lisa Yan, CS109, 2020

Think, then Breakout Rooms

Then check out the slide (Slide 58). Post

https://us.edstem.org/d

Think by yourself: Breakout rooms: 5

Being a statistician unconsciously

Let X be a discrete random variable. • $P(X = x) =$ $\mathbf 1$ 3 for $x \in \{-1, 0, 1\}$ Let $Y = |X|$. What is $E[Y]$? A. $\frac{1}{3} \cdot 1 + \frac{1}{3} \cdot 0 + \frac{1}{3} \cdot -1 = 0$ B. $E[Y] = E[0] = 0$ C. $\frac{1}{3} \cdot 0 + \frac{2}{3} \cdot 1$ = 2 3 D. $\frac{1}{3} \cdot |-1| + \frac{1}{3} \cdot |0| + \frac{1}{3}$ $1 =$ 2 3 E. C and D $\begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}$

Expectation

of $g(X)$

 $E[g(X)] = \sum g(x)p(x)$

 χ

Being a statistician unconsciously	$E[g(X)] = \sum_{x} g(x)p(x)$	Expectation
Let X be a discrete random variable.		
• $P(X = x) = \frac{1}{3}$ for $x \in \{-1, 0, 1\}$		
Let $Y = X $. What is $E[Y]$?		
A. $\frac{1}{3} \cdot 1 + \frac{1}{3} \cdot 0 + \frac{1}{3} \cdot -1 = 0$	\mathbf{X}	
B. $E[Y] = E[0]$	$= 0$	$E[E[X]]$
C. $\frac{1}{3} \cdot 0 + \frac{2}{3} \cdot 1 = \frac{2}{3}$	$\left[\begin{array}{cc} 1. & \text{Find PMF of } Y: p_Y(0) = \frac{1}{3}, p_Y(1) = \frac{2}{3} \\ 2. & \text{Compute } E[Y] \end{array} \right]$	
D. $\frac{1}{3} \cdot -1 + \frac{1}{3} \cdot 0 + \frac{1}{3} 1 = \frac{2}{3}$	$\left[\begin{array}{cc} \text{Use LOTUS by using PMF of X:} \\ 1. & P(X = x) \cdot x \end{array} \right]$	
E. $\left[\begin{array}{c} \text{C and D} \\ \text{C and D} \end{array} \right]$	$\left[\begin{array}{c} \text{Use LOTUS by using PMF of X:} \\ 1. & P(X = x) \cdot x \end{array} \right]$	

The Co

Lisa Yan, CS109, 2020

I want to play a game

Expectation of $g(X)$ $E[g(x)] = \sum g(x)p(x)$ $\boldsymbol{\gamma}$

Think

Then check out the slide (Slide 30). Post

https://us.edstem.org/d

Think by yourself: 2

St. Petersburg Paradox

- A fair coin (comes up "heads" with $p = 0.5$)
- Define $Y =$ number of coin flips ("heads") before first "tails"
- You win $$2^Y$

How much would you pay to play? (How much you expect to win?)

- A. \$10000
- B. \$∞
- C. \$1
- D. \$0.50
- E. \$0 but let me play
- F. I will not play

St. Petersburg Paradox

$$
E[g(x)] = \sum_{x} g(x)p(x) \quad \begin{array}{c} \text{Expectation} \\ \text{of } g(X) \end{array}
$$

64

- A fair coin (comes up "heads" with $p = 0.5$)
- Define $Y =$ number of coin flips ("heads") before first "tails"
- You win $$2^Y$

How much would you pay to play? (How much you expect to win?)

1. Define random For
$$
i \geq 0
$$
: $P(Y = i) = \left(\frac{1}{2}\right)^{i+1}$

\nvariables

\nLet $W = \text{your winnings, } 2^Y$.

\n2. Solve $E[W] = E[2^Y] = \left(\frac{1}{2}\right)^1 2^0 + \left(\frac{1}{2}\right)^2 2^1 + \left(\frac{1}{2}\right)^3 2^2 + \cdots$

\n
$$
= \sum_{i=0}^{\infty} \left(\frac{1}{2}\right)^{i+1} 2^i = \sum_{i=0}^{\infty} \left(\frac{1}{2}\right) = \infty
$$
\nExample 2. Solve the formula for a given point \mathbb{R}^3 and \mathbb{R}^3 is a constant.

St. Petersburg + Reality

Expectation of $g(X)$ $E[g(x)] = \sum g(x)p(x)$ χ

What if Lisa has only \$65,536?

• Same game • Define $Y = #$ heads before first tails

• You win
$$
W = $2^Y
$$

- If you win over \$65,536, I leave the country
- 1. Define random For $i \geq 0$: $P(Y = i) =$ variables Let $W =$ your winnings 2^Y 1 2 $i+1$

2. Solve
$$
E[W] = \left(\frac{1}{2}\right)^{1} 2^{0} + \left(\frac{1}{2}\right)^{2} 2^{1} + \left(\frac{1}{2}\right)^{3} 2^{2} + \cdots
$$

\n
$$
\frac{k}{160} = \sum_{i=0}^{k} \left(\frac{1}{2}\right)^{i+1} 2^{i} = \sum_{i=0}^{16} \left(\frac{1}{2}\right)^{6} = 8.5
$$

Lisa Yan, CS109, 2020 $\iota=0$ Stanford University 65