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Average annual weather
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Average annual weather

Stanford, CA
Elhigh] = 68°F

Stanford high temps

Washington, DC
Elhigh] = 67°F

Washington high temps
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Normalized histograms are approximations of PMFs.
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Variance = “spread”

Consider the following three distributions (PMFs):
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- Expectation:  E[X] = 3 for all distributions
* But the “spread” in the distributions is different!
- Variance, Var(X) : a formal quantification of “spread”
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Variance

The variance of a random variable X with mean E[X]| = u is

Var(X) = E[(X — p)?]

* Also written as: E[(X — E[X])?]
* Note: Var(X) =0
« Other names: 2" central moment, or square of the standard deviation

Var(X) Units of X?
def standard deviation ~ SD(X) = /Var(X) Units of X
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. _ _ 27 Variance
Variance of Stanford weather Var(X) = El(x = EIXDT] - oy

Stanford, CA
Elhigh] = 68°F
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Variance E[(X — u)?] = 39 (°F)2
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35 50 65 80 90 Standard deviation =06.2°F
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Var(X) = E[(X — E[X])?] Variance

Comparing variance of X
Stanford, CA Washington, DC
Elhigh] = 68°F Elhigh] = 67°F
Stanford high temps Washington high temps
0.4 - 0.4 -
68°F 67°F
—~ 0.3 - —~ 0.3 -
= =
I 0.2 - I 0.2 -
= =
A, 0.1 - A, 0.1 A
0 - —1 0
35 50 65 80 90 35 50 65 80 90
Var(X) = 39 (°F)? Var(X) = 248 (°F)?
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Properties of variance

Definition Var(X) = E[(X — E[X])?] Units of X2
def standard deviation SD(X) = /Var(X) Units of X
Property 1 Var(X) = E[X?] —(E[X])?

Property 2 Var(aX + b) = a*Var(X)

* Property 1 is often easier to compute than the definition
* Unlike expectation, variance is not linear
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Properties of variance

Property 1 Var(X) = E[X?] —(E[X])?

* Property 1 is often easier to compute than the definition
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. . Var(X) = E[(X — E[X])?] Variance
Computing variance, a proof — E[X2] —(E[X])? Of X

Var(X) = E[(X — E[X])?] = E[(X — w)?] Let E[X] = u

= ) (=)

= ) (7 = 2ux + pp)

= > ()~ 2u Y @) + 12 Y p@)

Everyone, %

please _ rryv21 _ 2
welcome the ELX"] = 2uE[X] + p” 1
second = F[X2] — 2[12 + ,le
moment! ] ]
— EXZ _ ‘uz

= E[X?] - (E[X])?
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. . . Var(X) = E[(X — E[X])?] Variance
Variance of a 6-sided die — E[X2] —(E[X])? Of X

Let Y = outcome of a single die roll. Recall E[Y] =7/2.
Calculate the variance of Y. “

1. Approach #1: Definition 2. Approach #2: A property
, . ) , . ) 'Z“d momem 1
Var(y) = 8(1 _E) +g(2 _E) E[Y?] = —[1? + 22 + 3% + 4° + 5 + 67]
+g(33) w53
6 2 5 6 2 5
+3(6-3) 53
6 2 6 2 Var(Y) = 91/6 — (7/2)?

I
@0)
ol

~
—_
N

= 35/12
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Properties of variance

Property 2 Var(aX + b) = a*Var(X)

* Unlike expectation, variance is not linear
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Property 2: A proof

Property 2 Var(aX + b) = a*Var(X)

Proof: Var(aX + b)

= E[(aX + b)?] — (E[aX + b])? Property 1

= E[a’X? + 2abX + b?] — (aE[X] + b)? } Factoring/
) 2 2 (A2 2 2 Linearity of
= a“E[X*] + 2abE|[X] + b* — (a*(E[X])* + 2abE[X] + b*) Expectation

— PEX?] - a?(E[X])?
= a*(E[X*] — (E[XD?)
= a*Var(X) Property 1
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Bernoulli RV




Jacob Bernoulli

Jacob Bernoulli (1654-1705), also known as “James”, was a Swiss
mathematician

One of many mathematicians in Bernoulli family
The Bernoulli Random Variable is named for him
My academic greatl4 grandfather
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Bernoulli Random Variable

Consider an experiment with two outcomes: “success” and “failure.”

def A Bernoulli random variable X maps “success” to 1 and “failure” to O.
Other names: indicator random variable, boolean random variable

X~Ber(p) PX=0)=p(0)=1-p
Expectation E[X] =p
Support: {0,1} Variance Var(X) = p(1 — p)
Examples:
Coin flip
Random binary digit Remember this nice property of

Whether a disk drive crashed expectation. It will come back!
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Defining Bernoulli RVs

X~Ber(p) px(1)=p
E[X]=p px(0)=1-p

Run a program

¢ Crashes w.p. p
* Worksw.p.1—p

Let X: 1 if crash

X~Ber(p)
PX=1)=p
PX=0)=1-p

Serve an ad.

* User clicks w.p. 0.2
* Ignores otherwise

Let X: 1 if clicked

X~Ber(_)
PX=1)= __
PX=0)= __

Lisa Yan, CS109, 2020

Roll two dice.

* Success: roll two 6’s
* Failure: anything else

t'l

Let X : 1 if success

X~Ber(_)

Exl=_ (&)
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Defining Bernoulli RVs

X~Ber(p) px(1)=p
E[X]=p px(0)=1-p

Run a program

¢ Crashes w.p. p
* Worksw.p.1—p

Let X: 1 if crash

X~Ber(p)
PX=1)=p
PX=0)=1-p

Serve an ad.

* User clicks w.p. 0.2
* Ignores otherwise

Let X: 1 if clicked

X~Ber(_)
PX=1)= __
PX=0)= __

Lisa Yan, CS109, 2020

Roll two dice.

* Success: roll two 6’s
* Failure: anything else

t'l

Let X : 1 if success
X~Ber(__)

E|X] =

Stanford University 21
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Binomial Random Variable

Consider an experiment: n independent trials of Ber(p) random variables.
def A Binomial random variable X is the number of successes in n trials.

PMF k=01,..,n:
n

X~Bin(n, p) P(X =k) =p(k) = ;) p*(1 — p)"*
Expectation E[X] = np
Support: {0,1, ...,n} Variance Var(X) = np(l—p)

Examples:
# heads in n coin flips
# of 1's in randomly generated length n bit string

# of disk drives crashed in 1000 computer cluster
(assuming disks crash independently)
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Reiterating notation

1. The random
variable

X ~ Bin(n, p)
3. Binomial @h param@

2. is distributed

dasS da

The parameters of a Binomial random variable:
* n: number of independent trials

* p: probability of success on each trial

Lisa Yan, C$109, 2020 Stanford University 25




Reiterating notation

X ~Bin(n,p)

If X is a binomial with parameters n and p, the PMF of X is

n
PX=k)=(,)p“(Q—-p)""~
k
\ } \ }
\ |
Probability that X Probability Mass Function for a Binomial

takes on the value k

Lisa Yan, C$109, 2020 Stanford University 26




Three coin flips X~Bin(n,p) p(k) = () p*(1 — p)"*

Three fair (“heads” with p = 0.5) coins are flipped.
X is number of heads

X~Bin(3,0.5)
Compute the following event probabilities:
P(X =0)
P(X=1)
P(X =2)
P(X = 3)
P(X =7) \?;9

P(eve nt) Lisa Yan, C$109, 2020 Stanford University 27




Three coin flips X~Bin(n,p) p(k) = () p*(L — p)"*

Three fair (“heads” with p = 0.5) coins are flipped.
X is number of heads

X~Bin(3,0.5)
Compute the following event probabigties:

P(x=0) =p0) = (0) p°(1—p)® =<

PX=1) =p) = (i) p(1-p)? =

PX=2) =p(2) = (3) p?(1—p)t = g Extra math note:
2 By Binomial Theorem,
3 1

P(X =3 = p(3 — 3(1 =)0 = = We can prove

( ) =p@3) (3)10 (1-p)° = n PO = k) = 1
PX=7) =p@) =0

P(eve nt) PMF Lisa Yan, C$109, 2020 Stanford University 28




Binomial Random Variable

n independent trials of Ber(p) random variables
X is the number of successes in n trials

Lisa Yan, C$109, 2020 Stanford University 29




Binomial RV is sum of Bernoulli RVs

Bernoulli
X~Ber(p)

Binomial
Y~Bin(n,p)

The sum of n independent
Bernoulli RVs

n
Y =2Xi, Xi ~Ber(p)
=1

Ber(p) = Bin(1, p)

Lisa Yan, CS109, 2020 Stanford University 30




Binomial Random Variable

n independent trials of Ber(p) random variables
X is the number of successes in n trials.

Expectation E[X] = np

Proof:

Lisa Yan, C$109, 2020 Stanford University 31




Binomial Random Variable

n independent trials of Ber(p) random variables
X is the number of successes in n trials

Variance Var(X) = np(1 —p) %
We'll prove

this later in
the course

Lisa Yan, C$109, 2020 Stanford University 32




No, give me the variance proof right now

To simplify the algebra a bit,letg =1—p,sop+g= 1.

So:
u n\ & ok
E(X?) = Z 'S (k>Pl‘ q"* Definition of Binomial Distribution: p + g = 1
k>0
g n—=1\ ¢ . ] ) - n n—1
= 2 kn pq Factors of Binomial Coefficient: k =n
k=0 k-1 k k-1
a n—1
= np Z k(k l)pk'lq("_”—[k_“ Change of limit: term is zero when k — 1 = 0
k=1
=”PZ(J+1)< )P’qm’ putingj =k —1,m=n—1
j=0
m
= (Z J( )p’q”’"’ + Z ( ) ) splitting sum up into two
Jj=0 Jj=0
u m— m m-—1
= np Z m( . )p’q’" I+ Z ( )p’q’" J Factors of Binomial Coefficienl:j( ) = m( ) )
j=o N7 j=0 J Jj-1
= np((n - Dp Z < )P’ tgimhmUmh 4 2 (j) "'”) Change of limit: term is zero when j — 1 = 0
j=1 j=0
=np((n—Dpp+ ™" +(p+9") Binomial Theorem
=np((n—1p+1) asp+qg=1
= n’p* +np(1 - p) by algebra
Then:

var (X) = E (X?) = (E(X))?
= np(l —p)+ nzp2 - (np)2 Expectation of Binomial Distribution: E (X) = np

= np(1 —p)

proofwiki.org
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Reminders: Lecture with (g)Zoom

* Turn on your camera if you are able, mute your mic in the big room
* Virtual backgrounds are encouraged (classroom-appropriate)

Breakout Rooms for meeting your classmates
> Just like sitting next to someone new
> This experience is optional: You should be comfortable leaving the room at any time.

We will use Ed instead of Zoom chat

Today’s discussion thread: https://us.edstem.org/courses/109/discussion/390/75

Lisa Yan, CS109, 2020 Stanford University 35



https://us.edstem.org/courses/109/discussion/39075

Our first common RVs Review

1. The random
variable

Example: Heads in one coin flip,
X Ber(p) P(heads) = 0.8 =p

3. Bernoulli Eﬁ param@

E le: # head 40 fli
Y Bln(n p) xample: O.e8a spln coin flips,

P(heads) =

2. is distributed

asS da

otherwise |dentify PMF, or
identify as a function of an
existing random variable

Lisa Yan, CS109, 2020 Stanford University 36



Check out the questions on the next slide
(Slide 38). Post any clarifications here!

B I'ea1<0ut https://us.edstem.org/courses/109/discussion/39075

Rooms

Breakout rooms: 5 min. Introduce yourself!

37
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Statistics: Expectation and variance

Let X = the outcome of a 4-sided
die roll. What is E[X]?

Let Y = the sum of three rolls of a
4-sided die. What is E[Y]?

Let Z = # of tails on 10 flips of a
biased coin (w.p. 0.4 of heads). What is E|[Z]?

What is Var(Z)?

Compare the variances of
B,;~Ber(0.1) and B,~Ber(0.5).

Lisa Yan, CS109, 2020

)
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Statistics: Expectation and variance

Let X = the outcome of a 4-sided
die roll. What is E[X]?

Let Y = the sum of three rolls of a
4-sided die. What is E[Y]?

Let Z = # of tails on 10 flips of a
biased coin (w.p. 0.3 of heads). What is E|[Z]?

What is Var(Z)?

Compare the variances of
B,;~Ber(0.1) and B,~Ber(0.5).

If you can identify common RVSs, just look up statistics instead of re-deriving from definitions.

Lisa Yan, CS109, 2020 Stanford University 39




Slide 41 has a matching question to go over

. by yourself. We’ll go over it together
Thlnk afterwards.

Post any clarifications here!

https://us.edstem.org/courses/109/discussion/39075

Think by yourself: 2 min

(b @- If)

A

40


https://us.edstem.org/courses/109/discussion/39075

E[X] =np

Visualizing Binomial PMFs X~Bin(n,p)  p() = () k(1 - p)

P(X = k)

012 3 456 7 8 910

k
C.

Match the distribution =~

to the graph: :L

1. Bin(10,0.5) <

2. Bin(10,0.3) 012345678910
3. Bin(10,0.7) k i
4. Bin(5,0.5) (DY RS
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E[X] =np

Visualizing Binomial PMFs X~Bin(n,p)  p() = () k(1 - p)

P(X = k)

012 3 456 7 8 910

k
C.
Match the distribution =~
to the graph: :L
1. Bin(10,0.5) <
2. Bin(10,0.3) 012345678910
3. Bin(10,0.7) k
4. Bin(5,0.5)
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Binomial RV is sum of Bernoulli RVs

Bernoulli
X~Ber(p)

Binomial
Y~Bin(n,p)

The sum of n independent
Bernoulli RVs

n
Y =2Xi, Xi ~Ber(p)
=1

Lisa Yan, CS109, 2020 Stanford University 43




Galton Board

O

http://web.stanford.edu/class/cs109/
demos/galton.html

0] 1 2 3 4 5
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http://web.stanford.edu/class/cs109/demos/galton.html

Slide 46 has a question to go over by

Think yourself.

Post any clarifications here!

https://us.edstem.org/courses/109/discussion/39075

Think by yourself: 2 min

(b @ I

A

45
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Galton Board X~Bin(,p) p(k) = () p*(1 —p)"~*

O When a marble hits a pin, it has an equal
chance of going left or right.
Let B = the bucket index a ball drops into.
What is the distribution of B?
n=>5 (Interpret: If B is a common
random variable, report it,
otherwise report PMF)
o 1 2 3 4 5 bN i
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Galton Board X~Bin(n,p) p(k) = (7)p*@ - p)n*

When a marble hits a pin, it has an equal
chance of going left or right.

Let B = the bucket index a ball drops into.
What is the distribution of B?

Each pin is an independent trial

One decision made forleveli = 1,2,..,5
Consider a Bernoulli RV with success R; if
ball went right on level i

Bucket index B = # times ball went right

B~Bin(n = 5,p = 0.5)
0] 1 2 3 4 5

Lisa Yan, CS109, 2020 Stanford University 47




Galton Board X~Bin(n,p) p(k) = (7)p*@ - p)n*

When a marble hits a pin, it has an equal

chance of going left or right.

Let B = the bucket index a ball drops into.

B is distributed as a Binomial RV,
B~Bin(n = 5,p = 0.5)

n=5 Calculate the probability of a ball landing in
bucket k.
P(B = 0) = ((5)) 0.55 ~ 0.03
P(B=1) = (i) 0.55 ~ 0.16
. P(B =2)= (g) 0.55 ~ 0.31

0] 1 2 3 4 5
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Galton Board X~Bin(p) p(k) = (i) p @ —p)"
A O Let B = the bucket index a ball drops into.
B is distributed as a Binomial RV,
B~Bin(n = 5,p = 0.5)
=5 Calculate the probability of a ball landing in
bucket k.
\ 4
} PMF of Binomial RV!
0 1 5
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Interlude for
jokes/announcements




Announcements

JOKE HERE

Lisa Yan, C$109, 2020 Stanford University 51




Interesting probability news

TikTok
Recommendation
Algorithm Optimizations Empirical Evidence

Looking at my own videos, a simple power law distribution fits reasonably well. (These
numbers are using the model P(Views > 10%) = 0.3%72.)

https://www.lesswrong.com

/posts/sXaAFdf3a5sA3HM \I:li:;not;er of sizrec:sntage of Eizzzted percentage of

CH/tiktok-recommendation- |,4g 12 100.00% 100 00%

algorithm-optimizations 100 11 91 67% 100 00%
>1,000 4 33.33% 30.00%
>10,000 1 8.33% 9.00%
>100.000 1 8.33% 2.70%
>1,000,000 0 0.00% 0.81%
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NBA Finals (RIP) and genetlcs

Lisa Yan, C$109, 2020 Stanford University 53




Think,
then
Breakout

Rooms

Check out the questions on the next slide
(Slide 55). Post any clarifications here!

https://us.edstem.org/courses/109/discussion/39075

By yourself: 2 min

Breakout rooms: 5 min.

54
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NBA Finals and genetics

The Golden State Warriors are going to play the Toronto Raptors in a
7-game series during the 2019 NBA finals.

The Warriors have a probability of 58% of winning each game, independently.

A team wins the series if they win at least 4 games (we play all 7 games).

What is P(Warriors winning)?

Each person has 2 genes per trait (e.g., eye color).
Child receives 1 gene (equally likely) from each parent
Brown is “dominant”, blue is "recessive”:

Child has brown eyes if either (or both) genes are brown

Blue eyes only if both genes are blue.
Parents each have 1 brown and 1 blue gene.

A family has 4 children. What is P(3 children with brown eyes)? ok

Lisa Yan, CS109, 2020 Stanford University 55



NBA Finals X~Bin(n,p) p(k) = (7)p*Q —p)n*

The Golden State Warriors are going to play the Toronto
Raptors in a 7-game series during the 2019 NBA finals.
* The Warriors have a probability of 58% of
winning each game, independently.

* Ateam wins the series if they win at least 4 games
(we play all 7 games).

What is P(Warriors winning)?

1. Define events/ — Desired probability? (select all that apply)
RVs & state goal A, P(X > 4)
B. P(X =4)

X: # games Warriors win

X~Bin(7,0.58) C. PX >3)
D. 1—-P(X <3)
Want: £ 1—-P(X<3)

Lisa Yan, CS109, 2020 Stanford University 56




NBA Finals X~Bin(n,p) p(k) = (7)p*Q —p)n*

The Golden State Warriors are going to play the Toronto
Raptors in a 7-game series during the 2019 NBA finals.
* The Warriors have a probability of 58% of
winning each game, independently.

* Ateam wins the series if they win at least 4 games
(we play all 7 games).

What is P(Warriors winning)?

1. Define events/ — Desired probability? (select all that apply)
RVs & state goal A. P(X >4)
X: # games Warriors win g P(X = 4)
X~Bin(7,0.58) o) P(X >3)
D) 1—-P(X <3)
Want:

. 1—-P(X <3)
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X~Bin(n,p) p(k) = () pk(1 —p)"*

NBA Finals

The Golden State Warriors are going to play the Toronto
game series during the 2019 NBA finals.

* The Warriors have a probability of 58% of
winning each game, independently.

* Ateam wins the series if they win at least 4 games
(we play all 7 games).

What is P(Warriors winning)?

2. Solve
7 7
7 K 7—k
P(X = 4) = 2 P(X = k) = 2 (k) 0.58%(0.42)
k=4 k=4
Want: P(X = 4) Cool Algebra/Probability Fact: this is identical to the probability

of winning if we define winning = first to win 4 games
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o« e . 5 _(n n-
Genetic inheritance X~Bin(np) p(k) = (;)p*@ —p)"

Each person has 2 genes per trait (e.g., eye color).
Child receives 1 gene (equally likely) from each parent
Brown is “dominant”, blue is "recessive”:

Child has brown eyes if either (or both) genes are brown
Blue eyes only if both genes are blue.

Parents each have 1 brown and 1 blue gene.

A family has 4 children. What is P(3 children with brown eyes)?
Subset Product of 4 independent events
of ideas: Probability tree

Bernoulli, success p = 3 children
with brown eyes

Binomial, n = 3 trials, success

p = brown-eyed child

Binomial, n = 4 trials, success

p = brown-eyed child
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o« e . 5 _(n n-
Genetic inheritance X~Bin(,p) p(k) = (;)p @ —p)"

Each person has 2 genes per trait (e.g., eye color).
*  Child receives 1 gene (equally likely) from each parent

*  Brown is “dominant”, blue is "recessive”:
*  Child has brown eyes if either (or both) genes are brown

* Blue eyes only if both genes are blue.
* Parents each have 1 brown and 1 blue gene.

A family has 4 children. What is P(3 children with brown eyes)?

1. Define events/ 2. ldentify known 3. Solve
RVs & state goal probabilities

X: # brown-eyed children,
X~Bin(4,p)

p: P(brown—eyed child)
Want: P(X = 3)
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See you next time

Freedom
NEXT EXIT
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