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Not all values are discrete

4

import numpy as np
np.random.random() ?
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0 … 44 52 60 … 90
𝑥

0 … 44 52 60 … 9044 … 52 56 60

People heights
You are volunteering at the local elementary school.
• To choose a t-shirt for your new buddy Jordan, you need to know their height.

1. What is the probability that your
buddy is 54.0923857234 inches tall?

2. What is the probability that your buddy is between 52–56 inches tall?

5

Essentially 0

𝑥

𝑓
𝑥

probability 
density 
function

smaller-
width 
bars

∞-ly
small 
bars

𝑃 52 < 𝑋 ≤ 56

𝑝(
𝑥)

𝑝(
𝑥)

𝑥
48    52   56    60

𝑃 52 < 𝑋 ≤ 54
+ 𝑃 54 < 𝑋 ≤ 56 𝑃 52 < 𝑋 ≤ 56
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Integrals

6

Integral = area under a curve Loving, not scary



Lisa Yan, CS109, 2020

Continuous RV definition
A random variable 𝑋 is continuous if there is a probability density function
𝑓 𝑥 ≥ 0 such that for −∞ < 𝑥 < ∞:

𝑃 𝑎 ≤ 𝑋 ≤ 𝑏 = /
,

-
𝑓(𝑥) 𝑑𝑥

Integrating a PDF must always yield valid probabilities,
and therefore the PDF must also satisfy

/
./

/
𝑓(𝑥) 𝑑𝑥 = 𝑃 −∞ < 𝑋 < ∞ = 1

Also written as: 𝑓0(𝑥)

7
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0 … 44 52 60 … 90

Today’s main takeaway, #1

Integrate 𝑓(𝑥) to get 
probabilities.

8

𝑥

𝑓 𝑥 : prob/inch

4 inches

𝑃 52 ≤ 𝑋 ≤ 56 = -
!"

!#
𝑓(𝑥) 𝑑𝑥PDF Units: probability per units of 𝑋
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Discrete random variable 𝑋

Probability mass function (PMF):
𝑝 𝑥

To get probability:
𝑃 𝑋 = 𝑥 = 𝑝 𝑥

Continuous random variable 𝑋

Probability density function (PDF):
𝑓 𝑥

To get probability:

𝑃 𝑎 ≤ 𝑋 ≤ 𝑏 = /
,

-
𝑓 𝑥 𝑑𝑥

9

PMF vs PDF

Both are measures of how likely 𝑋 is to take on a value.
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Computing probability

10

𝑓 𝑥 = 5
1
2
𝑥 if 0 ≤ 𝑥 ≤ 2

0 otherwise

Let 𝑋 be a continuous RV with PDF:

0.00

0.50

1.00

0.00 1.00 2.00

!("
) 

!
What is 𝑃 𝑋 ≥ 1 ?

🤔

𝑃 𝑎 ≤ 𝑋 ≤ 𝑏 = 4
!

"
𝑓(𝑥) 𝑑𝑥
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Computing probability

11

𝑓 𝑥 = 5
1
2
𝑥 if 0 ≤ 𝑥 ≤ 2

0 otherwise

Let 𝑋 be a continuous RV with PDF:

0.00

0.50

1.00

0.00 1.00 2.00

!("
) 

!
What is 𝑃 𝑋 ≥ 1 ?
Strategy 1: Integrate Strategy 2: Know triangles

𝑃 1 ≤ 𝑋 < ∞ = -
$

%
𝑓 𝑥 𝑑𝑥 = -

$

"1
2
𝑥𝑑𝑥

=
1
2
1
2
𝑥" 2

$

"
=
1
2
2 −

1
2
=
3
4

1 −
1
2
1
2

=
3
4

Wait…is this even legal?

𝑃 0 ≤ 𝑋 < 1 = ∫&
$𝑓 𝑥 𝑑𝑥 ? ?

𝑃 𝑎 ≤ 𝑋 ≤ 𝑏 = 4
!

"
𝑓(𝑥) 𝑑𝑥
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Today’s main takeaway, #2

For a continuous random 
variable 𝑋 with PDF 𝑓 𝑥 ,
𝑃 𝑋 = 𝑐 = ∫!

! 𝑓 𝑥 𝑑𝑥 = 0.

12

0 … 44 52 60 … 90

𝑥

Contrast with PMF in discrete case: 𝑃 𝑋 = 𝑐 = 𝑝 𝑐

𝑓 𝑥 : prob/inch
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𝑥'𝑥"

PDF Properties

13

𝑃 𝑎 ≤ 𝑋 ≤ 𝑏 = /
,

-
𝑓(𝑥) 𝑑𝑥

For a continuous RV 𝑋 with PDF 𝑓,

𝑥

𝑓 𝑥

support: set of 𝑥
where 𝑓 𝑥 > 0

𝑥$
True/False:
1. 𝑃 𝑋 = 𝑐 = 0

2. 𝑃 𝑎 ≤ 𝑋 ≤ 𝑏 = 𝑃 𝑎 < 𝑋 < 𝑏 = 𝑃 𝑎 ≤ 𝑋 < 𝑏 = 𝑃 𝑎 < 𝑋 ≤ 𝑏

3. 𝑓(𝑥) is a probability

4. In the graphed PDF above,
𝑃 𝑥< ≤ 𝑋 ≤ 𝑥= > 𝑃 𝑥= ≤ 𝑋 ≤ 𝑥> 🤔
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𝑥'𝑥"

PDF Properties

14

𝑃 𝑎 ≤ 𝑋 ≤ 𝑏 = /
,

-
𝑓(𝑥) 𝑑𝑥

For a continuous RV 𝑋 with PDF 𝑓,

❌

Interval width 𝑑𝑥 → 0

𝑥

𝑓 𝑥

support: set of 𝑥
where 𝑓 𝑥 > 0

𝑥$

Compare area under the curve 𝑓

True/False:
1. 𝑃 𝑋 = 𝑐 = 0

2. 𝑃 𝑎 ≤ 𝑋 ≤ 𝑏 = 𝑃 𝑎 < 𝑋 < 𝑏 = 𝑃 𝑎 ≤ 𝑋 < 𝑏 = 𝑃 𝑎 < 𝑋 ≤ 𝑏

3. 𝑓(𝑥) is a probability

4. In the graphed PDF above,
𝑃 𝑥< ≤ 𝑋 ≤ 𝑥= > 𝑃 𝑥= ≤ 𝑋 ≤ 𝑥>

⭐



Uniform RV

15

09b_uniform
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def An Uniform random variable 𝑋 is defined as follows:

Uniform Random Variable

16

𝑓 𝑥 = :
1

𝛽 − 𝛼
if 𝛼 ≤ 𝑥 ≤ 𝛽

0 otherwise𝑋~Uni(𝛼, 𝛽)
Support: 𝛼, 𝛽

(sometimes defined 
over 𝛼, 𝛽 ) Variance

Expectation

PDF

𝐸 𝑋 =
𝛼 + 𝛽
2

Var 𝑋 =
𝛽 − 𝛼 =

12

𝛼 𝛽 𝑥

𝑓 𝑥
1

𝛽 − 𝛼
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Quick check

17

What is <
D.E

if the following graphs are PDFs of Uniform RVs 𝑋?

0 25
𝑥

𝑓 𝑥

?

1. 2. 3.

1
𝑥

𝑓 𝑥

?

3/2

𝛼 𝛽 𝑥

𝑓 𝑥
1

𝛽 − 𝛼

−5 5
𝑥

𝑓 𝑥
?

If 𝑋~Uni(𝛼, 𝛽), the PDF of 𝑋 is:

𝑓 𝑥 = 5
<

D.E
if 𝛼 ≤ 𝑥 ≤ 𝛽

0 otherwise

🤔
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−5 5
𝑥

𝑓 𝑥
?

1
𝑥

𝑓 𝑥

?

3/2

Quick check

18

?
?

1. 2. 3.

2

1
10

0 25
𝑥

𝑓 𝑥

?
1
25

𝛼 𝛽 𝑥

𝑓 𝑥
1

𝛽 − 𝛼

What is <
D.E

if the following graphs are PDFs of Uniform RVs 𝑋?

If 𝑋~Uni(𝛼, 𝛽), the PDF of 𝑋 is:

𝑓 𝑥 = 5
<

D.E
if 𝛼 ≤ 𝑥 ≤ 𝛽

0 otherwise
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Expectation and Variance

Discrete RV 𝑋

19

𝐸 𝑋 =?
(

𝑥 𝑝 𝑥

𝐸 𝑔(𝑋) =?
(

𝑔(𝑥) 𝑝 𝑥

𝐸 𝑋 = -
)%

%
𝑥𝑓 𝑥 𝑑𝑥

𝐸 𝑔(𝑋) = -
)%

%
𝑔 𝑥 𝑓 𝑥 𝑑𝑥

Continuous RV 𝑋

Both continuous and discrete RVs
𝐸 𝑎𝑋 + 𝑏 = 𝑎𝐸 𝑋 + 𝑏

Var(𝑋) = 𝐸 (𝑋 − 𝐸[𝑋])= = 𝐸 𝑋= − (𝐸[𝑋])=

Var(𝑎𝑋 + 𝑏) = 𝑎=Var(𝑋)

Linearity of 
Expectation
Properties of 
variance

TL;DR: ∑(*+, ⇒∫+
,
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Uniform RV expectation

20

-
)%

%
𝑥 ⋅ 𝑓 𝑥 𝑑𝑥

=
1

𝛽 − 𝛼 ⋅ D
1
2 𝑥

"

-

.

=
1

𝛽 − 𝛼
⋅
1
2
𝛽" − 𝛼"

=
1
2 ⋅

𝛽 + 𝛼 𝛽 − 𝛼
𝛽 − 𝛼

𝐸 𝑋 =

=
𝛼 + 𝛽
2

Interpretation:
Average the start & end

𝛼 𝛽 𝑥

𝑓 𝑥
1

𝛽 − 𝛼

= -
-

.
𝑥 ⋅

1
𝛽 − 𝛼

𝑑𝑥
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def An Uniform random variable 𝑋 is defined as follows:

Uniform Random Variable

21

𝑓 𝑥 = :
1

𝛽 − 𝛼
if 𝛼 ≤ 𝑥 ≤ 𝛽

0 otherwise𝑋~Uni(𝛼, 𝛽)
Support: 𝛼, 𝛽

(sometimes defined 
over 𝛼, 𝛽 ) Variance

Expectation

PDF

𝐸 𝑋 =
𝛼 + 𝛽
2

Var 𝑋 =
𝛽 − 𝛼 =

12

On your own time

Just now

𝛼 𝛽 𝑥

𝑓 𝑥
1

𝛽 − 𝛼



Exponential RV

22

09c_exponential
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Grid of random variables

23

Number of 
successes

Ber(𝑝)One trial

Several
trials

Interval
of time

Bin(𝑛, 𝑝)

Poi(𝜆)

Geo(𝑝)

NegBin(𝑟, 𝑝)

One success

Several
successes

Interval of time to
first success

Time until 
success

𝑛 = 1 𝑟 = 1

?Exp(𝜆)
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Consider an experiment that lasts a duration of time until success occurs.
def An Exponential random variable 𝑋 is the amount of time until success.

Examples:
• Time until next earthquake
• Time for request to reach web server
• Time until end of cell phone contract

Exponential Random Variable

24

𝑓 𝑥 = B𝜆𝑒
.JK if 𝑥 ≥ 0

0 otherwise𝑋~Exp(𝜆)
Support: 0,∞

Variance

Expectation

PDF

𝐸 𝑋 =
1
𝜆

Var 𝑋 =
1
𝜆=

(in extra slides)

(on your own)

0
0.2
0.4
0.6
0.8
1

0 1 2 3 4 5

𝑓 𝑥

𝑥
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Interpreting Exp(𝜆)
def An Exponential random variable 𝑋 is the amount of time until success.

25

𝑋~Exp(𝜆) Expectation 𝐸 𝑋 =
1
𝜆

Based on the expectation 𝐸 𝑋 , what are the units of 𝜆?

🤔
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Interpreting Exp(𝜆)
def An Exponential random variable 𝑋 is the amount of time until success.

26

Based on the expectation 𝐸 𝑋 , what are the units of 𝜆?

𝑋~Exp(𝜆) Expectation 𝐸 𝑋 =
1
𝜆

e.g., average # of successes per second For both Poisson and Exponential RVs,
𝜆 = # successes/time.
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Earthquakes

27

1906 Earthquake 
Magnitude 7.8
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Earthquakes
Major earthquakes (magnitude 8.0+) occur once every 500 years.*
1. What is the probability of a major earthquake in the next 30 years?

28

𝑋~Exp(𝜆) 𝑓 𝑥 = 𝜆𝑒#$% if 𝑥 ≥ 0

*In California, according to historical data from USGS, 2015

𝐸 𝑋 = 1/𝜆

We know on average:

0.002
earthquakes

year

500
years

earthquake

1
earthquakes
500 years 🤔
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Earthquakes
Major earthquakes (magnitude 8.0+) occur once every 500 years.*
1. What is the probability of a major earthquake in the next 30 years?

29

Define events/ 
RVs & state goal

Solve

𝑋: when next
earthquake happens

𝑋 ~Exp 𝜆 = 0.002

Want: 𝑃 𝑋 < 30
year)$𝜆:

𝑋~Exp(𝜆) 𝑓 𝑥 = 𝜆𝑒#$% if 𝑥 ≥ 0

∫ 𝑒&%𝑑𝑥 =
1
𝑐 𝑒

&%

Recall

= 1/500

𝐸 𝑋 = 1/𝜆

*In California, according to historical data from USGS, 2015
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Earthquakes
Major earthquakes (magnitude 8.0+) occur once every 500 years.*
1. What is the probability of a major earthquake in the next 30 years?
2. What is the standard deviation of years until the next earthquake?

30

Define events/ 
RVs & state goal

𝑋: when next
earthquake happens

𝑋 ~Exp 𝜆 = 0.002

Want: 𝑃 𝑋 < 30
year)$𝜆:

Solve

𝑋~Exp(𝜆) 𝑓 𝑥 = 𝜆𝑒#$% if 𝑥 ≥ 0
𝐸 𝑋 = 1/𝜆

*In California, according to historical data from USGS, 2015
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0 … 44 52 60 … 90

4 inches

Today’s main takeaway, #1

Integrate 𝑓(𝑥) to get 
probabilities.

32

𝑃 𝑎 ≤ 𝑋 ≤ 𝑏 = /
!

"
𝑓(𝑥) 𝑑𝑥

𝑓 𝑥 : prob/inch

Review

𝑥
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0 … 44 52 60 … 90

Today’s main takeaway, #2

For a continuous random 
variable 𝑋 with PDF 𝑓 𝑥 ,
𝑃 𝑋 = 𝑐 = ∫!

! 𝑓 𝑥 𝑑𝑥 = 0.

33

𝑥

Implication: 𝑃 𝑎 ≤ 𝑋 ≤ 𝑏 = 𝑃 𝑎 < 𝑋 < 𝑏

Review



Think
Slide 35 has a matching question to go over 
by yourself. We’ll go over it together 
afterwards.

Post any clarifications here!
https://us.edstem.org/courses/109/discussion/39083

Think by yourself: 2 min

34

🤔(by yourself)

https://us.edstem.org/courses/109/discussion/39083
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Determining valid PDFs
Which of the following functions are valid PDFs?

35

𝑓 𝑥

𝑥
𝑥$ 𝑥"

-
)%

%
𝑓 𝑥 𝑑𝑥 = 0.5

𝑔 𝑥

𝑥
𝑥' 𝑥1

-
)%

%
𝑔 𝑥 𝑑𝑥 = 1

ℎ 𝑥

𝑥
0.5 1

1

2 -
)%

%
ℎ 𝑥 𝑑𝑥 = 1

𝑤 𝑥

𝑥
𝑥! 𝑥#

0

-
)%

%
𝑤 𝑥 𝑑𝑥 = 1

1. 2.

3. 4.

🤔

𝑃 𝑎 ≤ 𝑋 ≤ 𝑏 = 4
!

"
𝑓(𝑥) 𝑑𝑥

(by yourself)
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Determining valid PDFs
Which of the following functions are valid PDFs?

36

𝑓 𝑥

𝑥
𝑥$ 𝑥"

-
)%

%
𝑓 𝑥 𝑑𝑥 = 0.5

𝑔 𝑥

𝑥
𝑥' 𝑥1

-
)%

%
𝑔 𝑥 𝑑𝑥 = 1

ℎ 𝑥

𝑥
0.5 1

1

2 -
)%

%
ℎ 𝑥 𝑑𝑥 = 1

𝑤 𝑥

𝑥
𝑥! 𝑥#

0

-
)%

%
𝑤 𝑥 𝑑𝑥 = 1

1. 2.

3. 4.

𝑃 𝑎 ≤ 𝑋 ≤ 𝑏 = 4
!

"
𝑓(𝑥) 𝑑𝑥



Breakout 
Rooms

Check out the question on the next slide 
(Slide 38). Post any clarifications here!

https://us.edstem.org/courses/109/discussion/39083

Breakout rooms: 4 min. Introduce yourself!

37

🤔

https://us.edstem.org/courses/109/discussion/39083
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Riding the Marguerite Bus
You want to get on the Marguerite bus.
• The bus stops at the Gates building at 15-minute intervals 

(2:00, 2:15, etc.).
• You arrive at the stop uniformly between 2:00-2:30pm.

P(you wait < 5 minutes for bus)?

38

🤔
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Riding the Marguerite Bus
You want to get on the Marguerite bus.
• The bus stops at the Gates building at 15-minute intervals 

(2:00, 2:15, etc.).
• You arrive at the stop uniformly between 2:00-2:30pm.

P(you wait < 5 minutes for bus)?

39
2:00pm 15 30

wait < 5 min

1. Define events/ 
RVs & state goal

2. Solve

𝑋: time passenger 
arrives after 2:00

𝑋~Uni(0,30)

Want:



Interlude for 
jokes/announcements

40



Lisa Yan, CS109, 2020

Announcements

41

Quiz #1

Time frame: Thursday 4/30 12:00am-11:59pm PT
Covers: Up to end of Week 3 (including Lecture 9)
Review session (Tim): Tuesday 4/28 12-2pm PT

https://stanford.zoom.us/j/92275547392
Info and practice: https://web.stanford.edu/class/cs109/exams/quizzes.html

Python tutorial #2 (Sandra)

When: today 4/24 5:00-6:00PT
https://stanford.zoom.us/j/621852324

Recorded Notes online
Useful for: pset2, pset3

Note: If you have an emergency
situation during the quiz,
please contact Lisa and Cooper.
We will try our best to accommodate.

https://stanford.zoom.us/j/92275547392
https://web.stanford.edu/class/cs109/exams/quizzes.html
https://stanford.zoom.us/j/621852324
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Interesting probability news

42

NYC subway math
https://erikbern.com/2016/04/04/nyc-subway-math.html

Distribution of time
until the next subway arrival
Probably Beta RV (Week 8)

https://erikbern.com/2016/04/04/nyc-subway-math.html
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Cumulative Distribution Function (CDF)

43

Review

For a random variable 𝑋, the cumulative distribution function (CDF) is 
defined as

𝐹 𝑎 = 𝐹0 𝑎 = 𝑃 𝑋 ≤ 𝑎 ,where −∞ < 𝑎 < ∞

For a discrete RV 𝑋, the CDF is:

𝐹 𝑎 = 𝑃 𝑋 ≤ 𝑎 = I
all KS,

𝑝(𝑥)
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For a random variable 𝑋, the cumulative distribution function (CDF) is 
defined as

𝐹 𝑎 = 𝐹0 𝑎 = 𝑃 𝑋 ≤ 𝑎 ,where −∞ < 𝑎 < ∞

For a discrete RV 𝑋, the CDF is:

𝐹 𝑎 = 𝑃 𝑋 ≤ 𝑎 = I
all KS,

𝑝(𝑥)

For a continuous RV 𝑋, the CDF is:

𝐹 𝑎 = 𝑃 𝑋 ≤ 𝑎 = /
./

,
𝑓 𝑥 𝑑𝑥

Cumulative Distribution Function (CDF)

44

CDF is a probability, 
though PDF is not.

If you learn to use 
CDFs, you can avoid 
integrating the PDF.

𝑓 𝑥

𝑥
𝑏𝐹 𝑏



Think
Slide 46 has a matching question to go over 
by yourself. We’ll go over it together 
afterwards.

Post any clarifications here!
https://us.edstem.org/courses/109/discussion/27279

Think by yourself: 1 min

45

🤔(by yourself)

https://us.edstem.org/courses/109/discussion/27279
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Using the CDF for continuous RVs
For a continuous random variable 𝑋 with PDF 𝑓(𝑥), the CDF of 𝑋 is

𝑃 𝑋 ≤ 𝑎 = 𝐹 𝑎 = /
./

,
𝑓 𝑥 𝑑𝑥

46

Matching (choices are used 0/1/2 times)

A. 𝐹 𝑎
B. 1 − 𝐹(𝑎)
C. 𝐹 𝑎 − 𝐹(𝑏)
D. 𝐹 𝑏 − 𝐹(𝑎)

1. 𝑃 𝑋 < 𝑎
2. 𝑃 𝑋 > 𝑎
3. 𝑃 𝑋 ≥ 𝑎
4. 𝑃 𝑎 ≤ 𝑋 ≤ 𝑏

🤔(by yourself)
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Using the CDF for continuous RVs
For a continuous random variable 𝑋 with PDF 𝑓(𝑥), the CDF of 𝑋 is

𝑃 𝑋 ≤ 𝑎 = 𝐹 𝑎 = /
./

,
𝑓 𝑥 𝑑𝑥

47

A. 𝐹 𝑎
B. 1 − 𝐹(𝑎)
C. 𝐹 𝑎 − 𝐹(𝑏)
D. 𝐹 𝑏 − 𝐹(𝑎)

Matching (choices are used 0/1/2 times)

(next slide)

1. 𝑃 𝑋 < 𝑎
2. 𝑃 𝑋 > 𝑎
3. 𝑃 𝑋 ≥ 𝑎
4. 𝑃 𝑎 ≤ 𝑋 ≤ 𝑏
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Using the CDF
For a continuous random variable 𝑋 with PDF 𝑓(𝑥), the CDF of 𝑋 is

𝐹 𝑎 = /
./

,
𝑓 𝑥 𝑑𝑥
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4. 𝑃 𝑎 ≤ 𝑋 ≤ 𝑏 = 𝐹 𝑏 − 𝐹(𝑎)

𝐹 𝑏 − 𝐹 𝑎 = -
)¥

,
𝑓 𝑥 𝑑𝑥 − -

)¥

+
𝑓 𝑥 𝑑𝑥

= -
)¥

+
𝑓 𝑥 𝑑𝑥 + -

+

,
𝑓 𝑥 𝑑𝑥 − -

)¥

+
𝑓 𝑥 𝑑𝑥

= -
+

,
𝑓 𝑥 𝑑𝑥

𝑓 𝑥

𝑥
𝑎 𝑏

𝐹 𝑏

Proof:

𝐹 𝑎

− =
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CDF of an Exponential RV

Proof:

𝐹 𝑥 = 𝑃 𝑋 ≤ 𝑥 = /
TU./

K
𝑓 𝑦 𝑑𝑦 = /

TUV

K
𝜆𝑒.JT𝑑𝑦

= K𝜆
1
−𝜆

𝑒.JT
V

K

= −1 𝑒.JK − 𝑒.JV

= 1 − 𝑒.JK

49

𝑋~Exp(𝜆) 𝐹 𝑥 = 1 − 𝑒345 if 𝑥 ≥ 0

∫ 𝑒&%𝑑𝑥 =
1
𝑐
𝑒&%

Recall

𝑋~Exp(𝜆) 𝑓 𝑥 = 𝜆𝑒#$% if 𝑥 ≥ 0
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PDF/CDF 𝑋~Exp(𝜆 = 1)

50

𝐹 𝑥

𝑓 𝑥

𝑥

𝑥

4
'

(
𝜆𝑒#$%𝑑𝑥 ≈ 0.86

1 − 𝑒#($ ≈ 0.86

𝑥

𝐹 𝑥

𝑥

1 − 𝐹 2 = 𝑒#($ ≈ 0.14

𝑓 𝑥

4
(

)
𝜆𝑒#$%𝑑𝑥 ≈ 0.14

𝑃 𝑋 ≤ 2 𝑃 𝑋 > 2

𝑓 𝑥 = 𝜆𝑒)2(

𝐹 𝑥 = 1 − 𝑒)2(



Breakout 
Rooms

Check out the question on the next slide 
(Slide 52). Post any clarifications here!

https://us.edstem.org/courses/109/discussion/39083

Breakout rooms: 4 min. Introduce yourself!

51

🤔

https://us.edstem.org/courses/109/discussion/39083


Lisa Yan, CS109, 2020

Earthquakes

52

Major earthquakes (magnitude 8.0+) occur once every 500 years.*
What is the probability of zero major earthquakes next year?

🤔
*In California, according to historical data form USGS, 2015
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Earthquakes
Major earthquakes (magnitude 8.0+) occur once every 500 years.*
What is the probability of zero major earthquakes next year?

53

Strategy 1: Exponential RV

Define events/RVs & state goal

Solve

𝑋: when first earthquake happens
𝑋 ~Exp(𝜆 = 0.002)
Want: 𝑃 𝑋 > 1 = 1 − 𝐹(1)

𝑃 𝑋 > 1 = 1 − 1 − 𝑒.J⋅< = 𝑒.J

*In California, according to historical data form USGS, 2015
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Earthquakes
Major earthquakes (magnitude 8.0+) occur once every 500 years.*
What is the probability of zero major earthquakes next year?

54

Strategy 1: Exponential RV Strategy 2: Poisson RV

𝑋~Poi(𝜆) 𝑝 𝑘 = 𝑒#$
𝜆*

𝑘!

Define events/RVs & state goal

Solve

𝑋: when first earthquake happens
𝑋 ~Exp(𝜆 = 0.002)
Want: 𝑃 𝑋 > 1 = 1 − 𝐹(1)

𝑃 𝑋 > 1 = 1 − 1 − 𝑒.J⋅< = 𝑒.J

*In California, according to historical data form USGS, 2015

𝑋: # earthquakes next year
𝑋 ~Poi(𝜆 = 0.002)
Want: 𝑃 𝑋 = 0

Define events/RVs & state goal

Solve
𝑃 𝑋 = 0 =

𝜆V𝑒.J

0!
= 𝑒.J ≈ 0.998

earthquakes
year𝜆:



Extra

55

09e_extra
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Expectation of the Exponential

56

-𝑥𝜆𝑒)2(𝑑𝑥 = -𝑢 Q 𝑑𝑣

𝑢 = 𝑥 𝑑𝑣 = 𝜆𝑒)2(𝑑𝑥
𝑑𝑢 = 𝑑𝑥 𝑣 = −𝑒)2(

𝐸 𝑋 = /
./

/
𝑥𝑓 𝑥 𝑑𝑥 = /

V

/
𝑥𝜆𝑒.JK𝑑𝑥

-𝑢 Q 𝑑𝑣 = 𝑢 Q 𝑣 − -𝑣 Q 𝑑𝑢

−𝑥𝑒)2( − ∫−𝑒)2(𝑑𝑥

= P−𝑥𝑒.JK
V

/
+/

V

/
𝑒.JK𝑑𝑥

= P−𝑥𝑒.JK
V

/
−
1
λ

P𝑒.JK
V

/

= 0 − 0 + 0 −
−1
𝜆

=
1
𝜆

Proof:

𝑋~Exp(𝜆) Expectation 𝐸 𝑋 =
1
𝜆

Integration by parts

𝑋~Exp(𝜆) 𝑓 𝑥 = 𝜆𝑒#$% if 𝑥 ≥ 0

−𝑥𝑒)2( − ∫−𝑒)2(𝑑𝑥
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Website visits
Suppose a visitor to your website leaves after 𝑋 minutes.
• On average, visitors leave the site after 5 minutes.
• The length of stay, 𝑋, is exponentially distributed.

1. 𝑃 𝑋 > 10 ?

2. 𝑃 10 < 𝑋 < 20 ?

57

𝑋~Exp(𝜆)
𝐸 𝑋 = 1/𝜆
𝐹 𝑥 = 1 − 𝑒#$%

🤔
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Website visits
Suppose a visitor to your website leaves after 𝑋 minutes.
• On average, visitors leave the site after 5 minutes.
• The length of stay, 𝑋, is exponentially distributed.

1. 𝑃 𝑋 > 10 ?

2. 𝑃 10 < 𝑋 < 20 ?
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𝑋~Exp(𝜆)
𝐸 𝑋 = 1/𝜆

𝑋: when visitor leaves
𝑋 ~Exp(𝜆 = 1/5 = 0.2)

𝐹 𝑥 = 1 − 𝑒#$%

𝑃 𝑋 > 10 = 1 − 𝐹(10)

= 1 − 1 − 𝑒)$&/! = 𝑒)" ≈ 0.1353

Define Solve

Solve
𝑃 10 < 𝑋 < 20 = 𝐹 20 − 𝐹(10)

= 1 − 𝑒)1 − 1 − 𝑒)" ≈ 0.1170
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Replacing your laptop
Let 𝑋 = # hours of use until your laptop dies.
• 𝑋 is distributed as an Exponential RV, where
• On average, laptops die after 5000 hours of use.
• You use your laptop 5 hours a day.

What is 𝑃 your laptop lasts 4 years ?

59

𝑋~Exp(𝜆)
𝐸 𝑋 = 1/𝜆
𝐹 𝑥 = 1 − 𝑒#$%

🤔
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Replacing your laptop
Let 𝑋 = # hours of use until your laptop dies.
• 𝑋 is distributed as an Exponential RV, where
• On average, laptops die after 5000 hours of use.
• You use your laptop 5 hours a day.

What is 𝑃 your laptop lasts 4 years ?
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𝑋: # hours until
laptop death

𝑋 ~Exp(𝜆 = 1/5000)

𝑃 𝑋 > 7300 = 1 − 𝐹(7300)
Define Solve

Want: 𝑃 𝑋 > 5 ⋅ 365 ⋅ 4

𝑋~Exp(𝜆)
𝐸 𝑋 = 1/𝜆
𝐹 𝑥 = 1 − 𝑒#$%

= 1 − 1 − 𝑒)4'&&/!&&& = 𝑒)$.1# ≈ 0.2322

Better plan ahead if you’re co-terming!
• 5-year plan:

• 6-year plan:
𝑃 𝑋 > 9125 = 𝑒)$.6"! ≈ 0.1612

𝑃 𝑋 > 10950 = 𝑒)".$7 ≈ 0.1119


