08: Poisson and More

Lisa Yan April 22, 2020

Quick slide reference

- 3 Poisson 08a_poisson
- 15 Poisson Paradigm 08b_poisson_paradigm
- 23 Other Discrete RVs 08c_other_discrete
- 31 Exercises LIVE

08a_poisson

Poisson

Before we start

The natural exponent e :

https://en.wikipedia.org/wiki/E_(mathe

Jacob Bernoulli while studying compound interest in 1683

Algorithmic ride sharing

Probability of k requests from this area in the next 1 minute?

Suppose we know: On average, $\lambda = 5$ requests per minute

Algorithmic ride sharing, approximately

Probability of k requests from this area in the next 1 minute?

On average, $\lambda = 5$ requests per minute

Break a minute down into 60 seconds:

At each second:

 $E[X] = \lambda = 5$

- Independent trial
- You get a request (1) or you don't (0).
- Let $X = #$ of requests in minute.

$$
X \sim \text{Bin}(n = 60, p = 5/60)
$$

$$
P(X = k) = {60 \choose k} \left(\frac{5}{60}\right)^k \left(1 - \frac{5}{60}\right)^{n-k}
$$

But what if there are *two* requests
in the same second?
Stanford University

Algorithmic ride sharing, approximately

Probability of k requests from this area in the next 1 minute?

On average, $\lambda = 5$ requests per minute

Break a minute down into 60,000 milliseconds:

At each millisecond:

Independent trial

 $E[X] = \lambda = 5$

• You get a request (1) or you don't (0).

Let $X = #$ of requests in minute.

$$
X \sim \text{Bin}(n = 60000, p = \lambda/n)
$$

$$
P(X = k) = {n \choose k} \left(\frac{\lambda}{n}\right)^k \left(1 - \frac{\lambda}{n}\right)^{n-k}
$$

But what if there are *two* requests
in the same millisecond?
Stanford University

Algorithmic ride sharing, approximately

Probability of k requests from this area in the next 1 minute?

On average, $\lambda = 5$ requests per minute

Break a minute down into infinitely small buckets:

OMG so small

1 ∞

For each time bucket:

- Independent trial
- You get a request (1) or you don't (0) .

Let $X = #$ of requests in minute.

 $E[X] = \lambda = 5$

$$
X \sim \text{Bin}(n, p = \lambda/n)
$$

$$
P(X = k) = \lim_{n \to \infty} {n \choose k} \left(\frac{\lambda}{n}\right)^k \left(1 - \frac{\lambda}{n}\right)^{n-k}
$$

Who wants to see some cool math?

$$
\lim_{n \to \infty} \left(1 - \frac{\lambda}{n} \right)^n = e^{-\lambda}
$$

$$
P(X = k) = \lim_{n \to \infty} {n \choose k} \left(\frac{\lambda}{n}\right)^k \left(1 - \frac{\lambda}{n}\right)^{n-k} \exp^{\lambda n} \left(\frac{n!}{n - k}\right) \frac{\lambda^k}{n!} \frac{\left(1 - \frac{\lambda}{n}\right)^n}{\left(1 - \frac{\lambda}{n}\right)^k}
$$
\n
$$
\frac{\operatorname{Re}^{\lambda}(\mathbb{R}^n)}{\operatorname{Re}^{\lambda}(\mathbb{R}^n)} = \lim_{n \to \infty} \frac{n!}{n^k (n - k)!} \frac{\lambda^k}{k!} \frac{\left(1 - \frac{\lambda}{n}\right)^n}{\left(1 - \frac{\lambda}{n}\right)^k}
$$
\n
$$
\frac{\operatorname{Re}^{\lambda}(\mathbb{R}^n)}{\left(1 - \frac{\lambda}{n}\right)^k} = \lim_{n \to \infty} \frac{n!}{n^k (n - k)!} \frac{\lambda^k}{k!} \frac{e^{-\lambda}}{\left(1 - \frac{\lambda}{n}\right)^k}
$$
\n
$$
\frac{\operatorname{Explan}^{\lambda}}{\left(1 - \frac{\lambda}{n}\right)^k} = \lim_{n \to \infty} \frac{n(n - 1) \cdots (n - k + 1)}{\left(n - k + 1\right)} \frac{(n - k)!}{\left(n - k\right)!} \frac{\lambda^k}{k!} \frac{e^{-\lambda}}{e^{-\lambda}}
$$

$$
\lim_{n \to \infty} \frac{h(n-1)\cdots(n-k+1)}{n^k} \frac{(n-k)!}{(n-k)!} \frac{\lambda}{k!} \frac{e^{-\lambda}}{\left(1 - \frac{\lambda}{n}\right)^k}
$$
\n
$$
\lim_{k \to \infty} \frac{h^{k}}{n^k} \frac{\lambda^k}{k!} \frac{e^{-\lambda}}{1} = \frac{\sin^{k} \lambda^k}{k!} e^{-\lambda} = \frac{\lambda^k}{k!} e^{-\lambda}
$$

Lisa Yan, CS109, 2020

Algorithmic ride sharing

Probability of k requests from this area in the next 1 minute?

On average, $\lambda = 5$ requests per minute

$$
P(X = k) = \frac{\lambda^k}{k!}e^{-\lambda}
$$

Lisa Yan, CS109, 2020

Stanford University 10

Simeon-Denis Poisson

French mathematician (1781 – 1840)

- Published his first paper at age 18
- Professor at age 21
- Published over 300 papers

"Life is only good for two things: doing mathematics and teaching it."

Consider an experiment that lasts a fixed interval of time.

def A Poisson random variable X is the number of successes over the experiment duration.

Examples:

- # earthquakes per year
- # server hits per second
- # of emails per day

Yes, expectation == variance for Poisson RV! More later.

Earthquakes

$$
X \sim \text{Poi}(\lambda)
$$

$$
E[X] = \lambda
$$
 $p(k) = e^{-\lambda} \frac{\lambda^k}{k!}$

There are an average of 2.79 major earthquakes in the world each year. What is the probability of 3 major earthquakes happening next year?

Define RVs

2. Solve

Are earthquakes really Poissonian?

Bulletin of the Seismological Society of America

October 1974

No. 5

IS THE SEQUENCE OF EARTHQUAKES IN SOUTHERN CALIFORNIA, WITH AFTERSHOCKS REMOVED, POISSONIAN?

BY J. K. GARDNER and L. KNOPOFF

ABSTRACT

Yes.

08b_poisson_paradigm

Poisson Paradigm

All the movies, images, emails and other digital data from more than 600 smartphones (10,000 GB) can be stored in the faint pink smear of DNA at the end of this test tube.

What is the probability that DNA storage stays uncorrupted?

DNA

What is the probability that DNA storage stays uncorrupted?

- In DNA (and real networks), we store large strings.
- Let string length be long, e.g., $n \approx 10^4$
- Probability of corruption of each base pair is very small, e.g., $p = 10^{-6}$
- Let $X = #$ of corruptions.

What is P(DNA storage is uncorrupted) = $P(X = 0)$?

1. Approach 1: $X \sim Bin(n = 10^4, p = 10^{-6})$ $P(X = k) =$ \overline{n} $\binom{n}{k} p^k (1-p)^{n-k}$ = 104 0 $10^{-6.0}(1-10^{-6})^{10^4-0}$ ≈ 0.99049829 2. Approach 2: $X \sim \text{Poi} (\lambda = 10^4 \cdot 10^{-6} = 0.01)$ $P(X = k) = e^{-\lambda} \frac{\lambda^k}{k!}$ $k!$ $= e^{-0.01} \frac{0.01^0}{0.01}$ 0! $= e^{-0.01}$ ≈ 0.99049834 approximation! unwieldy! $\Lambda = {\binom{10}{0}} 10^{-6.0} (1 - 10^{-6})^{10.0}$ a good

Stanford University 17

Poisson approximates Binomial when n is large, p is small, and $\lambda = np$ is "moderate."

Different interpretations of "moderate":

- $n > 20$ and $p < 0.05$
- $n > 100$ and $p < 0.1$

Poisson is Binomial in the limit:

• $\lambda = np$, where $n \to \infty$, $p \to 0$

0.25
\n0.2
\n
$$
2\frac{1}{2}
$$

\n0.15
\n0.05
\n0.1
\n0.2
\n0.3
\nBin(100,0.03)
\nBin(1000,0.003)
\nBin(1000,0.003)
\nPoint(3)
\n*1*
\nPoint(1000,0.003)
\nPoint(3)
\n*1*
\nPoint(1000,0.003)
\nPoint(3)
\n*1*
\nPoint(1000,0.003)
\nPoint(3)
\n*1*
\n**2**
\n*2*
\n*3*
\n*4*
\n*5*
\n*6*
\n*7*
\n*8*
\n*9*
\n*10*
\n*1*
\n*1*

Poisson can approximate Binomial.

$$
X \sim \text{Poi}(\lambda) \qquad Y \sim \text{Bin}(n, p)
$$

$$
E[X] = \lambda \qquad E[Y] = np
$$

Consider an experiment that lasts a fixed interval of time.

def A Poisson random variable X is the number of occurrences over the experiment duration.

Examples:

- # earthquakes per year
- # server hits per second
- # of emails per day

Time to show intuition for why expectation == variance!

Properties of $Poi(\lambda)$ with the Poisson paradigm

Recall the Binomial:

Consider $X \sim \text{Poi}(\lambda)$, where $\lambda = np (n \to \infty, p \to 0)$:

Expectation $E[X] = \lambda$ $Var(X) = \lambda$ $X \sim \text{Poi}(\lambda)$ Expectation

Proof:

$$
E[X] = np = \lambda
$$

Var(X) = np(1-p) \rightarrow \lambda(1-0) = \lambda

A Real License Plate Seen at Stanford

No, it's not mine… but I kind of wish it was.

Lisa Yan, CS109, 2020

Stanford University

Poisson Paradigm, part 2

Poisson can still provide a good approximation of the Binomial, even when assumptions are "mildly" violated.

You can apply the Poisson approximation when:

"Successes" in trials are not entirely independent e.g.: # entries in each bucket in large hash table.

• Probability of "Success" in each trial varies (slightly), like a small relative change in a very small p e.g.: Average # requests to web server/sec may fluctuate slightly due to load on network

> We won't explore this too much, but I want you to know it exists.

08c_other_discrete

Other Discrete RVs

Grid of random variables

Lisa Yan, CS109, 2020

Geometric RV

Consider an experiment: independent trials of $Ber(p)$ random variables. def A Geometric random variable X is the $\#$ of trials until the first success.

$$
X \sim \text{Geo}(p)
$$
\n
$$
P(X = k) = (1 - p)^{k-1}p
$$
\n
$$
\text{Expectation } E[X] = \frac{1}{p}
$$
\n
$$
\text{Number: } \{1, 2, \ldots\}
$$
\n
$$
\text{Variance} \quad \text{Var}(X) = \frac{1 - p}{p^2}
$$

Examples:

- Flipping a coin ($P(\text{heads}) = p$) until first heads appears
- Generate bits with $P(\text{bit} = 1) = p$ until first 1 generated

Negative Binomial RV

Consider an experiment: independent trials of $Ber(p)$ random variables. def A Negative Binomial random variable X is the # of trials until r successes.

$$
X \sim \text{NegBin}(r, p) \quad \text{PMF} \quad P(X = k) = {k-1 \choose r-1} (1-p)^{k-r} p^r
$$
\n
$$
\text{Expectation} \quad E[X] = \frac{r}{p} \quad \text{Var}(X) = \frac{r(1-p)}{p^2}
$$

Examples:

- Flipping a coin until r^{th} heads appears
- # of strings to hash into table until bucket 1 has r entries

$$
\mathsf{Geo}(p) = \mathsf{NegBin}(1,p)
$$

(fixed lecture error)

Lisa Yan, CS109, 2020

Grid of random variables

Catching Pokemon

Wild Pokemon are captured by throwing Pokeballs at them.

- Each ball has probability $p = 0.1$ of capturing the Pokemon.
- Each ball is an independent trial.

What is the probability that you catch the Pokemon on the 5th try?

1. Define events/ RVs & state goal

> $X\sim$ some distribution Want: $P(X = 5)$

- 2. Solve
	- A. $X \sim Bin(5, 0.1)$ B. $X \sim \text{Poi}(0.5)$ C. $X \sim$ NegBin(5, 0.1)
	-
	- D. $X \sim \text{NegBin}(1, 0.1)$
	- E. $X \sim$ Geo (0.1)
	- F. None/other

 $\frac{1}{2}$

Catching Pokemon

Wild Pokemon are captured by throwing Pokeballs at them.

- Each ball has probability $p = 0.1$ of capturing the Pokemon.
- Each ball is an independent trial.

What is the probability that you catch the Pokemon on the 5th try?

1. Define events/ RVs & state goal

> $X\sim$ some distribution Want: $P(X = 5)$

- 2. Solve
	- A. $X \sim Bin(5, 0.1)$ B. $X \sim \text{Poi}(0.5)$
	- C. $X \sim$ NegBin(5,0.1)
	- D. $X \sim \text{NegBin}(1, 0.1)$
	- E. $X \sim$ Geo (0.1)
	- F. None/other

Catching Pokemon

 $X \sim \text{Geo}(p)$ $p(k) = (1-p)^{k-1}p$

Wild Pokemon are captured by throwing Pokeballs at them.

- Each ball has probability $p = 0.1$ of capturing the Pokemon.
- Each ball is an independent trial.

What is the probability that you catch the Pokemon on the 5th try?

2. Solve 1. Define events/ 2. Solve RVs & state goal

 $X \sim$ Geo (0.1)

Want: $P(X = 5)$

$$
f_{\rm{max}}
$$

(live) 08: Poisson and More

Lisa Yan April 22, 2020

LIVE

Discrete RVs

The hardest part of problem-solving is determining what is a random)variable .

Grid of random variables

Review

Grid of random variables

Review

Breakout Rooms

Check out the quest (Slide 36). Post an

https://us.edstem.org/discussion

Breakout rooms: 5

Kickboxing with RVs

How would you model the following?

- 1. # of snapchats you receive in a day
- 2. # of children until the first one with brown eyes (same parents)
- 3. Whether stock went up or down in a day
- 4. # of probability problems you try until you get 5 correct (if you are randomly correct)
- 5. # of years in some decade with more than 6 Atlantic hurricanes

Choose from: A. Ber (p) D. Geo (p) B. Bin (n, p) E. NegBin (r, p) C. Poi (λ)

Kickboxing with RVs

How would you model the following?

- 1. # of snapchats you receive in a day
- 2. # of children until the first one with brown eyes (same parents)
- 3. Whether stock went up or down in a day
- 4. # of probability problems you try until you get 5 correct (if you are randomly correct)
- 5. # of years in some decade with more than 6 Atlantic hurricanes

Choose from: A. Ber (p) B. Bin (n, p) C. Poi (λ) D. Geo (p) E. NegBin (r, p)

C. Poi (λ)

D. Geo (p) or E. NegBin $(1, p)$

A. Ber (p) or B. Bin $(1, p)$

E. NegBin $(r = 5, p)$

B. Bin $(n = 10, p)$, where $p = P(\geq 6$ hurricanes in a year) calculated from C . Poi (λ)

CS109 Learning Goal: Use new RVs

Let's say you are learning about servers/networks.

You read about the M/D/1 queue:

"The service time busy period is distributed as a Borel with parameter $\mu = 0.2$."

Goal: You can recognize terminology and understand experiment setup.

Stanford University 38

LIVE

Poisson RV

Review

In CS109, a Poisson RV $X \sim \text{Poi}(\lambda)$ most often models

- # of successes over a fixed interval of time. $\lambda = E[X]$, average success/interval
- Approximation of $Y \sim Bin(n, p)$ where n is large and p is small. $\lambda = E[Y] = np$
- Approximation of Binomial even when success in trials are not entirely independent.

(explored in problem set 3)

Breakout Rooms

Slide 42 has two q groups.

Post any clarification

https://us.edstem.org/

Breakout rooms: 5

Web server load

 $X \sim \text{Poi}(\lambda)$ $p(k) = e^{-\lambda} \frac{\lambda^k}{k!}$ $E[X] = \lambda$ $P(\lambda) - e$ $\overline{k!}$

- 1. Consider requests to a web server in 1 second.
	- In the past, server load averages 2 hits/second.
	- Let $X = #$ hits the server receives in a second. What is $P(X < 5)$?
- 2. Can the following Binomial RVs be approximated?

1. Web server load

 $X \sim \text{Poi}(\lambda)$
 $F[V] = 1$ $p(k) = e^{-\lambda} \frac{\lambda^k}{k!}$ $E[X] = \lambda$ $P(\lambda) - e$ $\overline{k!}$

Consider requests to a web server in 1 second.

- In the past, server load averages 2 hits/second.
- Let $X = #$ hits the server receives in a second.

What is $P(X < 5)$?

1. Define RVs 2. Solve

2. Can these Binomial RVs be approximated?

Poisson approximates Binomial when n is large, p is small, and $\lambda = np$ is "moderate."

Different interpretations of "moderate":

- $n > 20$ and $p < 0.05$
- $n > 100$ and $p < 0.1$

Poisson is Binomial in the limit:

•
$$
\lambda = np
$$
, where $n \to \infty$, $p \to 0$

Interlude for jokes/announcements

Announcements

Quiz #1

Time frame: Thursday 4/30 12 Covers: Up to end of Week 3 Tim's Review session: Times American American Ptuesday 412-2014

https://stanford.zo

Info and practice: https://web.stanford.edu/class/cs1

Python tutorial #2

When: Friday 4/24 5:00-6:00PT Recorded? yes Notes: to be posted online Useful for: pset2, pset3

Problem Set 3

Due: **Monday 5/8 (after a** Covers: Up to Out: later to day (Note: early reles

Office Hour update

Working OH

- Sign up on QueueStatus,
- Join the group Zoom

Otherwise, by default:

- Sign up on QueueStatus
- Join 1on1 Zoom when pinged by TA

Lisa's Tea OH (Th 3-5pm PT):

- More casual, any CS109 or non-CS109 questions here
- Collaborate on jigsaw puzzle

Interesting probability news

Find something cool, submit for extra credit on Problem Set #2 \odot

Lisa Yan, CS109, 2020

LIVE

Modeling exercise: Hurricanes

Hurricanes

What is the probability of an extreme weather event?

How do we model the number of hurricanes in a season (year)?

1. Graph your distribution.

1. Graph: Hurricanes per year since 1851

Which graph is a histogram (i.e., distribution) of frequency (# of hurricanes per year)?

1. Graph: Hurricanes per year since 1851

Which graph is a histogram (i.e., distribution) of frequency (# of hurricanes per year)?

Hurricanes

How do we model the number of hurricanes in a season (year)?

2. Find a reasonable distribution and compute parameters.

2. Find a distribution: Python SciPy R

Lisa Yan, CS109, 2020

2. Find a distribution

Until 1966, things look pretty Poisson.

What is the probability of over 15 hurricanes in a season (year) given that the distribution doesn't change?

$$
P(X > 15) = 1 - P(X \le 15)
$$

= $1 - \sum_{k=0}^{15} \frac{P(X = k)}{P(X = k)}$
= $1 - 0.986 = 0.014$

You can calculate this PMF using your favorite programming language. Or Python3. $X \sim \text{Poi}(\lambda = 8.5)$

Stanford University 55

Hurricanes

How do we model the number of hurricanes in a season (year)?

3. Identify and explain outliers.

3. Improbability

Since 1966, there have been two years with over 30 hurricanes.

frequency What is the probability of over 30 hurricanes in a season (year) given that the distribution doesn't change?

0 0.02 0.04 0.06 0.08 0.14 0.16 0 3 6 9 12 15 18 21 24 27 30 33 36 39 Poi(8.5) Count (1851-1966) 0 5 10 15 20 25 30 35 40 hurricanes per year

$$
P(X > 30) = 1 - P(X \le 30)
$$

= $1 - \sum_{k=0}^{30} \frac{P(X = k)}{P(X = k)}$ $X \sim \text{Poi}(\lambda = 8.5)$
= $2.2E - 09$

 $\overline{0}$.

0.1

3. The distribution has changed.

Lisa Yan, CS109, 2020

3. What changed?

Global annual average surface temperature

Stanford University 59

3. What changed?

It's not just climate change. We also have tools for better data collection.

Lisa Yan, CS109, 2020