o6: Random Variables

Lisa Yan April 17, 2020

Quick slide reference

3 Conditional Independence

06a_cond_indep

- 15 Random Variables
- 22 PMF/CDF
- 30 Expectation
- 40 Exercises

06b_random_variables

06c_pmf_cdf

06d_expectation

LIVE

06a_cond_indep

Conditional Independence

Conditional Paradigm

For any events A, B, and E, you can condition consistently on E, and all formulas still hold:

Axiom 1 Corollary 1 (complement) Transitivity Chain Rule

Bayes' Theorem

 $0 \le P(A|E) \le 1$ $P(A|E) = 1 - P(A^{C}|E)$ P(AB|E) = P(BA|E) P(AB|E) = P(B|E)P(A|BE) $P(A|BE) = \frac{P(B|AE)P(A|E)}{P(B|E)}$ BAE 's theorem?

Conditional Independence

Conditional Probability

Independence

Lisa Yan, CS109, 2020

Independent events E and F P(EF) = P(E)P(F)P(E|F) = P(E)

Two events *A* and *B* are defined as <u>conditionally independent given *E*</u> if: P(AB|E) = P(A|E)P(B|E)

An equivalent definition:

A.
$$P(A|B) = P(A)$$

B. $P(A|BE) = P(A)$
C. $P(A|BE) = P(A|E)$

Lisa Yan, CS109, 2020

Independent events E and F P(EF) = P(E)P(F)P(E|F) = P(E)

Two events *A* and *B* are defined as <u>conditionally independent given *E*</u> if: P(AB|E) = P(A|E)P(B|E)

An equivalent definition:

A.
$$P(A|B) = P(A)$$

B. $P(A|BE) = P(A)$
C. $P(A|BE) = P(A|E)$

Conditional Independence

Independence relations can change with conditioning.

A and B independent

does NOT always mean

A and B independent given E.

(additional reading in lecture notes)

Conditional Probability

Independence

Lisa Yan, CS109, 2020

Netflix and Condition

Let E = a user watches Life is Beautiful. Let F = a user watches Amelie. What is P(E)? $P(E) \approx \frac{\# \text{ people who have watched movie}}{\# \text{ people on Netflix}} = \frac{10,234,231}{50,923,123} \approx 0.20$

What is the probability that a user watches Life is Beautiful, given they watched Amelie?

 $P(E|F) = \frac{P(EF)}{P(F)} = \frac{\# \text{ people who have watched both}}{\# \text{ people who have watched Amelie}} \approx 0.42$

Let *E* be the event that a user watches the given movie. Let *F* be the event that the same user watches Amelie.

			RUJRUMAR HRANI Für BUDRU MIRD Erio RANI Für BUDRU MIRD Erio RANI Für BUDRU MIRD Erio RANI Für BUDRU MIRD Erio RANI Für	
P(E) = 0.19	P(E) = 0.32	P(E) = 0.20	P(E) = 0.09	P(E) = 0.20
P(E F) = 0.14	P(E F) = 0.35	P(E F) = 0.20	P(E F) = 0.72	P(E F) = 0.42
		Independent!		Stanford University 10

Review

INREY TAUTON

Netflix and Condition (on many movies)

What if $E_1E_2E_3E_4$ are not independent? (e.g., all international emotional comedies)

$$P(E_4|E_1E_2E_3) = \frac{P(E_1E_2E_3E_4)}{P(E_1E_2E_3)} = \frac{\# \text{ people who have watched all 4}}{\# \text{ people who have watched those 3}}$$

We need to keep track of an exponential number of movie-watching statistics

Lisa Yan, CS109, 2020

Netflix and Condition (on many movies)

Conditional independence is a Big Deal

Conditional independence is a practical, real-world way of decomposing hard probability questions.

"Exploiting conditional independence to generate fast probabilistic computations is one of the main contributions CS has made to probability theory."

-Judea Pearl wins 2011 Turing Award,

"For fundamental contributions to artificial intelligence through the development of a calculus for probabilistic and causal reasoning"

Netflix and Condition

Challenge: How do we determine *K*? Stay tuned in 6 weeks' time!

 $E_1 E_2 E_3 E_4$ are dependent

$E_1E_2E_3E_4$ are conditionally independent given K

Dependent events can become conditionally independent. And vice versa: Independent events can become conditionally dependent.

Lisa Yan, CS109, 2020

06b_random_variables

Random Variables

Next Episode Playing in 5 seconds

Back to Browse

More Episodes

Lisa Yan, CS109, 2020

Stanford University

Random variables are like typed variables

Random

variables

double b = 4.2;

bit c = 1;

CS variables

A is the number of Pokemon we bring to our *future* battle. $A \in \{1, 2, ..., 6\}$

B is the amount of money we get after we win a battle. $B \in \mathbb{R}^+$

C is 1 *if* we successfully beat the Elite Four. 0 otherwise. $C \in \{0,1\}$

Random variables are like typed variables (with uncertainty)

Stanford University 17

Random Variable

A random variable is a real-valued function defined on a sample space.

Example:

3 coins are flipped. Let X = # of heads. X is a random variable.

- **1**. What is the value of *X* for the outcomes:
- (T,T,T)?
- (H,H,T)?
- 2. What is the event (set of outcomes) where X = 2?

3. What is
$$P(X = 2)$$
?

Random Variable

A random variable is a real-valued function defined on a sample space.

Example:

3 coins are flipped. Let X = # of heads. X is a random variable.

- **1**. What is the value of *X* for the outcomes:
- (T,T,T)?
- (H,H,T)?
- 2. What is the event (set of outcomes) where X = 2?

3. What is
$$P(X = 2)$$
?

Lisa Yan, CS109, 2020

Random variables are **NOT** events!

It is confusing that random variables and events use the same notation.

- Random variables ≠ events.
- We can define an event to be a particular assignment of a random variable.

Example:

3 coins are flipped. Let X = # of heads. X is a random variable.

X = 2

event

P(X=2)

probability (number b/t 0 and 1)

Random variables are **NOT** events!

It is confusing that random variables and events use the same notation.

- Random variables ≠ events.
- We can define an event to be a particular assignment of a random variable.

	X = x	Set of outcomes	P(X = k)
Example:	X = 0	{(T, T, T)}	1/8
	X = 1	{(H, T, T), (T, H, T),	3/8
		(T, T, H)}	
3 coins are tilpped.	X = 2	{(H, H, T), (H, T, H),	3/8
Let $X = #$ of heads.		(T, H, H)}	
X is a random variable.	X = 3	{(H, H, H)}	1/8
	$X \ge 4$	{ }	0

06c_pmf_cdf

PMF/CDF

So far

3 coins are flipped. Let X = # of heads. X is a random variable.

Experiment
 Outcome

$$X = _$$
 $P(X = _)$

 (flip __heads)
 $X = _$
 $P(X = _)$

X = x	P(X=k)	Set of outcomes
X = 0	1/8	{(T, T, T)}
X = 1	3/8	{(H, T, T), (T, H, T), (T, T, H)}
<i>X</i> = 2	3/8	{(H, H, T), (H, T, H), (T, H, H)}
X = 3	1/8	{(H, H, H)}
$X \ge 4$	0	{ }

Can we get a "shorthand" for this last step? Seems like it might be useful!

Probability Mass Function

3 coins are flipped. Let X = # of heads. X is a random variable.

parameter/input k

A function on k with range [0,1]

What would be a *useful* function to define? The probability of the event that a random variable *X* takes on the value *k*! For discrete random variables, this is a probability mass function.

Probability Mass Function

3 coins are flipped. Let X = # of heads. X is a random variable.

A function on k with range [0,1]

Discrete RVs and Probability Mass Functions

A random variable X is discrete if it can take on countably many values. • X = x, where $x \in \{x_1, x_2, x_3, ...\}$

The probability mass function (PMF) of a discrete random variable is

$$P(X = x) = p(x) = p_X(x)$$

shorthand notation

Probabilities must sum to 1:

$$\sum_{i=1}^{\infty} p(x_i) = 1$$

This last point is a good way to verify any PMF you create.

Let *X* be a random variable that represents the result of a single dice roll.

- **Support** of *X* : {1, 2, 3, 4, 5, 6}
- Therefore *X* is a discrete random variable.

PMF of X: $p(x) = \begin{cases} 1/6 & x \in \{1, \dots, 6\} \\ 0 & \text{otherwise} \end{cases}$

For a random variable *X*, the cumulative distribution function (CDF) is defined as

$$F(a) = F_X(a) = P(X \le a)$$
, where $-\infty < a < \infty$

For a discrete RV *X*, the CDF is:

$$F(a) = P(X \le a) = \sum_{\text{all } x \le a} p(x)$$

CDFs as graphs

CDF of X

Let *X* be a random variable that represents the result of a single dice roll.

06d_expectation

Expectation

Discrete random variables

Expectation

The expectation of a discrete random variable *X* is defined as:

$$E[X] = \sum_{x:p(x)>0} p(x) \cdot x$$

- Note: sum over all values of X = x that have non-zero probability.
- Other names: mean, expected value, weighted average, center of mass, first moment

What is the expected value of a 6-sided die roll?

1. Define random variables

$$X = \mathsf{RV}$$
 for value of roll

$$P(X = x) = \begin{cases} 1/6 & x \in \{1, \dots, 6\} \\ 0 & \text{otherwise} \end{cases}$$

2. Solve

$$E[X] = 1\left(\frac{1}{6}\right) + 2\left(\frac{1}{6}\right) + 3\left(\frac{1}{6}\right) + 4\left(\frac{1}{6}\right) + 5\left(\frac{1}{6}\right) + 6\left(\frac{1}{6}\right) = \frac{7}{2}$$

1. Linearity:

$$E[aX+b] = aE[X]+b$$

2. Expectation of a sum = sum of expectation: E[X + Y] = E[X] + E[Y]

- Let X = 6-sided dice roll, Y = 2X - 1.
- E[X] = 3.5
- E[Y] = 6

Sum of two dice rolls:

- Let X = roll of die 1 Y = roll of die 2
- E[X + Y] = 3.5 + 3.5 = 7

3. Unconscious statistician:

$$E[g(X)] = \sum_{x} g(x)p(x)$$

These properties let you avoid defining difficult PMFs.

Proofs (OK to stop here)

1. Linearity:

$$E[aX+b] = aE[X]+b$$

2. Expectation of a sum = sum of expectation: E[X + Y] = E[X] + E[Y]

3. Unconscious statistician:

$$E[g(X)] = \sum_{x} g(x)p(x)$$

$$E[aX + b] = aE[X] + b$$

Proof:

$$E[aX + b] = \sum_{x} (ax + b)p(x) = \sum_{x} axp(x) + bp(x)$$
$$= a \sum_{x} xp(x) + b \sum_{x} p(x)$$
$$= a E[X] + b \cdot 1$$

Expectation of Sum intuition

	E[X +	Y] = E[X]	X] + E[Y]	(we'll prove this in two weeks)
Intuition	X	Y	X + Y	
for now:	3	6	9	
	2	4	6	
	6	12	18	
	10	20	30	
	-1	-2	-3	
	0	0	0	
	8	16	24	
Average:	$\frac{1}{n}\sum_{i=1}^{n}x_{i} +$	$\frac{1}{n}\sum_{i=1}^{n}y_{i} =$	$\frac{1}{n}\sum_{i=1}^{n}(x_i+y_i)$	
	$\frac{1}{7}(28)$ +	$-\frac{1}{7}(56) =$	$\frac{1}{7}(84)$	

Lisa Yan, CS109, 2020

LOTUS proof

$$E[g(X)] = \sum_{x} g(x)p(x)$$
 Expectation
of $g(X)$

Let Y = g(X), where g is a real-valued function.

$$E[g(X)] = E[Y] = \sum_{j} y_{j} p(y_{j})$$

$$= \sum_{j} y_{j} \sum_{i:g(x_{i})=y_{j}} p(x_{i})$$

$$= \sum_{j} \sum_{i:g(x_{i})=y_{j}} y_{j} p(x_{i})$$

$$= \sum_{j} \sum_{i:g(x_{i})=y_{j}} g(x_{i}) p(x_{i})$$

$$= \sum_{i} g(x_{i}) p(x_{i})$$

Lisa Yan, CS109, 2020

For you to review so that you can sleep at night

(live) o6: Random Variables

Lisa Yan April 15, 2020

Reminders: Lecture with

- Turn on your camera if you are able, mute your mic in the big room
- Virtual backgrounds are encouraged (classroom-appropriate)

Breakout Rooms for meeting your classmates

- Just like sitting next to someone new
- This experience is optional: You should be comfortable leaving the room at any time.

We will use Ed instead of Zoom chat

Today's discussion thread: https://us.edstem.org/courses/109/discussion/24491

Discrete random variables

Event-driven probability

- Relate only binary events
 - Either happens (E)
 - or doesn't happen (E^{C})
- Can only report probability

Lots of combinatorics

Random Variables

- Link multiple similar events together (X = 1, X = 2, ..., X = 6)
- Can compute statistics: report the "average" outcome
- Once we have the PMF (discrete RVs), we can do regular math

Lisa Yan, CS109, 2020

PMF for the sum of two dice

Let *Y* be a random variable that represents the sum of two independent dice rolls.

Support of *Y*: {2, 3, ..., 11, 12}

$$p(y) = \begin{cases} \frac{y-1}{36} & y \in \mathbb{Z}, 2 \le y \le 6\\ \frac{13-y}{36} & y \in \mathbb{Z}, 7 \le y \le 12\\ 0 & \text{otherwise} \end{cases}$$

Sanity check:

$$\sum_{y=2}^{12} p(y) = 1$$

Think, then Breakout Rooms

Then check out the question on the next slide (Slide 46). Post any clarifications here!

https://us.edstem.org/courses/109/discussion/27280

Think by yourself: 1 min

Breakout rooms: 5 min. Introduce yourself! (or leave)

Example random variable

Consider 5 flips of a coin which comes up heads with probability p. Each coin flip is an independent trial. Let Y = # of heads on 5 flips.

- 1. What is the support of *Y*? In other words, what are the values that *Y* can take on with non-zero probability?
- 2. Define the event Y = 2. What is P(Y = 2)?

3. What is the PMF of Y? In other words, what is P(Y = k), for k in the support of Y?

Example random variable

Consider 5 flips of a coin which comes up heads with probability p. Each coin flip is an independent trial. Let Y = # of heads on 5 flips.

- 1. What is the support of Y? In other words, what are the values that Y can take on with non-zero probability? $\{0, 1, 2, 3, 4, 5\}$
- 2. Define the event Y = 2. What is P(Y = 2)? $P(Y = k) = {5 \choose 2} p^2 (1-p)^3$

3. What is the PMF of Y? In other words, what is P(Y = k), for k in the support of Y? P(Y = k)

$$P(Y = k) = {\binom{5}{k}} p^k (1-p)^{5-k}$$

Lisa Yan, CS109, 2020

Expectation

Review

$$E[X] = \sum_{x:p(x)>0} p(x) \cdot x$$

Expectation: The average value of a random variable

Remember that the expectation of a die roll is 3.5.

X = RV for value of roll

$$E[X] = 1\left(\frac{1}{6}\right) + 2\left(\frac{1}{6}\right) + 3\left(\frac{1}{6}\right) + 4\left(\frac{1}{6}\right) + 5\left(\frac{1}{6}\right) + 6\left(\frac{1}{6}\right) = \frac{7}{2}$$

Lying with statistics

"There are three kinds of lies: lies, damned lies, and statistics" –popularized by Mark Twain, 1906

Lying with statistics

A school has 3 classes with 5, 10, and 150 students. What is the average class size?

- **1.** Interpretation #1
- Randomly choose a <u>class</u> with equal probability.
- X = size of chosen class $E[X] = 5\left(\frac{1}{3}\right) + 10\left(\frac{1}{3}\right) + 150\left(\frac{1}{3}\right)$ $= \frac{165}{3} = 55$
 - What universities usually report

- 2. Interpretation #2
- Randomly choose a <u>student</u> with equal probability.

•
$$Y =$$
 size of chosen class

$$E[Y] = 5\left(\frac{5}{165}\right) + 10\left(\frac{10}{165}\right) + 150\left(\frac{150}{165}\right)$$
$$= \frac{22635}{165} \approx 137$$

Average student perception of class size Stanford University 50

Interlude for jokes/announcements

Your voices

Announcements

Problem Set 1		Problem Set 2	
Due:	~an hour ago	Out:	today
On-time grades:	next Friday	Due:	Monday 4/27
Solutions:	next Friday	Covers:	through today

The pedagogy behind concept checks

- Spaced practice (vs. "practice makes perfect"): better memory retention
- Low-stakes testing: better concept retrieval, actively connect concepts
 It is okay if you don't understand material off-the-bat. In fact, learning research suggests that you will learn more in the long run.

Lisa Yan, CS109, 2020

1. Linearity: E[aX + b] = aE[X] + b

Roll a die, outcome is X. You win 2X - 1. What are your expected winnings?

> Let X = 6-sided dice roll. E[2X - 1] = 2(3.5) - 1 = 6

- 2. Expectation of a sum = sum of expectation: E[X + Y] = E[X] + E[Y]
- 3. Unconscious statistician:

$$E[g(X)] = \sum_{x} g(x)p(x)$$

1. Linearity: E[aX + b] = aE[X] + b

Roll a die, outcome is X. You win 2X - 1. What are your expected winnings?

> Let X = 6-sided dice roll. E[2X - 1] = 2(3.5) - 1 = 6

What is the expectation of the sum of two dice rolls?

Let X = roll of die 1, Y = roll of die 2. E[X + Y] = 3.5 + 3.5 = 7

2. Expectation of a sum = sum of expectation: E[X + Y] = E[X] + E[Y]

3. Unconscious statistician:

$$E[g(X)] = \sum_{x} g(x)p(x)$$

1. Linearity: E[aX + b] = aE[X] + b

2. Expectation of a sum = sum of

Roll a die, outcome is X. You win 2X - 1. What are your expected winnings?

> Let X = 6-sided dice roll. E[2X - 1] = 2(3.5) - 1 = 6

What is the expectation of the sum of two dice rolls?

Let X = roll of die 1, Y = roll of die 2.E[X + Y] = 3.5 + 3.5 = 7

3. Unconscious statistician:

expectation:

$$E[g(X)] = \sum_{x} g(x)p(x)$$
Lisa Yan, CS109, 2020

E[X + Y] = E[X] + E[Y]

(next up)

Think, then Breakout Rooms

Then check out the question on the next slide (Slide 58). Post any clarifications here!

https://us.edstem.org/courses/109/discussion/27280

Think by yourself: 1 min

Breakout rooms: 5 min. Introduce yourself!

Being a statistician unconsciously

Let X be a discrete random variable. • $P(X = x) = \frac{1}{3}$ for $x \in \{-1, 0, 1\}$ Let Y = |X|. What is E[Y]? A. $\frac{1}{3} \cdot 1 + \frac{1}{3} \cdot 0 + \frac{1}{3} \cdot -1$ = 0**B.** E[Y] = E[0]= 0 $=\frac{2}{3}$ C. $\frac{1}{3} \cdot 0 + \frac{2}{3} \cdot 1$ D. $\frac{1}{3} \cdot |-1| + \frac{1}{3} \cdot |0| + \frac{1}{3} |1| = \frac{2}{3}$ E. C and D

Expectation

of q(X)

 $E[g(X)] = \sum g(x)p(x)$

Being a statistician unconsciously
$$E[g(X)] = \sum_{x} g(x)p(x)$$
Expectation
of $g(X)$ Let X be a discrete random variable.• $P(X = x) = \frac{1}{3}$ for $x \in \{-1, 0, 1\}$ Let Y = |X|. What is $E[Y]$?A. $\frac{1}{3} \cdot 1 + \frac{1}{3} \cdot 0 + \frac{1}{3} \cdot -1 = 0$ \textbf{X} $E[X]$ B. $E[Y] = E[0]$ \textbf{C} $\frac{1}{3} \cdot 0 + \frac{2}{3} \cdot 1$ $= \frac{2}{3}$ $\begin{bmatrix} 1. & Find PMF of Y: p_Y(0) = \frac{1}{3}, p_Y(1) = \frac{2}{3} \\ 2. & Compute E[Y] \end{bmatrix}$ D. $\frac{1}{3} \cdot |-1| + \frac{1}{3} \cdot |0| + \frac{1}{3} |1| = \frac{2}{3}$ $\begin{bmatrix} Use LOTUS by using PMF of X: \\ 1. P(X = x) \cdot |x| \\ 2. & Sum up \end{bmatrix}$

Lisa Yan, CS109, 2020

I want to play a game

Expectation of g(X) $E[g(x)] = \sum g(x)p(x)$ Y

Think

Then check out the question on the next slide (Slide 30). Post any clarifications here!

https://us.edstem.org/courses/109/discussion/27280

Think by yourself: 2 min

St. Petersburg Paradox

 $E[g(x)] = \sum_{x} g(x)p(x)$ Expectation of g(X)

- A fair coin (comes up "heads" with p = 0.5)
- Define Y = number of coin flips ("heads") before first "tails"
- You win $\$2^Y$

How much would you pay to play? (How much you expect to win?)

- A. \$10000
- <mark>B.</mark> \$∞
- **C.** \$1
- D. \$0.50
- E. \$0 but let me play
- F. I will not play

St. Petersburg Paradox

$$E[g(x)] = \sum_{x} g(x)p(x)$$
 Expectation
of $g(X)$

- A fair coin (comes up "heads" with p = 0.5)
- Define Y = number of coin flips ("heads") before first "tails"
- You win $\$2^{Y}$

How much would you pay to play? (How much you expect to win?)

1. Define random
variables
For
$$i \ge 0$$
: $P(Y = i) = \left(\frac{1}{2}\right)^{i+1}$
Let W = your winnings, 2^{Y} .
2. Solve
 $E[W] = E[2^{Y}] = \left(\frac{1}{2}\right)^{1} 2^{0} + \left(\frac{1}{2}\right)^{2} 2^{1} + \left(\frac{1}{2}\right)^{3} 2^{2} + \cdots$
 $= \sum_{i=0}^{\infty} \left(\frac{1}{2}\right)^{i+1} 2^{i} = \sum_{i=0}^{\infty} \left(\frac{1}{2}\right) = \infty$

St. Petersburg + Reality

Expectation $E[g(x)] = \sum g(x)p(x)$ of q(X)

What if Lisa has only \$65,536?

Same game
 Define Y = # heads before first tails

• You win
$$W = \$2^Y$$

- If you win over \$65,536, I leave the country
- Define random For $i \ge 0$: $P(Y = i) = \left(\frac{1}{2}\right)^{i}$ variables Let $W = vour winnings 2^{Y}$

2. Solve

$$E[W] = \left(\frac{1}{2}\right)^{1} 2^{0} + \left(\frac{1}{2}\right)^{2} 2^{1} + \left(\frac{1}{2}\right)^{3} 2^{2} + \cdots$$

$$k = \log_{2}(65,536) = \sum_{i=0}^{k} \left(\frac{1}{2}\right)^{i+1} 2^{i} = \sum_{i=0}^{16} \left(\frac{1}{2}\right) = 8.5$$
Stanford University 65

