o8: Poisson and More

Lisa Yan April 22, 2020

Quick slide reference

3 Poisson

08a_poisson

- 15 Poisson Paradigm
- 23 Other Discrete RVs
- 31 Exercises

08b_poisson_paradigm

08c_other_discrete

LIVE

08a_poisson

Poisson

The natural exponent *e*:

$$\lim_{n\to\infty} \left(1-\frac{\lambda}{n}\right)^n = e^{-\lambda}$$

https://en.wikipedia.org/wiki/E_(mathematical_constant)

Jacob Bernoulli while studying compound interest in 1683

Algorithmic ride sharing

Probability of k requests from this area in the next 1 minute?

Suppose we know:

On average, $\lambda = 5$ requests per minute

Algorithmic ride sharing, approximately

Probability of k requests from this area in the next 1 minute?

On average, $\lambda = 5$ requests per minute

Break a minute down into 60 seconds:

0	0	1	0	1	 0	0	0	0	1
1	2	3	4	5					60

At each second:

- Independent trial
- You get a request (1) or you don't (0).
- Let X = # of requests in minute. $E[X] = \lambda = 5$

$$X \sim \text{Bin}(n = 60, p = 5/60)$$

$$P(X = k) = {\binom{60}{k}} \left(\frac{5}{60}\right)^k \left(1 - \frac{5}{60}\right)^{n-k}$$

But what if there are *two* requests in the same second?

Algorithmic ride sharing, approximately

Probability of k requests from this area in the next 1 minute?

On average, $\lambda = 5$ requests per minute

Break a minute down into 60,000 milliseconds:

At each millisecond:

• Independent trial

 $E[X] = \lambda = 5$

- You get a request (1) or you don't (0).
- Let X = # of requests in minute.

$$X \sim \text{Bin}(n = 60000, p = \lambda/n)$$

$$P(X = k) = {\binom{n}{k}} \left(\frac{\lambda}{n}\right)^k \left(1 - \frac{\lambda}{n}\right)^{n-k}$$

But what if there are *two* requests in the same millisecond?

Algorithmic ride sharing, approximately

Probability of k requests from this area in the next 1 minute?

On average, $\lambda = 5$ requests per minute

Break a minute down into infinitely small buckets:

OMG so small

 ∞

For each time bucket:

• Independent trial

1

- You get a request (1) or you don't (0).
- Let X = # of requests in minute.

 $E[X] = \lambda = 5$

$$X \sim \operatorname{Bin}(n, p = \lambda/n)$$

$$P(X = k) = \lim_{n \to \infty} {\binom{n}{k} \left(\frac{\lambda}{n}\right)^k \left(1 - \frac{\lambda}{n}\right)^{n-k}}$$

Who wants to see some cool math?

$$\lim_{n\to\infty}\left(1-\frac{\lambda}{n}\right)^n=e^{-\lambda}$$

$$P(X = k) = \lim_{n \to \infty} {\binom{n}{k}} \left(\frac{\lambda}{n}\right)^{k} \left(1 - \frac{\lambda}{n}\right)^{n-k} \underset{\text{expand}}{\text{expand}} = \lim_{n \to \infty} \frac{n!}{k!(n-k)!} \frac{\lambda^{k}}{n^{k}} \frac{\left(1 - \frac{\lambda}{n}\right)^{n}}{\left(1 - \frac{\lambda}{n}\right)^{k}}$$

$$\overset{\text{Rearrange}}{=} \lim_{n \to \infty} \frac{n!}{n^{k}(n-k)!} \frac{\lambda^{k}}{k!} \frac{\left(1 - \frac{\lambda}{n}\right)^{n}}{\left(1 - \frac{\lambda}{n}\right)^{k}}$$

$$\overset{\text{Def natural}}{\stackrel{\text{expand}}{=} \lim_{n \to \infty} \frac{n!}{n^{k}(n-k)!} \frac{\lambda^{k}}{k!} \frac{e^{-\lambda}}{\left(1 - \frac{\lambda}{n}\right)^{k}}$$

$$\overset{\text{Expand}}{=} \lim_{n \to \infty} \frac{n(n-1)\cdots(n-k+1)}{n^{k}} \frac{(n-k)!}{(n-k)!} \frac{\lambda^{k}}{k!} \frac{e^{-\lambda}}{\left(1 - \frac{\lambda}{n}\right)^{k}}$$

$$\overset{\text{Limit analysis}}{=} \lim_{n \to \infty} \frac{n^{k}}{n^{k}} \frac{\lambda^{k}}{k!} \frac{e^{-\lambda}}{1}$$

$$\overset{\text{Simplify}}{=} \frac{\lambda^{k}}{k!} e^{-\lambda}$$

Lisa Yan, CS109, 2020

Algorithmic ride sharing

Probability of k requests from this area in the next 1 minute?

On average, $\lambda = 5$ requests per minute

$$P(X = k) = \frac{\lambda^k}{k!}e^{-\lambda}$$

Lisa Yan, CS109, 2020

Simeon-Denis Poisson

French mathematician (1781 – 1840)

- Published his first paper at age 18
- Professor at age 21
- Published over 300 papers

"Life is only good for two things: doing mathematics and teaching it."

Consider an experiment that lasts a fixed interval of time.

<u>def</u> A Poisson random variable *X* is the number of successes over the experiment duration.

$X \sim \text{Poi}(\lambda)$	PMF	$P(X = k) = e^{-\lambda} \frac{\lambda^k}{k!}$
	Expectation	$E[X] = \lambda$
Support: {0,1, 2, }	Variance	$Var(X) = \lambda$

Examples:

- # earthquakes per year
- # server hits per second
- # of emails per day

Yes, expectation == variance for Poisson RV! More later.

Earthquakes

$$\begin{array}{ll} X \sim \operatorname{Poi}(\lambda) \\ E[X] = \lambda \end{array} \quad p(k) = e^{-\lambda} \frac{\lambda^k}{k!} \end{array}$$

There are an average of 2.79 major earthquakes in the world each year. What is the probability of 3 major earthquakes happening next year?

1. Define RVs

2. Solve

Are earthquakes really Poissonian?

Bulletin of the Seismological Society of America

Vol. 6	54
--------	----

October 1974

No. 5

IS THE SEQUENCE OF EARTHQUAKES IN SOUTHERN CALIFORNIA, WITH AFTERSHOCKS REMOVED, POISSONIAN?

By J. K. GARDNER and L. KNOPOFF

Abstract

Yes.

08b_poisson_paradigm

Poisson Paradigm

All the movies, images, emails and other digital data from more than 600 smartphones (10,000 GB) can be stored in the faint pink smear of DNA at the end of this test tube.

What is the probability that DNA storage stays uncorrupted?

DNA

What is the probability that DNA storage stays uncorrupted?

- In DNA (and real networks), we store large strings.
- Let string length be long, e.g., $n \approx 10^4$
- Probability of corruption of each base pair is very small, e.g., $p = 10^{-6}$
- Let X = # of corruptions.

What is P(DNA storage is uncorrupted) = P(X = 0)?

1. Approach 1: $X \sim Bin(n = 10^4, p = 10^{-6})$ $P(X = k) = {n \choose k} p^k (1-p)^{n-k}$ unwieldy! $A = {10^4 \choose 0} 10^{-6 \cdot 0} (1-10^{-6})^{10^4 - 0}$ ≈ 0.99049829 2. Approach 2: $X \sim Poi(\lambda = 10^4 \cdot 10^{-6} = 0.01)$ $P(X = k) = e^{-\lambda} \frac{\lambda^k}{k!} = e^{-0.01} \frac{0.01^0}{0!}$ $= e^{-0.01}$ ≈ 0.99049834 approximation!

Stanford University 17

Poisson approximates Binomial when n is large, p is small, and $\lambda = np$ is "moderate."

Different interpretations of "moderate":

- n > 20 and p < 0.05
- n > 100 and p < 0.1

Poisson is Binomial in the limit:

• $\lambda = np$, where $n \to \infty, p \to 0$

Poisson can approximate Binomial.

$$X \sim \text{Poi}(\lambda)$$
 $Y \sim \text{Bin}(n, p)$ $E[X] = \lambda$ $E[Y] = np$

Poisson Random Variable

Consider an experiment that lasts a fixed interval of time.

<u>def</u> A **Poisson** random variable *X* is the number of occurrences over the experiment duration.

$X \sim \text{Poi}(\lambda)$	PMF	$P(X = k) = e^{-\lambda} \frac{\lambda^k}{l}$
	Expectation	$E[X] = \lambda$
Support: {0,1, 2, }	Variance	$Var(X) = \lambda$

Examples:

- # earthquakes per year
- # server hits per second
- # of emails per day

Time to show intuition for why expectation == variance!

Properties of $Poi(\lambda)$ with the Poisson paradigm

Recall the Binomial:

V = Din(n = n)	Expectation	E[Y] = np
$I \sim \text{Diff}(n, p)$	Variance	Var(Y) = np(1-p)

Consider $X \sim \text{Poi}(\lambda)$, where $\lambda = np \ (n \to \infty, p \to 0)$:

 $X \sim \text{Poi}(\lambda)$ Expectation $E[X] = \lambda$ Variance $Var(X) = \lambda$

Proof:

$$E[X] = np = \lambda$$

Var(X) = $np(1-p) \rightarrow \lambda(1-0) = \lambda$

A Real License Plate Seen at Stanford

No, it's not mine... but I kind of wish it was.

Lisa Yan, CS109, 2020

Stanford University

Poisson Paradigm, part 2

Poisson can still provide a good approximation of the Binomial, even when assumptions are "mildly" violated.

You can apply the Poisson approximation when:

 "Successes" in trials are <u>not entirely independent</u> e.g.: # entries in each bucket in large hash table.

 Probability of "Success" in each trial varies (slightly), like a small relative change in a very small p e.g.: Average # requests to web server/sec may fluctuate slightly due to load on network

> We won't explore this too much, but I want you to know it exists.

08c_other_discrete

Other Discrete RVs

Grid of random variables

	Number of successes	Time until success	
One trial	Ber(p)		One success
Several trials	n = 1 Bin(n, p)		Several successes
Interval of time	Poi(λ)	(tomorrow)	Interval of time to first success
Focus o	n understanding how and	d when to use RVs, not o	n memorizing PMFs.

Lisa Yan, CS109, 2020

Geometric RV

Consider an experiment: independent trials of Ber(p) random variables. <u>def</u> A Geometric random variable *X* is the # of trials until the <u>first</u> success.

X~Geo(p)PMF
$$P(X = k) = (1 - p)^{k-1}p$$
Support: {1, 2, ...}Expectation $E[X] = \frac{1}{p}$ Variance $Var(X) = \frac{1-p}{p^2}$

Examples:

- Flipping a coin (P(heads) = p) until first heads appears
- Generate bits with P(bit = 1) = p until first 1 generated

Negative Binomial RV

Consider an experiment: independent trials of Ber(p) random variables. <u>def</u> A Negative Binomial random variable X is the # of trials until r successes.

$$X \sim \text{NegBin}(r, p) \xrightarrow{\text{PMF}} P(X = k) = \binom{k-1}{r-1} (1-p)^{k-r} p^r$$

Support: $\{r, r+1, ...\} \xrightarrow{\text{Variance}} Var(X) = \frac{r}{p}$

Examples:

- Flipping a coin until r^{th} heads appears
- # of strings to hash into table until bucket 1 has r entries

$$Geo(p) = NegBin(1, p)$$

(fixed leature array)

Lisa Yan, CS109, 2020

Grid of random variables

	Number of successes	Time until success	
One trial	Ber(p)	Geo(p)	One success
Several trials	n = 1 Bin(n, p)	NegBin (r, p)	Several successes
Interval of time	Poi(λ)	(tomorrow)	Interval of time to first success

Catching Pokemon

Wild Pokemon are captured by throwing Pokeballs at them.

- Each ball has probability p = 0.1 of capturing the Pokemon.
- Each ball is an independent trial.

What is the probability that you catch the Pokemon on the 5th try?

1. Define events/ RVs & state goal

> $X \sim$ some distribution Want: P(X = 5)

- 2. Solve
 - A. X~Bin(5,0.1)
 B. X~Poi(0.5)
 C. X~NegBin(5,0.1)
 D. X~NegBin(1,0.1)
 E. X~Geo(0.1)
 - F. None/other

Catching Pokemon

Wild Pokemon are captured by throwing Pokeballs at them.

- Each ball has probability p = 0.1 of capturing the Pokemon.
- Each ball is an independent trial.

What is the probability that you catch the Pokemon on the 5th try?

1. Define events/ RVs & state goal

> *X*~some distribution Want: P(X = 5)

- 2. Solve
 - A. $X \sim Bin(5, 0.1)$ B. $X \sim Poi(0.5)$ C. $X \sim Nor Bin(5, 0.1)$
 - C. $X \sim NegBin(5, 0.1)$
 - D. $X \sim \text{NegBin}(1, 0.1)$
 - E. *X*~Geo(0.1)
 - F. None/other

Catching Pokemon

 $X \sim \text{Geo}(p) \quad p(k) = (1-p)^{k-1}p$

Wild Pokemon are captured by throwing Pokeballs at them.

- Each ball has probability p = 0.1 of capturing the Pokemon.
- Each ball is an independent trial.

What is the probability that you catch the Pokemon on the 5th try?

1. Define events/ 2. Solve **RVs & state goal**

X~Geo(0.1)

Want: P(X = 5)

(live) (8: Poisson and More

Lisa Yan April 22, 2020

LIVE

Discrete RVs

The hardest part of problem-solving is determining what is a random)variable .

Grid of random variables

Review

	Number of successes	Time until success	
One trial	Ber(p)	Geo(p) 介	One success
Several trials	n = 1 Bin(n, p)	NegBin (r, p)	Several successes
Interval of time	Poi(λ)	(today!)	Interval of time to first success

Grid of random variables

Review

	Number of successes	Time until success	
One trial	Ber(p)	Geo(p)	One success
Several trials	n = 1 $Bin(n, p)$	r = 1 NegBin(r, p)	Several successes
Interval of time	$Poi(\lambda)$	(today!)	Interval of time to first success

Breakout Rooms

Check out the question on the next slide (Slide 36). Post any clarifications here!

https://us.edstem.org/courses/109/discussion/39076

Breakout rooms: 5 min. Introduce yourself!

Kickboxing with RVs

How would you model the following?

- **1.** *#* of snapchats you receive in a day
- 2. # of children until the first one with brown eyes (same parents)
- 3. Whether stock went up or down in a day
- 4. # of probability problems you try until you get 5 correct (if you are randomly correct)
- # of years in some decade with more than 6 Atlantic hurricanes

Choose from:C. $Poi(\lambda)$ A.Ber(p)D.Geo(p)B.Bin(n,p)E.NegBin(r,p)

Kickboxing with RVs

How would you model the following?

- 1. # of snapchats you receive in a day
- 2. # of children until the first one with brown eyes (same parents)
- 3. Whether stock went up or down in a day
- 4. # of probability problems you try until you get 5 correct (if you are randomly correct)
- # of years in some decade with more than 6 Atlantic hurricanes

Choose from:C. $Poi(\lambda)$ A.Ber(p)D.Geo(p)B.Bin(n,p)E.NegBin(r,p)

C. Poi (λ)

D. Geo(p) or E. NegBin(1, p)

A. Ber(p) or B. Bin(1, p)

E. NegBin(r = 5, p)

B. Bin(n = 10, p), where $p = P(\ge 6 \text{ hurricanes in a year})$ calculated from C. $Poi(\lambda)$

CS109 Learning Goal: Use new RVs

Let's say you are learning about servers/networks.

You read about the M/D/1 queue:

"The service time busy period is distributed as a Borel with parameter $\mu = 0.2$."

Goal: You can recognize terminology and understand experiment setup.

ticle Talk Borel distribution From Wikipedia, the free encyclopedia The Borel distribution is a discrete probability distribution, arising in contexts including branching processes and queueing theory. It is named after the French mathematician Émile Borel. If the number of offspring that an organism has is Poisson-distributed, and if the average number of offspring of each organism is no bigger than 1, then the tescendants of each individual will	Not log Read Parame Suppor pmf Mean Varianc	gged in Talk Co Edit View histr Borel ters μ t η t η t η t η t η t η t η t η t η t η	distributions (distributions ($u \in [0, 1]$ $u \in \{1, 2, 3, 3, 2^{-\mu n} (\mu n)^{n-1}$ n! $\frac{1}{1-\mu}$ μ	Create account Log in th Wikipedia Q ion
ticle Talk Borel distribution From Wikipedia, the free encyclopedia The Borel distribution is a discrete probability distribution, arising in contexts including branching processes and queueing theory. It is named after the French mathematician Émile Borel. If the number of offspring that an organism has is Poisson-distributed, and if the average number of offspring of each organism is no bigger than 1, then the descendants of each individual will	Read I Parame Suppor pmf Mean Varianc	Edit View histr Borel ters p t 6 - - - -	distribution $\iota \in [0,1]$ $\iota \in \{1,2,3,4\}$ $\iota \in \{1,2,3,$	ion
Borel distribution From Wikipedia, the free encyclopedia The Borel distribution is a discrete probability distribution, arising in contexts ncluding branching processes and queueing theory. It is named after the French mathematician Émile Borel. If the number of offspring that an organism has is Poisson-distributed, and if the average number of offspring of each organism is no bigger than 1, then the descendants of each individual will	Parame Support pmf Mean Varianc	Borel ters µ t n c c c c c c c c c c	$\begin{array}{c} \textbf{distribut} \\ i \in [0,1] \\ i \in \{1,2,3, e^{-\mu n} (\mu n)^{n-1} \\ n! \\ 1 \\ 1 \\ -\mu \\ \mu \end{array}$	ion }
The Borel distribution is a discrete probability distribution, arising in contexts including branching processes and queueing theory. It is named after the French mathematician Émile Borel. If the number of offspring that an organism has is Poisson-distributed , and if the average number of offspring of each organism is no bigger than 1, then the descendants of each individual will	Parame Support pmf Mean Varianc	Borel tters µ t n c c c c c c	$\begin{array}{c} \textbf{distributi} \\ i \in [0,1] \\ i \in \{1,2,3,2,3,2,2,3,3,2,3,3,3,3,3,3,3,3,3,3,$	ion } -1
probability distribution, arising in contexts ncluding branching processes and queueing theory. It is named after the French mathematician Émile Borel. If the number of offspring that an organism has is Poisson-distributed, and if the average number of offspring of each organism is no bigger than 1, then the descendants of each individual will	Parame Support pmf Mean Varianc	ters μ t n - - - - - - - - - - - - - - - - - - -	$egin{aligned} & \mu \in [0,1] \ & \mu \in \{1,2,3,2,3\} \ & \mu^n (\mu n)^{n-1} \ & n! \ & 1 \ & 1 \ & 1 \ & \mu \ & \mu \ & \mu \ & \mu \ & \end{pmatrix}$	}
finduling branching processes and queueing theory. It is named after the French mathematician Émile Borel. If the number of offspring that an organism has is Poisson-distributed, and if the average number of offspring of each organism is no bigger than 1, then the descendants of each individual will	Support pmf Mean Varianc	t n 	$egin{aligned} n \in \{1,2,3,2,2,2,2,3,2,2,3,2,2,3,2,3,2,3,2,3,$,}
French mathematician Émile Borel. If the number of offspring that an organism has is Poisson-distributed, and if the average number of offspring of each organism is no bigger than 1, then the descendants of each individual will	pmf Mean Varianc	e _ ($e^{-\mu n} (\mu n)^{n-1} {n! \over n! \over 1 \over 1 - \mu} {\mu \over \mu}$	-1
If the number of offspring that an organism has is Poisson-distributed, and if the average number of offspring of each organism is no bigger than 1, then the descendants of each individual will	Mean Varianc		$\frac{n!}{1-\mu}$	
average number of offspring of each organism is no bigger than 1, then the descendants of each individual will	Varianc	e	μ	
organism is no bigger than 1, then the		(
descendants of each individual will ultimately become extinct. The number of descendants that an individual ultimately has in that situation is a random variable distributed according to a Borel distribution.				
Contents [hide]				
 Definition Derivation and branching process interpret 	tation			
3 Queueing theory interpretation				
5 Borel–Tanner distribution				
6 References				
7 External links				
Definition [edit]				
A discrete random variable X is said to have	a Borel	distribution ^{[1][2}] with paran	neter $\mu \in [0, 1]$ if
the probability mass function of X is given by	/			
$P_{\mu}(n) = \Pr(X=n) = rac{e^{-\mu n} (\mu n)^{n-1}}{2}$	-1			
<i>n</i> !				
	1 Definition 2 Derivation and branching process interpret 3 Queueing theory interpretation 4 Properties 5 Borel–Tanner distribution 6 References 7 External links Definition [edit] A discrete random variable X is said to have the probability mass function of X is given by $P_{\mu}(n) = \Pr(X = n) = \frac{e^{-\mu n} (\mu n)^{n-1}}{n!}$	1 Definition 2 Derivation and branching process interpretation 3 Queueing theory interpretation 4 Properties 5 Borel-Tanner distribution 6 References 7 External links Definition [edit] A discrete random variable X is said to have a Borel the probability mass function of X is given by $P_{\mu}(n) = \Pr(X = n) = \frac{e^{-\mu n}(\mu n)^{n-1}}{n!}$	1 Definition 2 Derivation and branching process interpretation 3 Queueing theory interpretation 4 Properties 5 Borel–Tanner distribution 6 References 7 External links Definition [edit] A discrete random variable X is said to have a Borel distribution ^{[1][2]} the probability mass function of X is given by $P_{\mu}(n) = \Pr(X = n) = \frac{e^{-\mu n}(\mu n)^{n-1}}{n!}$	1 Definition 2 Derivation and branching process interpretation 3 Queueing theory interpretation 4 Properties 5 Borel–Tanner distribution 6 References 7 External links Definition [edit] A discrete random variable X is said to have a Borel distribution ^{[1][2]} with parameter probability mass function of X is given by $P_{\mu}(n) = \Pr(X = n) = \frac{e^{-\mu n} (\mu n)^{n-1}}{n!}$

LIVE

Poisson RV

Review

	PMF	λ^k
$X \sim \text{Poi}(\lambda)$		$P(X = k) = e^{-\lambda} \frac{\pi}{k!}$
	Expectation	$E[X] = \lambda$
Support: {0,1, 2, }	Variance	$Var(X) = \lambda$

In CS109, a Poisson RV $X \sim Poi(\lambda)$ most often models

- # of successes over a fixed interval of time. $\lambda = E[X]$, average success/interval
- Approximation of $Y \sim Bin(n, p)$ where n is large and p is small. $\lambda = E[Y] = np$
- Approximation of Binomial even when success in trials are not entirely independent.

(explored in problem set 3)

Breakout Rooms

Slide 42 has two questions to go over in groups.

Post any clarifications here!

https://us.edstem.org/courses/109/discussion/39076

Breakout rooms: 5 mins

Web server load

 $X \sim \text{Poi}(\lambda)$ $p(k)=e^{-\lambda}.$ $E[X] = \lambda$

- 1. Consider requests to a web server in 1 second.
 - In the past, server load averages 2 hits/second.
 - Let X = # hits the server receives in a second.
 What is P(X < 5)?
- 2. Can the following Binomial RVs be approximated?

Stanford University 42

1. Web server load

 $\begin{array}{ll} X \sim \operatorname{Poi}(\lambda) \\ E[X] = \lambda \end{array} \quad p(k) = e^{-\lambda} \frac{\lambda^k}{k!} \end{array}$

Consider requests to a web server in 1 second.

- In the past, server load averages 2 hits/second.
- Let *X* = # hits the server receives in a second.

What is P(X < 5)?

1. Define RVs2. Solve

2. Can these Binomial RVs be approximated?

Poisson approximates Binomial when n is large, p is small, and $\lambda = np$ is "moderate."

Different interpretations of "moderate":

- n > 20 and p < 0.05
- n > 100 and p < 0.1

Poisson is Binomial in the limit:

•
$$\lambda = np$$
, where $n \to \infty, p \to 0$

Interlude for jokes/announcements

Announcements

Quiz #1Time frame:Thursday 4/30 12:00am-11:59pm PTCovers:Up to end of Week 3 (including Lecture 9)Tim's Review session:Tuesday 4/28 12-2pm PThttps://stanford.zoom.us/j/92275547392

Info and practice: https://web.stanford.edu/class/cs109/exams/quizzes.html

Problem Set 3

Python tutorial #2

When:Friday 4/24 5:00-6:00PTRecorded?yesNotes:to be posted onlineUseful for:pset2, pset3

Due: Monday 5/8 (after Quiz) Covers: Up to and including Lecture 11 Out: later today (Note: early release for quiz practice)

Office Hour update

Working OH

- Sign up on QueueStatus,
- Join the group Zoom

Otherwise, by default:

- Sign up on QueueStatus
- Join 1on1 Zoom when pinged by TA

Lisa's Tea OH (Th 3-5pm PT):

- More casual, any CS109 or non-CS109 questions here
- Collaborate on jigsaw puzzle

Interesting probability news

Find something cool, submit for extra credit on Problem Set #2 ③

https://theconversation.com/p olly-knows-probability-thisparrot-can-predict-the-chancesof-something-happening-132767

LIVE

Modeling exercise: Hurricanes

Hurricanes

What is the probability of an extreme weather event?

How do we model the number of hurricanes in a season (year)?

1. Graph your distribution.

1. Graph: Hurricanes per year since 1851

Which graph is a histogram (i.e., distribution) of frequency (# of hurricanes per year)?

1. Graph: Hurricanes per year since 1851

Which graph is a histogram (i.e., distribution) of frequency (# of hurricanes per year)?

Hurricanes

How do we model the number of hurricanes in a season (year)?

2. Find a reasonable distribution and compute parameters.

2. Find a distribution: Python SciPy RV methods

from scipy import stats
X = stats.poisson(8.5)
X.pmf(2)

great package
X ~ Poi(λ = 8.5)
P(X = 2)

Function	Description	
X.pmf(k)	P(X = k)	
X.cdf(k)	$P(X \leq k)$	
X.mean()	E[X]	SciPy reference:
X.var()	Var(X)	<u>https://docs.scipy.org/doc/</u> scipy/reference/generated/
X.std()	SD(X)	scipy.stats.poisson.html

2. Find a distribution

Until 1966, things look pretty Poisson.

frequency o o o o What is the probability of over 15 hurricanes in a season (year) given that the distribution doesn't change?

$$P(X > 15) = 1 - P(X \le 15)$$
$$= 1 - \sum_{k=0}^{15} P(X = k)$$
$$= 1 - 0.986 = 0.014$$

 $X \sim \text{Poi}(\lambda = 8.5)$ You can calculate this PMF using your favorite programming language. Or Python3.

Lisa Yan, CS109, 2020

0.

0.

Hurricanes

How do we model the number of hurricanes in a season (year)?

3. Identify and explain outliers.

3. Improbability

Since 1966, there have been <u>two years</u> with over 30 hurricanes.

What is the probability of over **30 hurricanes** in a season (year) given that the distribution doesn't change?

$$P(X > 30) = 1 - P(X \le 30)$$

= $1 - \sum_{k=0}^{30} P(X = k)$ $X \sim \text{Poi}(\lambda = 8.5)$
= $2.2\text{E} - 09$

3. The distribution has changed.

3. What changed?

Stanford University 59

3. What changed?

It's not just climate change. We also have tools for better data collection.

Lisa Yan, CS109, 2020