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Before we start

The natural exponent 𝑒:

https://en.wikipedia.org/wiki/E_(mathematical_constant)

4

lim
!→#

1 −
𝜆
𝑛

!

= 𝑒$%

Jacob Bernoulli
while studying 

compound interest 
in 1683

https://en.wikipedia.org/wiki/E_(mathematical_constant)
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Algorithmic ride sharing
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🙋

🙋

"

"
"

Probability of 𝑘 requests from this area in the next 1 minute?
On average, 𝜆 = 5 requests per minuteSuppose we know:
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Algorithmic ride sharing, approximately

At each second:
• Independent trial
• You get a request (1) or you don’t (0).

Let 𝑋 = # of requests in minute.
𝐸 𝑋 = 𝜆 = 5

6

Probability of 𝑘 requests from this area in the next 1 minute?
On average, 𝜆 = 5 requests per minute

0 0 1 0 1 … 0 0 0 0 1

1 2 3 4 5 60

𝑋 ~ Bin 𝑛 = 60, 𝑝 = 5/60

Break a minute down into 60 seconds:

𝑃 𝑋 = 𝑘 = 60
𝑘

5
60

!

1 −
5
60

"#!

But what if there are two requests 
in the same second?🤔
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Algorithmic ride sharing, approximately

At each millisecond:
• Independent trial
• You get a request (1) or you don’t (0).

Let 𝑋 = # of requests in minute.
𝐸 𝑋 = 𝜆 = 5

7

Probability of 𝑘 requests from this area in the next 1 minute?
On average, 𝜆 = 5 requests per minute

Break a minute down into 60,000 milliseconds:

𝑃 𝑋 = 𝑘 = 𝑛
𝑘

𝜆
𝑛

!

1 −
𝜆
𝑛

"#!

…

1 60,000

𝑋 ~ Bin 𝑛 = 60000, 𝑝 = 𝜆/𝑛

But what if there are two requests 
in the same millisecond?🤔
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Algorithmic ride sharing, approximately

For each time bucket:
• Independent trial
• You get a request (1) or you don’t (0).

Let 𝑋 = # of requests in minute.
𝐸 𝑋 = 𝜆 = 5

8

Probability of 𝑘 requests from this area in the next 1 minute?
On average, 𝜆 = 5 requests per minute

Break a minute down into infinitely small buckets:

𝑃 𝑋 = 𝑘 = lim
"→%

𝑛
𝑘

𝜆
𝑛

!

1 −
𝜆
𝑛

"#!

Who wants to see some cool math?

OMG so small

1 ∞

𝑋 ~ Bin 𝑛, 𝑝 = 𝜆/𝑛
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Binomial in the limit

9

𝑃 𝑋 = 𝑘 = lim
"→%

𝑛
𝑘

𝜆
𝑛

!

1 −
𝜆
𝑛

"#!

= lim
"→$

𝑛!
𝑘!(𝑛 − 𝑘)!

𝜆%

𝑛%
1 − l

𝑛
"

1 − l
𝑛

%

lim
!→#

1 −
𝜆
𝑛

!

= 𝑒$%

= lim
"→$

𝑛!
𝑛%(𝑛 − 𝑘)!

𝜆%

𝑘!
1 − l

𝑛
"

1 − l
𝑛

%

Expand

Rearrange

= lim
"→$

𝑛!
𝑛%(𝑛 − 𝑘)!

𝜆%

𝑘!
𝑒/0

1 − l
𝑛

%

Def natural 

exponent

= lim
"→$

𝑛 𝑛 − 1 ⋯ 𝑛 − 𝑘 + 1
𝑛%

𝑛 − 𝑘 !
𝑛 − 𝑘 !

𝜆%

𝑘!
𝑒/0

1 − l
𝑛

%
Expand

= lim
"→$

𝑛%

𝑛%
𝜆%

𝑘!
𝑒/0

1

Limit analysis

+ cancel
=
𝜆%

𝑘!
𝑒/0

Simplify
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Algorithmic ride sharing

10

🙋

🙋

"

"
"

Probability of 𝑘 requests from this area in the next 1 minute?
On average, 𝜆 = 5 requests per minute

𝑃 𝑋 = 𝑘 =
𝜆&

𝑘!
𝑒$%
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Simeon-Denis Poisson

French mathematician (1781 – 1840)
• Published his first paper at age 18
• Professor at age 21
• Published over 300 papers
“Life is only good for two things: doing mathematics and teaching it.”

11
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Consider an experiment that lasts a fixed interval of time.
def A Poisson random variable 𝑋 is the number of successes over the 

experiment duration.

Examples:
• # earthquakes per year
• # server hits per second
• # of emails per day

Yes, expectation == variance 
for Poisson RV! More later.

Poisson Random Variable

12

𝑃 𝑋 = 𝑘 = 𝑒$%
𝜆&

𝑘!𝑋~Poi(𝜆)
Support: {0,1, 2, … }

PMF

𝐸 𝑋 = 𝜆
Var 𝑋 = 𝜆Variance

Expectation
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Earthquakes
There are an average of 2.79 major earthquakes in the world each year.
What is the probability of 3 major earthquakes happening next year?

13

𝑝 𝑘 = 𝑒!"
𝜆#

𝑘!

1. Define RVs

2. Solve

0

0.05

0.1

0.15

0.2

0.25

0.3

0 1 2 3 4 5 6 7 8 9 10

𝑃(
𝑋

= 
𝑘)

Number of earthquakes, 𝑘

𝑋~Poi(𝜆)
𝐸 𝑋 = 𝜆
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Are earthquakes really Poissonian?

14



Poisson 
Paradigm

15

08b_poisson_paradigm
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DNA

16

All the movies, images, 
emails and other digital 
data from more than 
600 smartphones 
(10,000 GB) can be 
stored in the faint pink 
smear of DNA at the end 
of this test tube.

What is the probability 
that DNA storage stays 
uncorrupted? 
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DNA
What is the probability that DNA storage stays uncorrupted?
• In DNA (and real networks), we store large strings.
• Let string length be long, e.g., 𝑛 ≈ 104
• Probability of corruption of each base pair is very small, e.g., 𝑝 = 10/5
• Let 𝑋 = # of corruptions.

What is P(DNA storage is uncorrupted) = 𝑃 𝑋 = 0 ?

17

1. Approach 1:
𝑋~Bin 𝑛 = 101, 𝑝 = 10#2

𝑃 𝑋 = 𝑘 = 𝑛
𝑘 𝑝% 1 − 𝑝 "/%

= 104
0

10/5⋅7 1 − 10/5 87!/7

≈ 0.99049829

2. Approach 2:
𝑋~Poi 𝜆 = 101 ⋅ 10#2 = 0.01

𝑃 𝑋 = 𝑘 = 𝑒/0
𝜆%

𝑘!
= 𝑒/7.78

0.017

0!

= 𝑒/7.78

≈ 0.99049834
⚠unwieldy!

a good 
approximation!
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The Poisson Paradigm, part 1

Poisson approximates Binomial 
when 𝑛 is large, 𝑝 is small, and 
𝜆 = 𝑛𝑝 is “moderate.”

Different interpretations of 
“moderate”:
• 𝑛 > 20 and 𝑝 < 0.05
• 𝑛 > 100 and 𝑝 < 0.1

Poisson is Binomial in the limit:
• 𝜆 = 𝑛𝑝, where 𝑛 → ∞, 𝑝 → 0

18

Poisson can approximate Binomial.

0

0.05

0.1

0.15

0.2

0.25

0.3

0 1 2 3 4 5 6 7 8 9 10

𝑃(
𝑋

= 
𝑘)

𝑋 = 𝑘

Bin(10,0.3)

Bin(100,0.03)

Bin(1000,0.003)

Poi(3)

𝑋~Poi(𝜆)
𝐸 𝑋 = 𝜆

𝑌~Bin(𝑛, 𝑝)
𝐸 𝑌 = 𝑛𝑝
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Consider an experiment that lasts a fixed interval of time.
def A Poisson random variable 𝑋 is the number of occurrences over the 

experiment duration.

Examples:
• # earthquakes per year
• # server hits per second
• # of emails per day

Time to show intuition for why 
expectation == variance!

Poisson Random Variable

19

𝑃 𝑋 = 𝑘 = 𝑒$%
𝜆&

𝑘!𝑋~Poi(𝜆)
Support: {0,1, 2, … } Variance

Expectation

PMF

𝐸 𝑋 = 𝜆
Var 𝑋 = 𝜆
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Properties of Poi(𝜆)with the Poisson paradigm
Recall the Binomial:

Consider 𝑋~Poi(𝜆), where 𝜆 = 𝑛𝑝 (𝑛 → ∞, 𝑝 → 0):

Proof:
𝐸 𝑋 = 𝑛𝑝 = 𝜆

Var 𝑋 = 𝑛𝑝 1 − 𝑝 → 𝜆 1 − 0 = 𝜆

20

𝑌~Bin(𝑛, 𝑝) Variance
Expectation 𝐸 𝑌 = 𝑛𝑝

Var 𝑌 = 𝑛𝑝(1 − 𝑝)

Expectation 𝐸 𝑋 = 𝜆
Var 𝑋 = 𝜆

𝑋~Poi(𝜆)
Variance
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A Real License Plate Seen at Stanford

No, it’s not mine… 
but I kind of wish it was.
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Poisson Paradigm, part 2
Poisson can still provide a good approximation of the Binomial,
even when assumptions are “mildly” violated.

You can apply the Poisson approximation when:
• ”Successes” in trials are not entirely independent

e.g.: # entries in each bucket in large hash table.
• Probability of “Success” in each trial varies (slightly),

like a small relative change in a very small p
e.g.: Average # requests to web server/sec may fluctuate

slightly due to load on network

22

👈

We won’t explore this too much, 
but I want you to know it exists.



Other Discrete 
RVs

23

08c_other_discrete
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Grid of random variables

24

Number of 
successes

Ber(𝑝)One trial

Several
trials

Interval
of time

Bin(𝑛, 𝑝)

Poi(𝜆) (tomorrow)

One success

Several
successes

Interval of time to
first success

Time until 
success

𝑛 = 1

Focus on understanding how and when to use RVs, not on memorizing PMFs.
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Consider an experiment: independent trials of Ber(𝑝) random variables.
def A Geometric random variable 𝑋 is the # of trials until the first success.

Examples:
• Flipping a coin (𝑃 heads = 𝑝) until first heads appears
• Generate bits with 𝑃 bit = 1 = 𝑝 until first 1 generated

Geometric RV

25

𝑃 𝑋 = 𝑘 = 1 − 𝑝 &$'𝑝
𝑋~Geo(𝑝)
Support: {1, 2, … }

PMF

𝐸 𝑋 = 7
8

Var 𝑋 = 7#8
8!

Variance

Expectation
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Consider an experiment: independent trials of Ber(𝑝) random variables.
def A Negative Binomial random variable 𝑋 is the # of trials until 

𝑟 successes.

Examples:
• Flipping a coin until 𝑟:; heads appears
• # of strings to hash into table until bucket 1 has 𝑟 entries

Negative Binomial RV

26

𝑃 𝑋 = 𝑘 = 𝑘 − 1
𝑟 − 1 1 − 𝑝 !#9𝑝9𝑋~NegBin(𝑟, 𝑝)

Support: {𝑟, 𝑟 + 1,… }

PMF

𝐸 𝑋 = 9
8

Var 𝑋 = 9 7#8
8!

Variance
Expectation

(fixed lecture error)

Geo 𝑝 = NegBin(1, 𝑝)
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Grid of random variables

27

Number of 
successes

Ber(𝑝)One trial

Several
trials

Interval
of time

Bin(𝑛, 𝑝)

Poi(𝜆)

Geo(𝑝)

NegBin(𝑟, 𝑝)

(tomorrow)

One success

Several
successes

Interval of time to
first success

Time until 
success

𝑛 = 1 𝑟 = 1
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Catching Pokemon
Wild Pokemon are captured by throwing Pokeballs at them.
• Each ball has probability p = 0.1 of capturing the Pokemon.
• Each ball is an independent trial.

What is the probability that you catch the Pokemon on the 5th try?

28

1. Define events/ 
RVs & state goal

A. 𝑋~Bin 5, 0.1
B. 𝑋~Poi 0.5
C. 𝑋~NegBin 5, 0.1
D. 𝑋~NegBin 1, 0.1
E. 𝑋~Geo 0.1
F. None/other

2. Solve

𝑋~some distribution

Want: 𝑃 𝑋 = 5

🤔
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Wild Pokemon are captured by throwing Pokeballs at them.
• Each ball has probability p = 0.1 of capturing the Pokemon.
• Each ball is an independent trial.

What is the probability that you catch the Pokemon on the 5th try?

A. 𝑋~Bin 5, 0.1
B. 𝑋~Poi 0.5
C. 𝑋~NegBin 5, 0.1
D. 𝑋~NegBin 1, 0.1
E. 𝑋~Geo 0.1
F. None/other

Catching Pokemon

29

1. Define events/ 
RVs & state goal

2. Solve

𝑋~some distribution

Want: 𝑃 𝑋 = 5
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2. Solve

Catching Pokemon
Wild Pokemon are captured by throwing Pokeballs at them.
• Each ball has probability p = 0.1 of capturing the Pokemon.
• Each ball is an independent trial.

What is the probability that you catch the Pokemon on the 5th try?

30

1. Define events/ 
RVs & state goal

2. Solve

𝑋~Geo 0.1
Want: 𝑃 𝑋 = 5

𝑋~Geo(𝑝) 𝑝 𝑘 = 1 − 𝑝 #!$𝑝



(live)
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Discrete RVs

32

LIVE

The hardest part of problem-solving is 
determining what is a random)variable .
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Grid of random variables

33

Number of 
successes

Ber(𝑝)One trial

Several
trials

Interval
of time

Bin(𝑛, 𝑝)

Poi(𝜆)

Geo(𝑝)

NegBin(𝑟, 𝑝)

(today!)

One success

Several
successes

Interval of time to
first success

Time until 
success

𝑛 = 1 𝑟 = 1

Review
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Grid of random variables

34

Number of 
successes

Ber(𝑝)One trial

Several
trials

Interval
of time

Bin(𝑛, 𝑝)

Poi(𝜆)

Geo(𝑝)

NegBin(𝑟, 𝑝)

(today!)

One success

Several
successes

Interval of time to
first success

Time until 
success

𝑛 = 1 𝑟 = 1

Review



Breakout 
Rooms

Check out the question on the next slide 
(Slide 36). Post any clarifications here!

https://us.edstem.org/courses/109/discussion/39076

Breakout rooms: 5 min. Introduce yourself!

35

🤔

https://us.edstem.org/courses/109/discussion/39076
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Kickboxing with RVs
How would you model the following?
1. # of snapchats you receive in a day

2. # of children until the first one with
brown eyes (same parents)

3. Whether stock went up or down in a day

4. # of probability problems you try until you 
get 5 correct (if you are randomly correct)

5. # of years in some decade with more 
than 6 Atlantic hurricanes

36

Choose from:
A. Ber 𝑝
B. Bin 𝑛, 𝑝

C. Poi 𝜆
D. Geo 𝑝
E. NegBin 𝑟, 𝑝

🤔
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Kickboxing with RVs
How would you model the following?
1. # of snapchats you receive in a day

2. # of children until the first one with
brown eyes (same parents)

3. Whether stock went up or down in a day

4. # of probability problems you try until you 
get 5 correct (if you are randomly correct)

5. # of years in some decade with more 
than 6 Atlantic hurricanes

37

E. NegBin 𝑟 = 5, 𝑝

Choose from:
A. Ber 𝑝
B. Bin 𝑛, 𝑝

A. Ber 𝑝 or B. Bin 1, 𝑝

D. Geo 𝑝 or E. NegBin 1, 𝑝

C. Poi 𝜆

B. Bin 𝑛 = 10, 𝑝 , where 
𝑝 = 𝑃 ≥ 6 hurricanes in a year
calculated from C. Poi 𝜆

C. Poi 𝜆
D. Geo 𝑝
E. NegBin 𝑟, 𝑝
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CS109 Learning Goal: Use new RVs
Let’s say you are learning about 
servers/networks.
You read about the M/D/1 queue:

“The service time busy period is 
distributed as a Borel with parameter
𝜇 = 0.2.”

Goal: You can recognize terminology 
and understand experiment setup.

38

😎



Poisson RV

39

LIVE
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Poisson Random Variable

In CS109, a Poisson RV 𝑋~Poi(𝜆)most often models
• # of successes over a fixed interval of time.
𝜆 = 𝐸[𝑋], average success/interval

• Approximation of 𝑌~Bin(𝑛, 𝑝) where 𝑛 is large and 𝑝 is small.
𝜆 = 𝐸 𝑌 = 𝑛𝑝

• Approximation of Binomial even when success
in trials are not entirely independent. 

40

𝑃 𝑋 = 𝑘 = 𝑒$%
𝜆&

𝑘!𝑋~Poi(𝜆)
Support: {0,1, 2, … }

PMF

𝐸 𝑋 = 𝜆
Var 𝑋 = 𝜆Variance

Expectation

Review

(explored in problem set 3)



Breakout 
Rooms

Slide 42 has two questions to go over in 
groups.

Post any clarifications here!
https://us.edstem.org/courses/109/discussion/39076

Breakout rooms: 5 mins

41

🤔

https://us.edstem.org/courses/109/discussion/39076


Lisa Yan, CS109, 2020

Web server load
1. Consider requests to a web server in 1 second.
• In the past, server load averages 2 hits/second.
• Let 𝑋 = # hits the server receives in a second.

What is 𝑃 𝑋 < 5 ?

2. Can the following Binomial
RVs be approximated?

42

𝑋~Poi(𝜆)
𝑝 𝑘 = 𝑒!"

𝜆#

𝑘!𝐸 𝑋 = 𝜆

0

0.05

0.1

0 10 20 30 40 50 60 70 80 90

!(
"

= 
#)

Bin(100,0.5)

0

0.1

0.2

0.3

0 10 20 30 40 50 60 70 80 90

!(
"

= 
#)

Bin(100,0.04)

0

0.1

0.2

0.3

0 10 20 30 40 50 60 70 80 90

!(
"

= 
#) Bin(100,0.96)

🤔
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1. Web server load
Consider requests to a web server in 1 second.
• In the past, server load averages 2 hits/second.
• Let 𝑋 = # hits the server receives in a second.

What is 𝑃 𝑋 < 5 ?

43

𝑋~Poi(𝜆)
𝑝 𝑘 = 𝑒!"

𝜆#

𝑘!

1. Define RVs 2. Solve

𝐸 𝑋 = 𝜆
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2. Can these Binomial RVs be approximated?

44

0

0.05

0.1

0 10 20 30 40 50 60 70 80 90

𝑃(
𝑋

= 
𝑘)

Bin(100,0.5)
Poi(50)

0

0.1

0.2

0.3

0 10 20 30 40 50 60 70 80 90

𝑃(
𝑋

= 
𝑘)

Bin(100,0.04)
Poi(4)

0

0.1

0.2

0.3

0 10 20 30 40 50 60 70 80 90

𝑃(
𝑋

= 
𝑘)

Bin(100,0.96) Poi(4)

✅

❌

⚠Can approximate
Bin(100,1-0.96)

Poisson approximates Binomial 
when 𝑛 is large, 𝑝 is small, and 
𝜆 = 𝑛𝑝 is “moderate.”

Different interpretations of 
“moderate”:
• 𝑛 > 20 and 𝑝 < 0.05
• 𝑛 > 100 and 𝑝 < 0.1

Poisson is Binomial in the limit:
• 𝜆 = 𝑛𝑝, where 𝑛 → ∞, 𝑝 → 0



Interlude for 
jokes/announcements

45
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Announcements

46

Quiz #1

Time frame: Thursday 4/30 12:00am-11:59pm PT
Covers: Up to end of Week 3 (including Lecture 9)
Tim’s Review session: Tuesday 4/28 12-2pm PT

https://stanford.zoom.us/j/92275547392
Info and practice: https://web.stanford.edu/class/cs109/exams/quizzes.html

Problem Set 3

Due: Monday 5/8 (after Quiz)
Covers: Up to and including Lecture 11
Out: later today
(Note: early release for quiz practice)

Python tutorial #2

When: Friday 4/24 5:00-6:00PT
Recorded? yes
Notes: to be posted online
Useful for: pset2, pset3

https://stanford.zoom.us/j/92275547392
https://web.stanford.edu/class/cs109/exams/quizzes.html
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Office Hour update
Working OH
• Sign up on QueueStatus,
• Join the group Zoom

Otherwise, by default:
• Sign up on QueueStatus
• Join 1on1 Zoom when

pinged by TA
Lisa’s Tea OH (Th 3-5pm PT):
• More casual, any CS109 or 

non-CS109 questions here
• Collaborate on jigsaw puzzle

47
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Interesting probability news

Find something cool, submit for extra credit
on Problem Set #2 J

48

https://theconversation.com/p
olly-knows-probability-this-
parrot-can-predict-the-chances-
of-something-happening-
132767

https://theconversation.com/polly-knows-probability-this-parrot-can-predict-the-chances-of-something-happening-132767


Modeling 
exercise: 
Hurricanes

49

LIVE
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1. Graph your distribution.

Hurricanes

What is the probability of an 
extreme weather event?

How do we model the 
number of hurricanes in a 
season (year)?

50
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1. Graph: Hurricanes per year since 1851

51
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1. Graph: Hurricanes per year since 1851
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Which graph is a histogram (i.e., distribution) of frequency (# of hurricanes per year)?
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2. Find a reasonable distribution 
and compute parameters.

Hurricanes

How do we model the 
number of hurricanes in a 
season (year)?

53
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2. Find a distribution: Python SciPy RV methods

from scipy import stats # great package
X = stats.poisson(8.5) # X ~ Poi(λ = 8.5)
X.pmf(2) # P(X = 2)

54

Function Description
X.pmf(k) 𝑃 𝑋 = 𝑘
X.cdf(k) 𝑃 𝑋 ≤ 𝑘
X.mean() 𝐸 𝑋
X.var() Var 𝑋
X.std() SD 𝑋

SciPy reference:
https://docs.scipy.org/doc/
scipy/reference/generated/
scipy.stats.poisson.html

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.poisson.html
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2. Find a distribution
Until 1966, things look pretty 
Poisson.

What is the probability of over
15 hurricanes in a season (year) 
given that the distribution doesn’t 
change?

55

𝑃 𝑋 > 15 = 1 − 𝑃(𝑋 ≤ 15)

= 1 −C
!<=

7>

𝑃 𝑋 = 𝑘

= 1 − 0.986 = 0.014
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You can calculate this PMF using
your favorite programming language.
Or Python3.

𝑋~Poi(𝜆 = 8.5)
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Hurricanes

How do we model the 
number of hurricanes in a 
season (year)?

56

3. Identify and explain outliers.
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3. Improbability
Since 1966, there have been
two years with over 30 hurricanes.

What is the probability of over
30 hurricanes in a season (year) 
given that the distribution doesn’t 
change?

57

𝑃 𝑋 > 30 = 1 − 𝑃(𝑋 ≤ 30)

= 1 −C
!<=

?=

𝑃 𝑋 = 𝑘

= 2.2E − 09

🤔

𝑋~Poi(𝜆 = 8.5)
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3. The distribution has changed.
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3. What changed?
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3. What changed?

60

It’s not just climate change. We also have tools for better data collection.


