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Before we start

A n
The natural exponent e: lim (1 — —) = ¢4

n—00 n

https://en.wikipedia.org/wiki/E_(mathematical_constant)

Jacob Bernoulli
while studying
compound interest
in 1683
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Algorithmic ride sharing

I
-

CAR 9

SHARING

1| o "
b il ,'LHQM&O o ) PROFESSORVILLE,
) & - 2 1/3\_3_\ -
e o oy €

& °°

Probability of k requests from this area in the next 1 minute?

Suppose we know: On average, A = 5 requests per minute
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Algorithmic ride sharing, approximately

Probability of k requests from this area in the next 1 minute?

On average, A = 5 requests per minute

Break a minute down into 60 seconds:

oO/,0|1 0|1 Oj0|]0]0] 1
1 2 3 4 5 60
At each second: X ~Bin(n = 60, p = 5/60)

Independent trial
You get a request (1) or you don’t (O).

P(X—k)—(60)(5)k(1 5)n—k
Let X = # of requests in minute. 7 \k/\60 60

E|IX]=1=5 (7 {/ But what if there are two requests

0
\ .
in the same second?
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Algorithmic ride sharing, approximately

Probability of k requests from this area in the next 1 minute?

On average, A = 5 requests per minute

Break a minute down into 60,000 milliseconds:

1 60,000
At each millisecond: X ~ Bin(n = 60000, p = 1/n)
Independent trial
You get a request (1) or you don’t (O). ke

n\ (A A
e 70 = () ()
Let X = # of requests in minute. n n

E|IX]=1=5 \.? ?D But what if there are two requests

in the same millisecond?
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Algorithmic ride sharing, approximately

Probability of k requests from this area in the next 1 minute?

On average, A = 5 requests per minute

Break a minute down into infinitely small buckets:

OMG so small
1 0o
For each time bucket: X ~Bin(n, p = A/n)
Independent trial ' iy .
You get a request (1) or you don’t (0). A AN
g q (1) .y | (0) P(X = k) = lim (Z)(_) ( __)
Let X = # of requests in minute. n—>oo n n

E [X ] =A=5 Who wants to see some cool math?
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Binomial in the limit

A n
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n—oo n
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Algorithmic ride sharing
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Probability of k requests from this area in the next 1 minute?
On average, A = 5 requests per minute
/1k

e

P(X =k) =
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Simeon-Denis Poisson

French mathematician (1781 - 1840)
Published his first paper at age 18

Professor at age 21

Published over 300 papers

“Life is only good for two things: doing mathematics and teaching it.”

Lisa Yan, CS109, 2020
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Poisson Random Variable

Consider an experiment that lasts a fixed interval of time.

def A Poisson random variable X is the number of successes over the
experiment duration.

PMF /1/1k
X~Poi(4) P(X=k)=e ol
Expectation E[X] = A
Support: {0,1,2, ... } Variance Var(X) = 1
Examples:
# earthquakes per year
# server hits per second Yes, expectation == variance

# of emails per day for Poisson RV! More later.
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X~Poi(4 Ak
Earthquakes E[X]OL( A) p(k) = e

There are an average of 2.79 major earthquakes in the world each year.
What is the probability of 3 major earthquakes happening next year?

1. Define RVs >3
0.25
0.2 A

0.15 A

P(X = k)

2. Solve

0.1 -

0.05 -

O 1 2 3 4 5 o6 7 8 9 10
Number of earthquakes, k
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Are earthquakes really Poissonian?

Bulletin of the
Seismological Society of America

Vol. 64 October 1974 No. 5

IS THE SEQUENCE OF EARTHQUAKES IN SOUTHERN CALIFORNIA,
WITH AFTERSHOCKS REMOVED, POISSONIAN?

By J. K. GARDNER and L. KNOPOFF

ABSTRACT

Yes.

Lisa Yan, CS109, 2020 Stanford University 14
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Poisson
Paradigm




DNA

Lisa Yan, CS109, 2020

All the movies, images,
emails and other digital
data from more than
600 smartphones
(10,000 GB) can be
stored in the faint pink
smear of DNA at the end
of this test tube.

What is the probability

that DNA storage stays
uncorrupted?

Stanford University 16



DNA

What is the probability that DNA storage stays uncorrupted?
In DNA (and real networks), we store large strings.
Let string length be long, e.g., n ~ 10*
Probability of corruption of each base pair is very small, e.g., p = 107°
Let X = # of corruptions.

What is P(DNA storage is uncorrupted) = P(X = 0)?

Approach 1: Approach 2:
X~Bin(n = 10%,p = 107°) X~Poi(A =10%*-10"° = 0.01)
A% 0.01°
PX=k) =, )p*—p)"* P(X =k)=ehm = e001
| _(10%\ 1 1=6:071 _ 10=6310%—0 — p—001
unwieldy! ! —( 0 )10 (1 10 ) a good

~ (0.99049829 ~ (0.99049834 approximation!
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The Poisson Paradigm, part 1 i?([X?OI:();l) E[YE?n:(Z;; )
Poisson approximates Binomial 0.3 1
when n is large, p is small, and 0.25 - " Bin(10.9-9)
A = np is “moderate.” . = Bin(100,6.09)
< - Bin(1000,0.003)
Different interpretations of w 0157 ro
“moderate”: ~ 01 - -
* n>20andp < 0.05 0.05 1 I|
*n>100and p < 0.1 O_JIH, ] {110 1 LR |IH.IH
o 1 2 3 4 5 o6 7 8 9 10

Poisson is Binomial in the limit;
* A =np,wheren - co,p - 0

k

Poisson can approximate Binomial.

Yan, CS109, 2020 Stanford University 18



Poisson Random Variable

Expectation E[X] = A
Variance Var(X) = 1

Time to show intuition for why
expectation == variance!

Lisa Yan, C$109, 2020 Stanford University 19




Properties of Poi(4) with the Poisson paradigm

Recall the Binomial:

Y"’Bin(n, p) Expectation E[Y] = np

Variance Var(Y) = np(1 —p)

Consider X~Poi(4), where A = np (n = oo,p — 0):

X ~Poi(A Expectation E[X]| = A
( ) Variance Var(X) = A

Proof:
ElX]=np=1
Var(X) =np(1—p) > A(1-0) =1

Lisa Yan, C$109, 2020 Stanford University 20




A Real License Plate Seen at Stanford

No, it's not mine...
but | kind of wish it was.

Lisa Yan, C$109, 2020 Stanford University




Poisson Paradigm, part 2

Poisson can still provide a good approximation of the Binomial,
even when assumptions are “mildly” violated.

You can apply the Poisson approximation when:

"Successes” in trials are not entirely independent ==
e.g.: # entries in each bucket in large hash table. o

Probability of “Success” in each trial varies (slightly),
like a small relative change in a very small p

e.g.: Average # requests to web server/sec may fluctuate
slightly due to load on network

We won'’t explore this too much,
but | want you to know it exists.

Lisa Yan, C$109, 2020 Stanford University 22



O8c_other_discrete

Other Discrete
RVs




Grid of random variables

Number of Time until
successes SUCCesSs
One trial Ber(p) One success
{}
|_| n=1
Several . Several
trials Bin (n’ P) successes
Interval : Interval of time to
of time Pol (/1) (tomorrow) first success

Focus on understanding how and when to use RVs, not on memorizing PMFs.

Lisa Yan, C$109, 2020 Stanford University 24




Geometric RV

Consider an experiment: independent trials of Ber(p) random variables.
def A Geometric random variable X is the # of trials until the first success.

e P(X=K) = (1-p)p
XNGeO(p) Expectation E|X] = %
Support: {1, 2, ...} WEITENGE Var(X) = 1p—_2p
Examples:

Flipping a coin (P(heads) = p) until first heads appears
Generate bits with P(bit = 1) = p until first 1 generated

Lisa Yan, C$109, 2020 Stanford University 25




Negative Binomial RV

Consider an experiment: independent trials of Ber(p) random variables.

def A Negative Binomial random variable X is the # of trials until
T SUCCESSES.
(fixed lecture error)

— — k k—r r
X~NegBin(r,p) P(X—’?—(r—l)“ P)

Expectation E [X ] -

r(1
Support: {r,7 + 1, ...} HeEneE Var(X) = (p 2

Examples:
Flipping a coin until " heads appears
# of strings to hash into table until bucket 1 has r entries

Geo(p) = NegBin(1,p)

Lisa Yan, C$109, 2020 Stanford University 26




Grid of random variables

Number of Time until
Successes SUCCEeSS
One trial Ber(p) Geo(p)
0 i
S | ln=1 U r=1
evera . .
trials Bin(n,p) NegBin(r, p)
Int I :
:f fi:\éz Poi(A) (tomorrow)

Lisa Yan, CS109, 2020

One success

Several
sSuUcCcesses

Interval of time to
first success
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Catching Pokemon

Wild Pokemon are captured by throwing Pokeballs at them.

* Each ball has probability p = 0.1 of capturing the Pokemon.
* Each ball is an independent trial.

What is the probability that you catch the Pokemon on the 5t try?

1. Define events/

RVs & state goal
X~Bin(5,0.1)
X~Poi(0.5)

A
X ~some distribution B.
C. X~NegBin(5,0.1)
D
E.
F.

Want: P(X =5) X~NegBin(1,0.1)
X~Geo(0.1) G oD
None/other \Z

Y )

Lisa Yan, C$109, 2020 Stanford University 28




Catching Pokemon

Wild Pokemon are captured by throwing Pokeballs at them.

* Each ball has probability p = 0.1 of capturing the Pokemon.
* Each ball is an independent trial.

What is the probability that you catch the Pokemon on the 5t try?

1. Define events/

RVs & state goal
X~Bin(5,0.1)
X~Poi(0.5)

A
X ~some distribution B.
C. X~NegBin(5,0.1)
D
E.
F.

Want: P(X =5) X~NegBin(1,0.1)

X~Geo(0.1)
None/other

Lisa Yan, C$109, 2020 Stanford University 29




Catching Pokemon X~Geo(p) p(k) = (1-p)*"p

Wild Pokemon are captured by throwing Pokeballs at them.

* Each ball has probability p = 0.1 of capturing the Pokemon.
* Each ball is an independent trial.

What is the probability that you catch the Pokemon on the 5t try?

1. Define events/ 2. Solve
RVs & state goal

X~Geo(0.1)
Want: P(X = 5)

Lisa Yan, CS109, 2020 Stanford University 30
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LIVE

Discrete RVs

The hardest part of problem-solving is
determining what is a random)variable .

32




Grid of random variables Review

Number of
SUCCesSses
One trial Ber(p)
{}
S | Un=1
evera :
trials Bm(n' P)
Interval .
of time PO'(A)
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Grid of random variables

Review

Time until
Success

Geo(p)
ﬁ

U r=1

NegBin(r, p)

(today!)

Lisa Yan, CS109, 2020

One success

Several
sSuUcCcesses

Interval of time to
first success
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Check out the question on the next slide
(Slide 36). Post any clarifications here!

Bl'eak()Ut https://us.edstem.org/courses/109/discussion/39076
Rooms

Breakout rooms: 5 min. Introduce yourself!

35



https://us.edstem.org/courses/109/discussion/39076

. . . Choose from: C. Poi(2
Kickboxing with RVs O;Zf(pr)o ; GZ'cf (;3)

Bin(n, p) NegBin(r, p)

How would you model the following?
# of snapchats you receive in a day

# of children until the first one with
brown eyes (same parents)

Whether stock went up or down in a day

# of probability problems you try until you
get 5 correct (if you are randomly correct)

# of years in some decade with more
than 6 Atlantic hurricanes &

Lisa Yan, CS109, 2020 Stanford University 36




Choose from: Poi(A)

Kickboxing with RVs Ber(p) Geo(p)
Bin(n, NegBin(r,
How would you model the following? 2 °gBin(r,p)
# of snapchats you receive in a day Poi(4)
# of children until the first one with Geo(p) or E. NegBin(1,p)

brown eyes (same parents)
Whether stock went up or down in a day Ber(p) or B. Bin(1, p)

# of probability problems you try until you NegBin(r = 5,p)
get 5 correct (if you are randomly correct)

# of years in some decade with more Bin(n = 10,p), where
than © Atlantic hurricanes p = P(= 6 hurricanes in a year)

calculated from C. Poi(A)

Lisa Yan, CS109, 2020 Stanford University 37




CS109 Learning Goal: Use new RVs

Let’s say you are learning about
servers/networks.

You read about the M/D/1 queue:

&

WIKIPEDIA

The Free Encyclopedia

Main page
Contents

Featured content
Current events
Random article
Donate to Wikipedia

A —

T e e ~ . Wikipedia store
Waiting Service o
nteraction
Area Node Help
About Wikipedia

Community portal
Recent changes
Contact page

“The service time busy period is
distributed as a Borel with parameter
u=0.2."

Tools

What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Wikidata item
Cite this page

Print/export
Create a book
Download as PDF
Printable version

Goal: You can recognize terminology
and understand experiment setup.

o

Languages

Portugués
# Edit links

Lisa Yan, CS109, 2020

W Borel distribution - Wikipedia X

c

& en.wikipedia.org/wiki/Borel_distribution

e

B Incognito @

& Not logged in Talk Contributions Create account Login

descendants of each individual will
ultimately become extinct. The number of descendants that an individual ultimately has in that
situation is a random variable distributed according to a Borel distribution.

Article  Talk Read Edit View history | Search Wikipedia Q

Borel distribution
From Wikipedia, the free encyclopedia
ThebB:;el :.Isttr:)bt{tion |§ ? dls_,(:retet Borel distribution

robability distribution, arising in contexts -
P ) Y ) 9 Parameters u € [0,1]
including branching processes and = .

) ) Support ne€ {1,2,3,...}
queueing theory. It is named after the
o . pmf e—;m(#n)n—l
French mathematician Emile Borel. e
n!

If the number of offspring that an organism |y, 1
has is Poisson-distributed, and if the 1-u
average number of offspring of each Variance I3
organism is no bigger than 1, then the (1= p)d

Contents [hide]
Definition
Derivation and branching process interpretation
Queueing theory interpretation

Borel-Tanner distribution

1

2

3

4 Properties
5

6 References
7

External links

Definition [edit)

A discrete random variable X is said to have a Borel distribution
the probability mass function of X is given by
e Hn ([Ln)" 1

n!

[112] with parameter u < [0,1] if

P,(n)=Pr(X =n)=

forn=1,2,3 ...

Stanford University 38
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Poisson Random Variable

PMF yL:
X~Poi(1) PX =k)=e"

Expectation E[X] = A |
Support: {0,1,2, ... } Variance Var(X) = 1

In CS109, a Poisson RV X~Poi(A)most often models

* # of successes over a fixed interval of time.
A = E|X], average success/interval
Approximation of Y~Bin(n,p) where n is large and p is small.
A=E|Y]=np
Approximation of Binomial even when success
In trials are not entirely independent.

Lisa Yan, CS109, 2020 Stanford University 40
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BreakOUt Slide 42 has two questions to go over in
Rooms groups.

Post any clarifications here!

https://us.edstem.org/courses/109/discussion/39076

Breakout rooms: b mins

41



https://us.edstem.org/courses/109/discussion/39076

X~Poi(1) L
Web server load E[x] = PR =e?t

Consider requests to a web server in 1 second.

In the past, server load averages 2 hits/second.
Let X = # hits the server receives in a second. 0.1 -

What is P(X < 5)7? < 00s - “H HH‘ =8in(100,0.5)
= 0 . , , ..||I|| | |||||..

0O 10 20 30 40 50 60 70 80 90

Can the following Binomial 03 - |
RVs be approximated? < 021 H = Bin(100.0:54
o 0.1 4
E 0 ||‘ ‘hl.l : : : : : | : :
0 10 20 30 40 50 o660 70 80 90

0.3 -
. ® Bin(100,0.96)
T 0.2 -
~ - = 0.1 -
- = ||th
K\—\J 0 T T T T T T T  E— l"l T
~ 0 10 20 30 40 50 60 70 80 90
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X~Poi(1) L
1. Web server load E[x] = PR =e?t

Consider requests to a web server in 1 second.

* In the past, server load averages 2 hits/second.
* Let X = # hits the server receives in a second.

What is P(X < 5)?

1. Define RVs 2. Solve

Lisa Yan, CS109, 2020 Stanford University 43




2. Can these Binomial RVs be approximated?

oL Bin(100,0.5)
B bin ,U.
Poisson approximates Binomial . | X Poi(50)
when n is large, p is small, and ! MH H‘“
A = np is “moderate.” & 0 L
0 10 20 30 40 50 o©0 70 80 90
Different interpretations of 037 2 Bn(100.0.04)
“moderate™: < %2 Poi(4)
» n>20andp < 0.05 Lo MHM
I O : I| I I I I I I
*n>100andp < 0.1 0 10 20 30 40 50 60 70 80 90
Poisson is Binomial in the limit: . ™> T can approximate | [=Bin(100,0.96) = Poi(4)
® - I ] Bln(100,1-096)
A =np,wheren - co,p = 0 < 01 - M ‘|
0] T T T T |'|| f

O 10 20 30 40 50 60 70 80 90

Lisa Yan, CS109, 2020 Stanford University 44




Interlude for
jokes/announcements




Announcements

/Ouiz #1 \

Time frame: Thursday 4/30 12:00am-11:59pm PT
Covers: Up to end of Week 3 (including Lecture 9)
Tim’s Review session: Tuesday 4/28 12-2pm PT

https://stanford.zoom.us/|/9227554 7392
\Info and practice: https://web.stanford.edu/olass/cle9/exams/quizzes.htmy

@ N N

Python tutorial #2 Problem Set 3

When:  Friday 4/24 5:00-6:00PT Due: Monday 5/8 (after Quiz)
Recorded? yes Covers: Up to and including Lecture 11
Notes: to be posted online Out: later today

QJseful for: pset2, pset3/ k(Note: early release for quiz practice) /

Lisa Yan, CS109, 2020 Stanford University 46



https://stanford.zoom.us/j/92275547392
https://web.stanford.edu/class/cs109/exams/quizzes.html

Office Hour update

Wed 4/22

Lecture TA: Benso

11:30 - 12:30p
Lisa's OH
https://stanford.zoo

2p - 4p

Will's Working
OH
https://stanford.zoo
m.us/j/368730155

Thu 4/23

ttps://stanford.zoo
m.us/j/9265895684

ip - 3p
Benson's OH
Stanford Zoom

3p - 5p

Lisa's Tea Hour
https://stanford.zoo
m.us/j/99716540353

Working OH
* Sign up on QueueStatus,
* Join the group Zoom

Otherwise, by default:

* Sign up on QueueStatus

* Join 1onl Zoom when
pinged by TA

Lisa’s Tea OH (Th 3-bpm PT):

* More casual, any CS109 or
non-CS109 questions here

* Collaborate on jigsaw puzzle

Lisa Yan, C$109, 2020 Stanford University 47



Interesting probability news

https://theconversation.com/p
olly-knows-probability-this-
parrot-can-predict-the-chances-
of-something-happening-
132767

Polly knows probability: this parrot

can predict the chances if-

something happening

March 3, 2020 2.05pm EST

Find something cool, submit for extra credit
on Problem Set #2 ©

Lisa Yan, C$109, 2020 Stanford University 48



https://theconversation.com/polly-knows-probability-this-parrot-can-predict-the-chances-of-something-happening-132767

LIVE

Modeling

exercise:
Hurricanes




Hurricanes

:}@ What is the probability of an
X ..“ extreme weather event?

N How do we model the
number of hurricanes in a
'season (year)?

5
p \
3\
‘f
'z
" ‘AJ‘@ F

’4’&.
|5

1. Graph your distribution.

Lisa Yan, CS109, 2020 Stanford University 50




110¢
900c
100¢
9661
1661
9861
1861
9/61
1/61
9961
1961
9Go61
1661
ov61
Lv6l
oce6l
1€61
9c61l
1col
9161
1161
9061
1061
9681
1681
9881
1881
9/81
1.81
9981 1O
1981
9G8T
1681
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40

' 851
30 35

25

15 20
hurricanes per year

10

icanes per year since 1

Hurr

T T T
© O O O
M AN

40 -

0.2 -
0.15 -~
0.1 A
0.05 +

Aouanbalj Aouanba

&)
—

}

Which graph is a histogram (i.e., distribution) of frequency (# of hurricanes per year)?
A.
B

1. Graph




1. Graph: Hurricanes per year since 1851

Which graph is a histogram (i.e., distribution) of frequency (# of hurricanes per year)?

A. 40 1

N W
o O

frequency
o

o

1851
1856
1861
1866
1871
1876
1881
1886
1891
1896
1901
1906
1911
1916
1921
1926
1931
1936
1941
1946
1951
1956
1961
1966
1971
1976
1981
1986
1991
1996
2001
2006
2011

®

frequency
o
N
(@]

Looks kinda Poissonian!

@)

o O

(G2 I
!

@)
|

0] 5 10 15 20 25 30 35 40
hurricanes per year Stanford University 52




Hurricanes

‘number of hurricanes in a
season (year)?

P

1 " ¥4,
BN
SOV 4 ‘/'- A.’:‘

& RN i
',"’b ;R atEe

2. Find a reasonable distribution
and compute parameters.

Lisa Yan, CS109, 2020 Stanford University 53




2. Find a distribution: Python SciPy RV methods

from scipy import stats # great package
X = stats.poisson(8.5) # X ~ P01(A 8.5)
X.pmf(2) # P(X = 2)
Function Description
X.pmf (k) P(X=k)
X.cdf(k) P(X <k)
X.mean() E[X] SciPy reference:
https://docs.scipy.org/doc/
X. VCII"() Var(X) scipy/reference/generated/

X.std() SD(X) scipy.stats.poisson.html

Lisa Yan, CS109, 2020 Stanford University 54



https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.poisson.html

2. Find a distribution

: : 0.16 -
IlDJgitsllsirS?66, things look pretty 014 | 2 Poi(8.5)
- 0.12 - m Count (1851-1966)

What is the probability of over |
15 hurricanes in a season (year) o4 -
given that the distribution doesn’t 0.02 -
change? 0 -

O b5 10 15 20 25 30 35 40
hurricanes per year

P(X > 15) =1 — P(X < 15)

15
—1- z P(X=k) X~Poi(1=85)
=0 You can calculate this PMF using
B your favorite programming language.

=1—-0.986 =0.014 or Python3.

Lisa Yan, CS109, 2020 Stanford University 55




Hurricanes

‘number of hurricanes in a
season (year)?

P

2 B !'.*
[0 S T

g W,
',"’b ;R atEe

3. Identify and explain outliers.

Lisa Yan, CS109, 2020 Stanford University 56




3. Improbability

Since 19686, there have been 8'12 1

two years with over 30 hurricanes. 7,
g 0.1

What is the probability of over & >°°

re
&)
o
o

30 hurricanes in a season (year) * goa4 :
given that the distribution doesn’t 0.02 -
change? 0 -

P(X >30)=1—P(X < 30)

30
=1-— ) P(X =k)

= 2.2E—-09

o)

Lisa Yan, CS109, 2020

m Poi(8.D)
m Count (1851-1966)

5 10 15 20 25 30 35 40
hurricanes per year

X~Poi(1 = 8.5)

Stanford University 57



3. The distribution has changed.

0.16 -
0.12 -
0.08 -
0.04 -

1851 -
1966

m Poi(8.5)
Count (1851-1966)

O _ -

O 5 10 15 20
0.16 -

0.14 +
0.12 -
0.10 -
0.08 -
0.06 -
0.04 -
0.02 -

0.00 -
o) 5 10 15 20
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3. What changed?

Global annual average surface temperature
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3. What changed?

NOAA/NASA GOES Prdicet

It’s not just climate change. We also have tools for better data collection.

Lisa Yan, C$109, 2020 Stanford University
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