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Stanford, CA
𝐸 high = 68°F
𝐸 low = 52°F

Washington, DC
𝐸 high = 67°F
𝐸 low = 51°F

4

Average annual weather

Is 𝐸 𝑋 enough?
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Normalized histograms are approximations of PMFs.
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Variance = “spread”
Consider the following three distributions (PMFs):

• Expectation: 𝐸 𝑋 = 3 for all distributions
• But the “spread” in the distributions is different!
• Variance, Var 𝑋 : a formal quantification of “spread”

6
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Variance

The variance of a random variable 𝑋 with mean 𝐸 𝑋 = 𝜇 is

Var 𝑋 = 𝐸 𝑋 − 𝜇 !

• Also written as: 𝐸 𝑋 − 𝐸 𝑋 !

• Note: Var(X) ≥ 0
• Other names: 2nd central moment, or square of the standard deviation

Var 𝑋

def standard deviation SD 𝑋 = Var 𝑋
7

Units of 𝑋!

Units of 𝑋
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Variance of Stanford weather
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Variance
of 𝑋

Var 𝑋 = 𝐸 𝑋 − 𝐸 𝑋 !

Stanford, CA
𝐸 high = 68°F
𝐸 low = 52°F
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𝑋 𝑋 − 𝜇 !

57°F 124 (°F)2

𝐸 𝑋 = 𝜇 = 68

71°F 9 (°F)2

75°F 49 (°F)2

69°F 1 (°F)2

… …

Variance 𝐸 𝑋 − 𝜇 ! = 39 (°F)2

Standard deviation = 6.2°F
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Stanford, CA
𝐸 high = 68°F

Washington, DC
𝐸 high = 67°F
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Comparing variance
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Var 𝑋 = 39 °F ! Var 𝑋 = 248 °F !

Variance
of 𝑋

Var 𝑋 = 𝐸 𝑋 − 𝐸 𝑋 !

68°F 67°F



Properties of 
Variance
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Properties of variance
Definition Var 𝑋 = 𝐸 𝑋 − 𝐸 𝑋 !

def standard deviation SD 𝑋 = Var 𝑋

Property 1 Var 𝑋 = 𝐸 𝑋! − 𝐸 𝑋 !

Property 2 Var 𝑎𝑋 + 𝑏 = 𝑎!Var 𝑋

11

Units of 𝑋!

Units of 𝑋

• Property 1 is often easier to compute than the definition
• Unlike expectation, variance is not linear
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Properties of variance
Definition Var 𝑋 = 𝐸 𝑋 − 𝐸 𝑋 !

def standard deviation SD 𝑋 = Var 𝑋

Property 1 Var 𝑋 = 𝐸 𝑋! − 𝐸 𝑋 !

Property 2 Var 𝑎𝑋 + 𝑏 = 𝑎!Var 𝑋
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Units of 𝑋!

Units of 𝑋

• Property 1 is often easier to compute than the definition
• Unlike expectation, variance is not linear
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Computing variance, a proof

13

Var 𝑋 = 𝐸 𝑋 − 𝐸 𝑋 !

= 𝐸 𝑋! − 𝐸 𝑋 !

= 𝐸 𝑋! − 𝜇!
= 𝐸 𝑋! − 2𝜇! + 𝜇!
= 𝐸 𝑋! − 2𝜇𝐸 𝑋 + 𝜇!

= 𝐸 𝑋 − 𝜇 ! Let 𝐸 𝑋 = 𝜇

Everyone, 
please 

welcome the 
second 

moment!

Variance
of 𝑋

Var 𝑋 = 𝐸 𝑋 − 𝐸 𝑋 !

= 𝐸 𝑋! − 𝐸 𝑋 !

=+
"

𝑥 − 𝜇 !𝑝 𝑥

=+
"

𝑥! − 2𝜇𝑥 + 𝜇! 𝑝 𝑥

=+
"

𝑥!𝑝 𝑥 − 2𝜇+
"

𝑥𝑝 𝑥 + 𝜇!+
"

𝑝 𝑥

⋅ 1
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Let Y = outcome of a single die roll. Recall 𝐸 𝑌 = 7/2 .
Calculate the variance of Y. 

14

Variance of a 6-sided die
Variance
of 𝑋

Var 𝑋 = 𝐸 𝑋 − 𝐸 𝑋 !

= 𝐸 𝑋! − 𝐸 𝑋 !

1. Approach #1: Definition

Var 𝑌 =
1
6
1 −

7
2

!
+
1
6
2 −

7
2

!

+
1
6
3 −

7
2

!
+
1
6
4 −

7
2

!

+
1
6
5 −

7
2

!
+
1
6
6 −

7
2

!

2. Approach #2: A property

𝐸 𝑌! =
1
6
1! + 2! + 3! + 4! + 5! + 6!

= 91/6

Var 𝑌 = 91/6 − 7/2 !

= 35/12 = 35/12

2nd moment
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Properties of variance
Definition Var 𝑋 = 𝐸 𝑋 − 𝐸 𝑋 !

def standard deviation SD 𝑋 = Var 𝑋

Property 1 Var 𝑋 = 𝐸 𝑋! − 𝐸 𝑋 !

Property 2 Var 𝑎𝑋 + 𝑏 = 𝑎!Var 𝑋

15

Units of 𝑋!

Units of 𝑋

• Property 1 is often easier to compute than the definition
• Unlike expectation, variance is not linear
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Property 2: A proof
Property 2 Var 𝑎𝑋 + 𝑏 = 𝑎!Var 𝑋

16

Var 𝑎𝑋 + 𝑏
= 𝐸 𝑎𝑋 + 𝑏 ! − 𝐸 𝑎𝑋 + 𝑏 ! Property 1

= 𝐸 𝑎!𝑋! + 2𝑎𝑏𝑋 + 𝑏! − 𝑎𝐸 𝑋 + 𝑏 !

= 𝑎!𝐸 𝑋! + 2𝑎𝑏𝐸 𝑋 + 𝑏! − 𝑎! 𝐸[𝑋] ! + 2𝑎𝑏𝐸[𝑋] + 𝑏!

= 𝑎!𝐸 𝑋! − 𝑎! 𝐸[𝑋] !

= 𝑎! 𝐸 𝑋! − 𝐸[𝑋] !

= 𝑎!Var 𝑋 Property 1

Proof:

Factoring/
Linearity of 
Expectation



Bernoulli RV
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Jacob Bernoulli

18

Jacob Bernoulli (1654-1705), also known as “James”, was a Swiss 
mathematician

One of many mathematicians in Bernoulli family
The Bernoulli Random Variable is named for him

My academic great14 grandfather
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Consider an experiment with two outcomes: “success” and “failure.”
def A Bernoulli random variable 𝑋 maps “success” to 1 and “failure” to 0.

Other names: indicator random variable, boolean random variable

Examples:
• Coin flip
• Random binary digit
• Whether a disk drive crashed

Bernoulli Random Variable

19

𝑃 𝑋 = 1 = 𝑝 1 = 𝑝
𝑃 𝑋 = 0 = 𝑝 0 = 1 − 𝑝𝑋~Ber(𝑝)

Support: {0,1} Variance
Expectation

PMF

𝐸 𝑋 = 𝑝
Var 𝑋 = 𝑝(1 − 𝑝)

Remember this nice property of 
expectation. It will come back!
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Defining Bernoulli RVs

20

Serve an ad.
• User clicks w.p. 0.2
• Ignores otherwise

Let 𝑋: 1 if clicked

𝑋~Ber(___)
𝑃 𝑋 = 1 = ___
𝑃 𝑋 = 0 = ___

Roll two dice.
• Success: roll two 6’s
• Failure: anything else

Let 𝑋 : 1 if success

𝑋~Ber(___)

𝐸 𝑋 = ___

𝑋~Ber(𝑝) 𝑝" 1 = 𝑝
𝑝" 0 = 1 − 𝑝𝐸 𝑋 = 𝑝

Run a program
• Crashes w.p. 𝑝
• Works w.p. 1 − 𝑝

Let 𝑋: 1 if crash

𝑋~Ber(𝑝)
𝑃 𝑋 = 1 = 𝑝
𝑃 𝑋 = 0 = 1 − 𝑝 🤔
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Defining Bernoulli RVs

21

Serve an ad.
• User clicks w.p. 0.2
• Ignores otherwise

Let 𝑋: 1 if clicked

𝑋~Ber(___)
𝑃 𝑋 = 1 = ___
𝑃 𝑋 = 0 = ___

Roll two dice.
• Success: roll two 6’s
• Failure: anything else

Let 𝑋 : 1 if success

𝑋~Ber(___)

𝐸 𝑋 = ___

𝑋~Ber(𝑝) 𝑝" 1 = 𝑝
𝑝" 0 = 1 − 𝑝𝐸 𝑋 = 𝑝

Run a program
• Crashes w.p. 𝑝
• Works w.p. 1 − 𝑝

Let 𝑋: 1 if crash

𝑋~Ber(𝑝)
𝑃 𝑋 = 1 = 𝑝
𝑃 𝑋 = 0 = 1 − 𝑝



Binomial RV
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07d_binomial
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Consider an experiment: 𝑛 independent trials of Ber(𝑝) random variables.
def A Binomial random variable 𝑋 is the number of successes in 𝑛 trials.

Examples:
• # heads in n coin flips
• # of 1’s in randomly generated length n bit string
• # of disk drives crashed in 1000 computer cluster

(assuming disks crash independently)

Binomial Random Variable

23

𝑘 = 0, 1, … , 𝑛:

𝑃 𝑋 = 𝑘 = 𝑝 𝑘 = 𝑛
𝑘 𝑝! 1 − 𝑝 "#!𝑋~Bin(𝑛, 𝑝)

Support: {0,1, … , 𝑛}

PMF

𝐸 𝑋 = 𝑛𝑝
Var 𝑋 = 𝑛𝑝(1 − 𝑝)Variance

Expectation
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Reiterating notation

The parameters of a Binomial random variable:
• 𝑛: number of independent trials
• 𝑝: probability of success on each trial

25

1. The random 
variable

2. is distributed 
as a

3. Binomial 4. with parameters

𝑋 ~ Bin(𝑛, 𝑝)
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Reiterating notation

If 𝑋 is a binomial with parameters 𝑛 and 𝑝, the PMF of 𝑋 is

26

𝑋 ~ Bin(𝑛, 𝑝)

𝑃 𝑋 = 𝑘 = 𝑛
𝑘 𝑝( 1 − 𝑝 )*(

Probability Mass Function for a BinomialProbability that 𝑋
takes on the value 𝑘
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Three coin flips
Three fair (“heads” with 𝑝 = 0.5) coins are flipped.
• 𝑋 is number of heads
• 𝑋~Bin 3, 0.5

Compute the following event probabilities:

27

𝑋~Bin(𝑛, 𝑝) 𝑝 𝑘 = 𝑛
𝑘 𝑝# 1 − 𝑝 $%#

𝑃 𝑋 = 0

𝑃 𝑋 = 1

𝑃 𝑋 = 2

𝑃 𝑋 = 3

𝑃 𝑋 = 7
P(event)

🤔
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Three coin flips
Three fair (“heads” with 𝑝 = 0.5) coins are flipped.
• 𝑋 is number of heads
• 𝑋~Bin 3, 0.5

Compute the following event probabilities:

28

𝑋~Bin(𝑛, 𝑝) 𝑝 𝑘 = 𝑛
𝑘 𝑝# 1 − 𝑝 $%#

𝑃 𝑋 = 0 = 𝑝 0 = 3
0 𝑝$ 1 − 𝑝 % = &

'

𝑃 𝑋 = 1

𝑃 𝑋 = 2

𝑃 𝑋 = 3

𝑃 𝑋 = 7

= 𝑝 1 = 3
1 𝑝& 1 − 𝑝 ! = %

'

= 𝑝 2 = 3
2 𝑝! 1 − 𝑝 & = %

'

= 𝑝 3 = 3
3 𝑝% 1 − 𝑝 $ = &

'

= 𝑝 7 = 0
P(event) PMF

Extra math note:
By Binomial Theorem,
we can prove
∑()$* 𝑃 𝑋 = 𝑘 = 1
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Consider an experiment: 𝑛 independent trials of Ber(𝑝) random variables.
def A Binomial random variable 𝑋 is the number of successes in 𝑛 trials.

Examples:
• # heads in n coin flips
• # of 1’s in randomly generated length n bit string
• # of disk drives crashed in 1000 computer cluster

(assuming disks crash independently)

Binomial Random Variable

29

𝑋~Bin(𝑛, 𝑝)
Range: {0,1, … , 𝑛} Variance

Expectation

PMF

𝐸 𝑋 = 𝑛𝑝
Var 𝑋 = 𝑛𝑝(1 − 𝑝)

𝑘 = 0, 1, … , 𝑛:

𝑃 𝑋 = 𝑘 = 𝑝 𝑘 = 𝑛
𝑘 𝑝! 1 − 𝑝 "#!
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Ber 𝑝 = Bin(1, 𝑝)

Binomial RV is sum of Bernoulli RVs

Bernoulli
• 𝑋~Ber(𝑝)

Binomial
• 𝑌~Bin 𝑛, 𝑝
• The sum of 𝑛 independent 

Bernoulli RVs

30

𝑌 =+
+)&

*

𝑋+ , 𝑋+ ~Ber(𝑝)

+

+

+
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Consider an experiment: 𝑛 independent trials of Ber(𝑝) random variables.
def A Binomial random variable 𝑋 is the number of successes in 𝑛 trials.

Examples:
• # heads in n coin flips
• # of 1’s in randomly generated length n bit string
• # of disk drives crashed in 1000 computer cluster

(assuming disks crash independently)

Binomial Random Variable

31

𝑋~Bin(𝑛, 𝑝)
Range: {0,1, … , 𝑛}

𝐸 𝑋 = 𝑛𝑝
Var 𝑋 = 𝑛𝑝(1 − 𝑝)Variance

Expectation

PMF 𝑘 = 0, 1, … , 𝑛:

𝑃 𝑋 = 𝑘 = 𝑝 𝑘 = 𝑛
𝑘 𝑝! 1 − 𝑝 "#!

Proof:
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Consider an experiment: 𝑛 independent trials of Ber(𝑝) random variables.
def A Binomial random variable 𝑋 is the number of successes in 𝑛 trials.

Examples:
• # heads in n coin flips
• # of 1’s in randomly generated length n bit string
• # of disk drives crashed in 1000 computer cluster

(assuming disks crash independently)

Binomial Random Variable

32

𝑋~Bin(𝑛, 𝑝)
Range: {0,1, … , 𝑛}

PMF

𝐸 𝑋 = 𝑛𝑝
Var 𝑋 = 𝑛𝑝(1 − 𝑝)

We’ll prove 
this later in 
the course

Variance
Expectation

𝑘 = 0, 1, … , 𝑛:

𝑃 𝑋 = 𝑘 = 𝑝 𝑘 = 𝑛
𝑘 𝑝! 1 − 𝑝 "#!
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No, give me the variance proof right now

33

proofwiki.org



(live)
07: Variance, Bernoulli, 
and Binomial
Lisa Yan
April 20, 2020

34
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Reminders: Lecture with
• Turn on your camera if you are able, mute your mic in the big room
• Virtual backgrounds are encouraged (classroom-appropriate)

Breakout Rooms for meeting your classmates
◦ Just like sitting next to someone new
◦ This experience is optional: You should be comfortable leaving the room at any time.

We will use Ed instead of Zoom chat

35

Today’s discussion thread: https://us.edstem.org/courses/109/discussion/39075

https://us.edstem.org/courses/109/discussion/39075
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Our first common RVs

36

𝑋 ~ Ber(𝑝)

𝑌 ~ Bin(𝑛, 𝑝)

1. The random 
variable

2. is distributed 
as a

3. Bernoulli 4. with parameter

Example: Heads in one coin flip,
P(heads) = 0.8 = p

Example: # heads in 40 coin flips,
P(heads) = 0.8 = p

otherwise Identify PMF, or
identify as a function of an 
existing random variable

Review



Breakout 
Rooms

Check out the questions on the next slide 
(Slide 38). Post any clarifications here!

https://us.edstem.org/courses/109/discussion/39075

Breakout rooms: 5 min. Introduce yourself!

37

🤔

https://us.edstem.org/courses/109/discussion/39075
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Statistics: Expectation and variance
1. a. Let 𝑋 = the outcome of a 4-sided

die roll. What is 𝐸 𝑋 ?
b. Let 𝑌 = the sum of three rolls of a

4-sided die. What is 𝐸 𝑌 ?
2. a. Let 𝑍 = # of tails on 10 flips of a

biased coin (w.p. 0.4 of heads). What is 𝐸 𝑍 ?

b. What is Var(𝑍)?

3. Compare the variances of
𝐵2~Ber 0.1 and 𝐵!~Ber(0.5).

38

🤔
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Statistics: Expectation and variance
1. a. Let 𝑋 = the outcome of a 4-sided

die roll. What is 𝐸 𝑋 ?
b. Let 𝑌 = the sum of three rolls of a

4-sided die. What is 𝐸 𝑌 ?
2. a. Let 𝑍 = # of tails on 10 flips of a

biased coin (w.p. 0.3 of heads). What is 𝐸 𝑍 ?

b. What is Var(𝑍)?

3. Compare the variances of
𝐵2~Ber 0.1 and 𝐵!~Ber(0.5).

39

If you can identify common RVs, just look up statistics instead of re-deriving from definitions.



Think
Slide 41 has a matching question to go over 
by yourself. We’ll go over it together 
afterwards.

Post any clarifications here!
https://us.edstem.org/courses/109/discussion/39075

Think by yourself: 2 min

40

🤔(by yourself)

https://us.edstem.org/courses/109/discussion/39075
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Visualizing Binomial PMFs

41

0

0.1

0.2

0.3

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0 1 2 3 4 5 6 7 8 9 10

𝑋~Bin(𝑛, 𝑝) 𝑝 𝑖 = 𝑛
𝑘 𝑝# 1 − 𝑝 $%#

𝐸 𝑋 = 𝑛𝑝

C. D.
Match the distribution 
to the graph:
1. Bin 10,0.5
2. Bin 10,0.3
3. Bin 10,0.7
4. Bin 5,0.5

0

0.1

0.2

0.3

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0 1 2 3 4 5 6 7 8 9 10

A. B.

𝑘
𝑃
𝑋
=
𝑘

𝑘

𝑃
𝑋
=
𝑘

𝑘

𝑃
𝑋
=
𝑘

𝑘

𝑃
𝑋
=
𝑘

🤔(by yourself)
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Visualizing Binomial PMFs

42

Match the distribution 
to the graph:
1. Bin 10,0.5
2. Bin 10,0.3
3. Bin 10,0.7
4. Bin 5,0.5

0
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0 1 2 3 4 5 6 7 8 9 10
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0.1

0.2

0.3

0 1 2 3 4 5 6 7 8 9 10

C. D.
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0.1

0.2

0.3

0 1 2 3 4 5 6 7 8 9 10
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0.1

0.2

0.3

0 1 2 3 4 5 6 7 8 9 10

A. B.

𝑘
𝑃
𝑋
=
𝑘

𝑘

𝑃
𝑋
=
𝑘

𝑘

𝑃
𝑋
=
𝑘

𝑘

𝑃
𝑋
=
𝑘

𝑋~Bin(𝑛, 𝑝) 𝑝 𝑖 = 𝑛
𝑘 𝑝# 1 − 𝑝 $%#

𝐸 𝑋 = 𝑛𝑝
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Binomial RV is sum of Bernoulli RVs

Bernoulli
• 𝑋~Ber(𝑝)

Binomial
• 𝑌~Bin 𝑛, 𝑝
• The sum of 𝑛 independent 

Bernoulli RVs

43

𝑌 =+
+)&

*

𝑋+ , 𝑋+ ~Ber(𝑝)

+

+

+

Review
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Galton Board

44

0 1 2 3 4 5

http://web.stanford.edu/class/cs109/
demos/galton.html

http://web.stanford.edu/class/cs109/demos/galton.html


Think
Slide 46 has a question to go over by 
yourself.

Post any clarifications here!
https://us.edstem.org/courses/109/discussion/39075

Think by yourself: 2 min

45

🤔(by yourself)

https://us.edstem.org/courses/109/discussion/39075
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Galton Board

46

When a marble hits a pin, it has an equal 
chance of going left or right.
Let 𝐵 = the bucket index a ball drops into.
What is the distribution of 𝐵?

0 1 2 3 4 5

𝑛 = 5

𝑋~Bin(𝑛, 𝑝) 𝑝 𝑘 = 𝑛
𝑘 𝑝# 1 − 𝑝 $%#

🤔(by yourself)

(Interpret: If 𝐵 is a common 
random variable, report it, 

otherwise report PMF)
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When a marble hits a pin, it has an equal 
chance of going left or right.
Let 𝐵 = the bucket index a ball drops into.
What is the distribution of 𝐵?

0 1 2 3 4 5

𝑛 = 5

𝑋~Bin(𝑛, 𝑝) 𝑝 𝑘 = 𝑛
𝑘 𝑝# 1 − 𝑝 $%#

• Each pin is an independent trial
• One decision made for level 𝑖 = 1, 2, . . , 5
• Consider a Bernoulli RV with success 𝑅+ if 

ball went right on level 𝑖
• Bucket index 𝐵 = # times ball went right

𝐵~Bin(𝑛 = 5, 𝑝 = 0.5)
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When a marble hits a pin, it has an equal 
chance of going left or right.
Let 𝐵 = the bucket index a ball drops into.
𝐵 is distributed as a Binomial RV,

𝐵~Bin(𝑛 = 5, 𝑝 = 0.5)

0 1 2 3 4 5

𝑛 = 5 Calculate the probability of a ball landing in 
bucket 𝑘.

𝑃 𝐵 = 0 = 5
0 0.51 ≈ 0.03

𝑃 𝐵 = 1 = 5
1 0.51 ≈ 0.16

𝑃 𝐵 = 2 = 5
2 0.51 ≈ 0.31

𝑋~Bin(𝑛, 𝑝) 𝑝 𝑘 = 𝑛
𝑘 𝑝# 1 − 𝑝 $%#
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Let 𝐵 = the bucket index a ball drops into.
𝐵 is distributed as a Binomial RV,

𝐵~Bin(𝑛 = 5, 𝑝 = 0.5)

0 1 2 3 4 5

𝑛 = 5 Calculate the probability of a ball landing in 
bucket 𝑘.

𝑋~Bin(𝑛, 𝑝) 𝑝 𝑘 = 𝑛
𝑘 𝑝# 1 − 𝑝 $%#

PMF of Binomial RV!



Interlude for 
jokes/announcements
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Announcements
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JOKE HERE
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Interesting probability news
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TikTok
Recommendation 
Algorithm Optimizations

https://www.lesswrong.com
/posts/sXqAFdf3a5sA3HM
CH/tiktok-recommendation-
algorithm-optimizations

https://www.lesswrong.com/posts/sXqAFdf3a5sA3HMCH/tiktok-recommendation-algorithm-optimizations
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NBA Finals (RIP) and genetics
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Think, 
then
Breakout 
Rooms

Check out the questions on the next slide 
(Slide 55). Post any clarifications here!

https://us.edstem.org/courses/109/discussion/39075

By yourself: 2 min

Breakout rooms: 5 min. 

54

🤔

https://us.edstem.org/courses/109/discussion/39075
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NBA Finals and genetics
1. The Golden State Warriors are going to play the Toronto Raptors in a

7-game series during the 2019 NBA finals.
• The Warriors have a probability of 58% of winning each game, independently.
• A team wins the series if they win at least 4 games (we play all 7 games).

What is P(Warriors winning)?
2. Each person has 2 genes per trait (e.g., eye color).
• Child receives 1 gene (equally likely) from each parent
• Brown is “dominant”, blue is ”recessive”:
• Child has brown eyes if either (or both) genes are brown
• Blue eyes only if both genes are blue.

• Parents each have 1 brown and 1 blue gene.
A family has 4 children. What is P(3 children with brown eyes)?

55

🤔
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NBA Finals
The Golden State Warriors are going to play the Toronto
Raptors in a 7-game series during the 2019 NBA finals.
• The Warriors have a probability of 58% of

winning each game, independently.
• A team wins the series if they win at least 4 games

(we play all 7 games).

What is P(Warriors winning)?

56

1. Define events/ 
RVs & state goal

𝑋: # games Warriors win
𝑋~Bin(7, 0.58)

Want: 

Desired probability? (select all that apply)
A. 𝑃 𝑋 > 4
B. 𝑃 𝑋 ≥ 4
C. 𝑃 𝑋 > 3
D. 1 − 𝑃 𝑋 ≤ 3
E. 1 − 𝑃 𝑋 < 3

𝑋~Bin(𝑛, 𝑝) 𝑝 𝑘 = 𝑛
𝑘 𝑝# 1 − 𝑝 $%#
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Desired probability? (select all that apply)
A. 𝑃 𝑋 > 4
B. 𝑃 𝑋 ≥ 4
C. 𝑃 𝑋 > 3
D. 1 − 𝑃 𝑋 ≤ 3
E. 1 − 𝑃 𝑋 < 3

NBA Finals
The Golden State Warriors are going to play the Toronto
Raptors in a 7-game series during the 2019 NBA finals.
• The Warriors have a probability of 58% of

winning each game, independently.
• A team wins the series if they win at least 4 games

(we play all 7 games).

What is P(Warriors winning)?
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1. Define events/ 
RVs & state goal

𝑋: # games Warriors win
𝑋~Bin(7, 0.58)

Want: 

𝑋~Bin(𝑛, 𝑝) 𝑝 𝑘 = 𝑛
𝑘 𝑝# 1 − 𝑝 $%#
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NBA Finals
The Golden State Warriors are going to play the Toronto Raptors in a 7-
game series during the 2019 NBA finals.
• The Warriors have a probability of 58% of

winning each game, independently.
• A team wins the series if they win at least 4 games

(we play all 7 games).

What is P(Warriors winning)?

58

Cool Algebra/Probability Fact: this is identical to the probability 
of winning if we define winning = first to win 4 games

1. Define events/ 
RVs & state goal

2. Solve

𝑋: # games Warriors win
𝑋~Bin(7, 0.58)

Want: 𝑃 𝑋 ≥ 4

𝑃 𝑋 ≥ 4 = +
()2

3

𝑃 𝑋 = 𝑘 = +
()2

3
7
𝑘 0.58( 0.42 34(

𝑋~Bin(𝑛, 𝑝) 𝑝 𝑘 = 𝑛
𝑘 𝑝# 1 − 𝑝 $%#
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Genetic inheritance
Each person has 2 genes per trait (e.g., eye color).
• Child receives 1 gene (equally likely) from each parent
• Brown is “dominant”, blue is ”recessive”:
• Child has brown eyes if either (or both) genes are brown
• Blue eyes only if both genes are blue.

• Parents each have 1 brown and 1 blue gene.
A family has 4 children. What is P(3 children with brown eyes)?

59

𝑋~Bin(𝑛, 𝑝) 𝑝 𝑘 = 𝑛
𝑘 𝑝# 1 − 𝑝 $%#

A. Product of 4 independent events
B. Probability tree
C. Bernoulli, success 𝑝 = 3 children 

with brown eyes
D. Binomial, 𝑛 = 3 trials, success 

𝑝 = brown-eyed child
E. Binomial, 𝑛 = 4 trials, success 

𝑝 = brown-eyed child

Subset 
of ideas:
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Each person has 2 genes per trait (e.g., eye color).
• Child receives 1 gene (equally likely) from each parent
• Brown is “dominant”, blue is ”recessive”:
• Child has brown eyes if either (or both) genes are brown
• Blue eyes only if both genes are blue.

• Parents each have 1 brown and 1 blue gene.
A family has 4 children. What is P(3 children with brown eyes)?
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Genetic inheritance

1. Define events/ 
RVs & state goal

3. Solve

𝑋: # brown-eyed children,
𝑋~Bin(4, 𝑝)

𝑝: 𝑃 brown−eyed child

Want: 𝑃 𝑋 = 3

2. Identify known
probabilities

𝑋~Bin(𝑛, 𝑝) 𝑝 𝑘 = 𝑛
𝑘 𝑝# 1 − 𝑝 $%#
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See you next time
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