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Today’s the Big Day
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Today
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def An Normal random variable 𝑋 is defined as follows:

Other names: Gaussian random variable

Normal Random Variable

5

𝑓 𝑥 =
1

𝜎 2𝜋
𝑒! "!# !/%&!
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Support: −∞,∞
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Carl Friedrich Gauss

Carl Friedrich Gauss (1777-1855) was a remarkably influential
German mathematician.

Did not invent Normal distribution but rather popularized it
6
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Why the Normal?
• Common for natural phenomena: 

height, weight, etc.

• Most noise in the world is Normal

• Often results from the sum of many 
random variables

• Sample means are distributed normally

7

That’s what they 
want you to believe…
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Why the Normal?
• Common for natural phenomena: 

height, weight, etc.

• Most noise in the world is Normal

• Often results from the sum of many 
random variables

• Sample means are distributed normally

8

Actually log-normal

Just an assumption

Only if equally weighted

(okay this one is true, we’ll see
this in 3 weeks)



Lisa Yan, CS109, 2020

0
0.05

0.1
0.15

0.2
0.25

0 … 44 48 52 56 60 64 … 900     …     44   48   52   56    60   64    …    90  

Okay, so why the Normal?
Part of CS109 learning goals:
• Translate a problem statement into a random variable

In other words: model real life situations with probability distributions

9

value

How do you model student heights?
• Suppose you have data from one classroom.

Fits perfectly!
But what about in 
another classroom?
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A Gaussian maximizes entropy for a 
given mean and variance.

Part of CS109 learning goals:
• Translate a problem statement into a random variable

In other words: model real life situations with probability distributions
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Okay, so why the Normal?
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Occam’s Razor:
“Non sunt multiplicanda 
entia sine necessitate.”
Entities should not be multiplied 
without necessity.

value

How do you model student heights?
• Suppose you have data from one classroom.

• Same mean/var
• Generalizes well
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I encourage you to stay critical of 
how to model real-world phenomena.

Why the Normal?
• Common for natural phenomena: 

height, weight, etc.

• Most noise in the world is Normal

• Often results from the sum of many 
random variables

• Sample means are distributed normally

11

Actually log-normal

Just an assumption

Only if equally weighted

(okay this one is true, we’ll see
this in 3 weeks)

because it’s easy to use
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Anatomy of a beautiful equation
Let 𝑋~𝒩 𝜇, 𝜎% .

The PDF of 𝑋 is defined as:
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Campus bikes
You spend some minutes, 𝑋, traveling
between classes.
• Average time spent: 𝜇 = 4 minutes
• Variance of time spent: 𝜎% = 2 minutes2

Suppose 𝑋 is normally distributed. What is the 
probability you spend ≥ 6 minutes traveling?

13

𝑋~𝒩(𝜇 = 4, 𝜎% = 2)

𝑃 𝑋 ≥ 6 = 5
'

(
𝑓(𝑥)𝑑𝑥 = 5

'

( 1
𝜎 2𝜋

𝑒!
" ! # !

%&! 𝑑𝑥

(call me if you analytically solve this)
Loving, not scary
…except this time
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Computing probabilities with Normal RVs
For a Normal RV 𝑋~𝒩 𝜇, 𝜎% , its CDF has no closed form.

𝑃 𝑋 ≤ 𝑥 = 𝐹 𝑥 = ,
!"

# 1
𝜎 2𝜋

𝑒!
$ ! % !

&'! 𝑑𝑦

However, we can solve for probabilities numerically using a function Φ:

𝐹 𝑥 = Φ
𝑥 − 𝜇
𝜎

14

Cannot be 
solved 

analytically

⚠

CDF of
𝑋~𝒩 𝜇, 𝜎#

A function that has been 
solved for numerically

To get here, we’ll first 
need to know some 

properties of Normal RVs.



Normal RV: 
Properties

15

10b_normal_props
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Properties of Normal RVs
Let 𝑋~𝒩 𝜇, 𝜎% with CDF 𝑃 𝑋 ≤ 𝑥 = 𝐹 𝑥 .

1. Linear transformations of Normal RVs are also Normal RVs.

If 𝑌 = 𝑎𝑋 + 𝑏, then 𝑌~𝒩(𝑎𝜇 + 𝑏, 𝑎"𝜎").

2. The PDF of a Normal RV is symmetric about the mean 𝜇.

𝐹 𝜇 − 𝑥 = 1 − 𝐹 𝜇 + 𝑥

16
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1. Linear transformations of Normal RVs
Let 𝑋~𝒩 𝜇, 𝜎% with CDF 𝑃 𝑋 ≤ 𝑥 = 𝐹 𝑥 .

Linear transformations of X are also Normal.

If 𝑌 = 𝑎𝑋 + 𝑏, then 𝑌~𝒩 𝑎𝜇 + 𝑏, 𝑎"𝜎"

Proof:
• 𝐸 𝑌 = 𝐸 𝑎𝑋 + 𝑏 = 𝑎𝐸 𝑋 + 𝑏 = 𝑎𝜇 + 𝑏

• Var 𝑌 = Var 𝑎𝑋 + 𝑏 = 𝑎%Var 𝑋 = 𝑎%𝜎%

• 𝑌 is also Normal

17

Proof in Ross,
10th ed (Section 5.4)

Linearity of Expectation

Var 𝑎𝑋 + 𝑏 = 𝑎#Var 𝑋
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2. Symmetry of Normal RVs
Let 𝑋~𝒩 𝜇, 𝜎% with CDF 𝑃 𝑋 ≤ 𝑥 = 𝐹 𝑥 .

The PDF of a Normal RV is symmetric about the mean 𝜇.

𝐹 𝜇 − 𝑥 = 1 − 𝐹 𝜇 + 𝑥

18
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Using symmetry of the Normal RV

19

1. 𝑃 𝑍 ≤ 𝑧
2. 𝑃 𝑍 < 𝑧
3. 𝑃 𝑍 ≥ 𝑧
4. 𝑃 𝑍 ≤ −𝑧
5. 𝑃 𝑍 ≥ −𝑧
6. 𝑃(𝑦 < 𝑍 < 𝑧) 🤔

A. 𝐹 𝑧
B. 1 − 𝐹(𝑧)
C. 𝐹 𝑧 − 𝐹(𝑦)

= 𝐹 𝑧

𝑧

𝑓(
𝑧)

𝐹 𝜇 − 𝑥 = 1 − 𝐹 𝜇 + 𝑥

𝜇 = 0

Let 𝑍~𝒩 0,1 with CDF 𝑃 𝑍 ≤ 𝑧 = 𝐹 𝑧 .

Suppose we only knew numeric values
for 𝐹 𝑧 and 𝐹 𝑦 , for some 𝑧, 𝑦 ≥ 0.

How do we compute the following probabilities?
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Using symmetry of the Normal RV

20

1. 𝑃 𝑍 ≤ 𝑧
2. 𝑃 𝑍 < 𝑧
3. 𝑃 𝑍 ≥ 𝑧
4. 𝑃 𝑍 ≤ −𝑧
5. 𝑃 𝑍 ≥ −𝑧
6. 𝑃(𝑦 < 𝑍 < 𝑧)

A. 𝐹 𝑧
B. 1 − 𝐹(𝑧)
C. 𝐹 𝑧 − 𝐹(𝑦)

= 𝐹 𝑧
= 𝐹 𝑧
= 1 − 𝐹(𝑧)
= 1 − 𝐹(𝑧)
= 𝐹 𝑧
= 𝐹 𝑧 − 𝐹(𝑦)

Symmetry is particularly useful when 
computing probabilities of zero-mean 
Normal RVs.

-3 -2 -1 0 1 2 3

+"−"

𝑧

𝑓(
𝑧)

𝐹 𝜇 − 𝑥 = 1 − 𝐹 𝜇 + 𝑥

𝜇 = 0

Let 𝑍~𝒩 0,1 with CDF 𝑃 𝑍 ≤ 𝑧 = 𝐹 𝑧 .

Suppose we only knew numeric values
for 𝐹 𝑧 and 𝐹 𝑦 , for some 𝑧, 𝑦 ≥ 0.

How do we compute the following probabilities?



Normal RV:
Computing 
probability

21

10c_normal_probs
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Computing probabilities with Normal RVs
Let 𝑋~𝒩 𝜇, 𝜎% .

To compute the CDF, 𝑃 𝑋 ≤ 𝑥 = 𝐹 𝑥 :
• We cannot analytically solve the integral (it has no closed form)
• …but we can solve numerically using a function Φ:

𝐹 𝑥 = Φ
𝑥 − 𝜇
𝜎

22

CDF of the
Standard Normal, 𝑍
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The Standard Normal random variable 𝑍 is defined as follows:

Other names: Unit Normal

CDF of 𝑍 defined as:

Standard Normal RV, 𝑍

23

𝑍~𝒩(0, 1) Variance

Expectation 𝐸 𝑍 = 𝜇 = 0

Var 𝑍 = 𝜎% = 1

𝑃 𝑍 ≤ 𝑧 = Φ(𝑧)

Note: not a new distribution; just
a special case of the Normal



Lisa Yan, CS109, 2020

Φ has been numerically computed

24

Standard Normal Table
An entry in the table is the area under the curve to the left of z, P(Z ≤ z) = Φ(z).

Z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359
0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753
0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141
0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517
0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879
0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224

0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549
0.7 0.7580 0.7611 0.7642 0.7673 0.7703 0.7734 0.7764 0.7793 0.7823 0.7852
0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133
0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389
1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621

1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830
1.2 0.8849 0.8869 0.8888 0.8906 0.8925 0.8943 0.8962 0.8980 0.8997 0.9015
1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177
1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319
1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441

1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545
1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633
1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706
1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767
2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817

2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857
2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890
2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916
2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936
2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952

2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964
2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974
2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981
2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986
3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990

3.1 0.9990 0.9991 0.9991 0.9991 0.9992 0.9992 0.9992 0.9992 0.9993 0.9993
3.2 0.9993 0.9993 0.9994 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995
3.3 0.9995 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997
3.4 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9998
3.5 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998

0
0.1
0.2
0.3
0.4
0.5

-3 -2 -1 0 1 2 3

! = 1.31

𝑃 𝑍 ≤ 1.31 = Φ(1.31)

𝑓
𝑧

𝑧

Φ(𝑧)

Standard Normal Table only has 
probabilities Φ(𝑧) for 𝑧 ≥ 0.
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History fact: Standard Normal Table

25

The first Standard Normal Table was 
computed by Christian Kramp, French 
astronomer (1760–1826), in Analyse
des Réfractions Astronomiques et 
Terrestres, 1799
Used a Taylor series expansion to the 
third power
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Probabilities for a general Normal RV
Let 𝑋~𝒩 𝜇, 𝜎% . To compute the CDF 𝑃 𝑋 ≤ 𝑥 = 𝐹 𝑥 ,
we use Φ, the CDF for the Standard Normal 𝑍~𝒩(0, 1):

𝐹 𝑥 = Φ
𝑥 − 𝜇
𝜎

Proof:

26

𝐹 𝑥 = 𝑃 𝑋 ≤ 𝑥
= 𝑃 𝑋 − 𝜇 ≤ 𝑥 − 𝜇 = 𝑃

𝑋 − 𝜇
𝜎

≤
𝑥 − 𝜇
𝜎

= 𝑃 𝑍 ≤
𝑥 − 𝜇
𝜎

Algebra + 𝜎 > 0
Definition of CDF

• $%&
'
= (

'
𝑋 − &

'
is a linear transform of 𝑋.

• This is distributed as 𝒩 (
'
𝜇 − &

'
, (
'!
𝜎# =𝒩 0,1

• In other words, $%&
'
= 𝑍~𝒩 0,1 with CDF Φ.= Φ

𝑥 − 𝜇
𝜎
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Probabilities for a general Normal RV
Let 𝑋~𝒩 𝜇, 𝜎% . To compute the CDF 𝑃 𝑋 ≤ 𝑥 = 𝐹 𝑥 ,
we use Φ, the CDF for the Standard Normal 𝑍~𝒩(0, 1):

𝐹 𝑥 = Φ
𝑥 − 𝜇
𝜎

Proof:

27

𝐹 𝑥 = 𝑃 𝑋 ≤ 𝑥
= 𝑃 𝑋 − 𝜇 ≤ 𝑥 − 𝜇 = 𝑃

𝑋 − 𝜇
𝜎

≤
𝑥 − 𝜇
𝜎

= 𝑃 𝑍 ≤
𝑥 − 𝜇
𝜎

Algebra + 𝜎 > 0
Definition of CDF

• $%&
'
= (

'
𝑋 − &

'
is a linear transform of 𝑋.

• This is distributed as 𝒩 (
'
𝜇 − &

'
, (
'!
𝜎# =𝒩 0,1

• In other words, $%&
'
= 𝑍~𝒩 0,1 with CDF Φ.= Φ

𝑥 − 𝜇
𝜎

1. Compute 𝑧 = 𝑥 − 𝜇 /𝜎.
2. Look up Φ 𝑧 in Standard Normal table.
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Campus bikes
You spend some minutes, 𝑋, traveling between classes.
• Average time spent: 𝜇 = 4 minutes
• Variance of time spent: 𝜎# = 2 minutes2

Suppose 𝑋 is normally distributed. What is the probability 
you spend ≥ 6 minutes traveling?

28

𝑋~𝒩(𝜇 = 4, 𝜎% = 2) 𝑃 𝑋 ≥ 6 = 5
'

(
𝑓(𝑥)𝑑𝑥 (no analytic solution)

1. Compute 𝑧 = "!#
&

2. Look up Φ(𝑧) in table
𝑃 𝑋 ≥ 6 = 1 − 𝐹"(6)

= 1 − Φ
6 − 4
2

×

≈ 1 −Φ 1.41

1 − Φ 1.41
≈ 1 − 0.9207
= 0.0793
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Is there an easier way? (yes)
Let 𝑋~𝒩 𝜇, 𝜎% . What is 𝑃 𝑋 ≤ 𝑥 = 𝐹 𝑥 ?

• Use Python

• Use website tool

29

from scipy import stats
X = stats.norm(mu, std)
X.cdf(x)

SciPy reference:
https://docs.scipy.org/doc/scipy/refere
nce/generated/scipy.stats.norm.html

Website tool: 
https://web.stanford.edu/class/cs109
/handouts/normalCDF.html

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.norm.html
https://web.stanford.edu/class/cs109/handouts/normalCDF.html


(live)
10: The Normal 
(Gaussian) Distribution
Lisa Yan
April 27, 2020
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The Normal (Gaussian) Random Variable
Let 𝑋~𝒩 𝜇, 𝜎% .

The PDF of 𝑋 is defined as:

31

𝑓 𝑥 =
1

𝜎 2𝜋
𝑒"

# " $ !

!%!

normalizing constant
exponential

tail

symmetric
around 𝜇

variance 𝜎#
manages spread
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Review



Think
Slide 34 has a question to go over by 
yourself.

Post any clarifications here!
https://us.edstem.org/courses/109/discussion/46499

Think by yourself: 2 min

32

🤔(by yourself)

https://us.edstem.org/courses/109/discussion/46499
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Normal Random Variable

Match PDF to distribution:

𝒩 0, 1

𝒩(−2, 0.5)

𝒩 0, 5

𝒩(0, 0.2)

33

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

-5 -4 -3 -2 -1 0 1 2 3 4 5

!(0,1)
!(0,0.2)
!(0,5)
!(-2,0.5)

A. 
B.
C.
D.

𝑋~𝒩(𝜇, 𝜎!)
mean variance

🤔(by yourself)

𝑥

𝑓
𝑥
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Normal Random Variable

Match PDF to distribution:

𝒩 0, 1

𝒩(−2, 0.5)

𝒩 0, 5

𝒩(0, 0.2)

34

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

-5 -4 -3 -2 -1 0 1 2 3 4 5

!(0,1)
!(0,0.2)
!(0,5)
!(-2,0.5)

A. 
B.
C.
D.

𝑋~𝒩(𝜇, 𝜎!)
mean variance

𝑥

𝑓
𝑥
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Knowing how to use a Standard Normal Table will 
still be useful in our understanding of Normal RVs.

Computing probabilities with Normal RVs: Old school

35

*particularly useful when we have closed book exams with no calculator**
**we have open book exams with calculators this quarter

Φ 𝑧 for non-negative 𝑧

*
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Computing probabilities with Normal RVs
Let 𝑋~𝒩 𝜇, 𝜎% . What is 𝑃 𝑋 ≤ 𝑥 = 𝐹 𝑥 ?

1. Rewrite in terms of standard normal CDF Φ by computing 𝑧 = "!#
&

.
Linear transforms of Normals are Normal:

𝐹 𝑥 = Φ
𝑥 − 𝜇
𝜎

2. Then, look up in a Standard Normal Table, where 𝑧 ≥ 0.
Normal PDFs are symmetric about their mean:

Φ −𝑧 = 1 − Φ 𝑧

36

Review

𝑍 = $%&
'

, where 𝑍~ 𝒩 0,1
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Get your Gaussian On
Let 𝑋~𝒩 𝜇 = 3, 𝜎% = 16 . Std deviation 𝜎 = 4.
1. 𝑃 𝑋 > 0

37

• If 𝑋~𝒩 𝜇, 𝜎# , then 
𝐹 𝑥 = Φ )%&

'
• Symmetry of the PDF of 

Normal RV implies  
Φ −𝑧 = 1 −Φ 𝑧



Breakout 
Rooms

Slide 39 has two questions to go over in 
groups.

Post any clarifications here!
https://us.edstem.org/courses/109/discussion/46499

Breakout rooms: 5 mins

38

🤔

https://us.edstem.org/courses/109/discussion/46499
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Get your Gaussian On

Let 𝑋~𝒩 𝜇 = 3, 𝜎& = 16 .
Note standard deviation 𝜎 = 4.
How would you write each of the below
probabilities as a function of the
standard normal CDF, Φ?

1. 𝑃 𝑋 > 0 (we just did this)
2. 𝑃 2 < 𝑋 < 5
3. 𝑃 𝑋 − 3 > 6

39

• If 𝑋~𝒩 𝜇, 𝜎# , then 
𝐹 𝑥 = Φ )%&

'
• Symmetry of the PDF of 

Normal RV implies  
Φ −𝑧 = 1 −Φ 𝑧

🤔
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Get your Gaussian On
Let 𝑋~𝒩 𝜇 = 3, 𝜎% = 16 . Std deviation 𝜎 = 4.
1. 𝑃 𝑋 > 0
2. 𝑃 2 < 𝑋 < 5
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• If 𝑋~𝒩 𝜇, 𝜎# , then 
𝐹 𝑥 = Φ )%&

'
• Symmetry of the PDF of 

Normal RV implies  
Φ −𝑧 = 1 −Φ 𝑧
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Get your Gaussian On
Let 𝑋~𝒩 𝜇 = 3, 𝜎% = 16 . Std deviation 𝜎 = 4.
1. 𝑃 𝑋 > 0
2. 𝑃 2 < 𝑋 < 5
3. 𝑃 𝑋 − 3 > 6
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Compute 𝑧 = "!#
&

• If 𝑋~𝒩 𝜇, 𝜎# , then 
𝐹 𝑥 = Φ )%&

'
• Symmetry of the PDF of 

Normal RV implies  
Φ −𝑥 = 1 −Φ 𝑥

𝑃 𝑋 < −3 + 𝑃 𝑋 > 9

= 𝐹 −3 + 1 − 𝐹 9

= Φ
−3 − 3
4

+ 1 − Φ
9 − 3
4

Look up Φ(z) in table
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Get your Gaussian On
Let 𝑋~𝒩 𝜇 = 3, 𝜎% = 16 . Std deviation 𝜎 = 4.
1. 𝑃 𝑋 > 0
2. 𝑃 2 < 𝑋 < 5
3. 𝑃 𝑋 − 3 > 6

42

Compute z = "!#
&

Look up Φ(z) in table

𝑃 𝑋 < −3 + 𝑃 𝑋 > 9

= 𝐹 −3 + 1 − 𝐹 9

= Φ
−3 − 3
4

+ 1 − Φ
9 − 3
4

= Φ −
3
2
+ 1 − Φ

3
2

= 2 1 − Φ
3
2

≈ 0.1337

• If 𝑋~𝒩 𝜇, 𝜎# , then 
𝐹 𝑥 = Φ )%&

'
• Symmetry of the PDF of 

Normal RV implies  
Φ −𝑥 = 1 −Φ 𝑥



Interlude for 
jokes/announcements

43



Lisa Yan, CS109, 2020

Announcements

44

Quiz #1

Time frame: Thursday 4/30 12:00am-11:59pm PT
Covers: Up to end of Week 3 (including Lecture 9)
Review session (Tim): Tuesday 4/28 12-2pm PT

https://stanford.zoom.us/j/92275547392
Info and practice: https://web.stanford.edu/class/cs109/exams/quizzes.html

Section this week

Optional (not graded)

You can “makeup” and attend any section

Friday’s concept 
check (#12)

Extra credit

https://stanford.zoom.us/j/92275547392
https://web.stanford.edu/class/cs109/exams/quizzes.html
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Interesting probability news

45

https://www.forbes.com/sites/lanceeliot/2020/04/12/on-
the-probabilities-of-social-distancing-as-gleaned-from-ai-self-
driving-cars/#218da4489472

Submitted 10 times over PS1/PS2!

https://www.forbes.com/sites/lanceeliot/2020/04/12/on-the-probabilities-of-social-distancing-as-gleaned-from-ai-self-driving-cars/


Breakout 
Rooms

Slide 47 has two questions to go over in 
groups.

Post any clarifications here!
https://us.edstem.org/courses/109/discussion/46499

Breakout rooms: 5 mins

46

🤔

https://us.edstem.org/courses/109/discussion/46499
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Noisy Wires
Send a voltage of 2 V or −2 V on
wire (to denote 1 and 0, respectively).
• 𝑋 = voltage sent (2 or −2)
• 𝑌 = noise, 𝑌~𝒩 0, 1
• 𝑅 = 𝑋 + 𝑌 voltage received.

Decode: 1 if 𝑅 ≥ 0.5
0 otherwise. 

1. What is P(decoding error | original bit is 1)?
i.e., we sent 1, but we decoded as 0?

2. What is P(decoding error | original bit is 0)?

These probabilities are unequal. Why might this be useful?
47

🤔

0
0.1
0.2
0.3
0.4
0.5

-5 -4 -3 -2 -1 0 1 2 3 4 5

! = 0.5

Send 0
& = −2

Send 1
& = 2

𝐹 *
(𝑟
)

𝑅 = 𝑟
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Noisy Wires
Send a voltage of 2 V or −2 V on
wire (to denote 1 and 0, respectively).
• 𝑋 = voltage sent (2 or −2)
• 𝑌 = noise, 𝑌~𝒩 0, 1
• 𝑅 = 𝑋 + 𝑌 voltage received.

Decode: 1 if 𝑅 ≥ 0.5
0 otherwise. 

1. What is P(decoding error | original bit is 1)?
i.e., we sent 1, but we decoded as 0?
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0
0.1
0.2
0.3
0.4
0.5

-5 -4 -3 -2 -1 0 1 2 3 4 5

! = 0.5

Send 0
& = −2

Send 1
& = 2

𝐹 *
(𝑟
)

𝑅 = 𝑟

𝑃 𝑅 < 0.5| 𝑋 = 2 = 𝑃 2 + 𝑌 < 0.5 = 𝑃 𝑌 < −1.5 Y is Standard Normal

= Φ −1.5 = 1 − Φ 1.5 ≈ 0.0668
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Noisy Wires
Send a voltage of 2 V or −2 V on
wire (to denote 1 and 0, respectively).
• 𝑋 = voltage sent (2 or −2)
• 𝑌 = noise, 𝑌~𝒩 0, 1
• 𝑅 = 𝑋 + 𝑌 voltage received.

Decode: 1 if 𝑅 ≥ 0.5
0 otherwise. 

1. What is P(decoding error | original bit is 1)?
i.e., we sent 1, but we decoded as 0?

2. What is P(decoding error | original bit is 0)?
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0
0.1
0.2
0.3
0.4
0.5

-5 -4 -3 -2 -1 0 1 2 3 4 5

! = 0.5

Send 0
& = −2

Send 1
& = 2

𝐹 *
(𝑟
)

𝑅 = 𝑟

0.0668

≈ 0.0062𝑃 𝑅 ≥ 0.5| 𝑋 = −2 = 𝑃 −2 + 𝑌 ≥ 0.5 = 𝑃 𝑌 ≥ 2.5
Asymetric decoding probability: We would like to avoid 
mistaking a 0 for 1. Errors the other way are tolerable.



Challenge: 
Sampling with 
the Normal RV

50

LIVE
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ELO ratings

51

What is the probability that the Warriors win?
How do you model zero-sum games?
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ELO ratings
Each team has an ELO score 𝑆, 
calculated based on their
past performance.
• Each game, a team has

ability 𝐴~𝒩 𝑆, 200% .
• The team with the higher

sampled ability wins.
What is the probability
that Warriors win
this game?

Want: 𝑃 Warriors win = 𝑃 𝐴4 > 𝐴5

52

0
0.0005

0.001
0.0015

0.002
0.0025

1000 1500 2000 2500

𝜇=1470

0
0.0005

0.001
0.0015

0.002
0.0025

1000 1500 2000 2500

𝜇=1657

Arpad Elo

Warriors 𝐴+~𝒩 𝑆 = 1657, 200#

Opponents 𝐴,~𝒩 𝑆 = 1470, 200#
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ELO ratings

53

Want: 𝑃 Warriors win = 𝑃 𝐴4 > 𝐴5

≈ 0.7488, calculated by sampling
0

0.0005

0.001
0.0015
0.002

0.0025

1000 1500 2000 2500

!=1470

0
0.0005

0.001
0.0015
0.002

0.0025

1000 1500 2000 2500

!=1657
Warriors !!~# $ = 1657, 200"

Opponents !#~# $ = 1470, 200"

from scipy import stats
WARRIORS_ELO = 1657
OPPONENT_ELO = 1470
STDEV = 200
NTRIALS = 10000

nSuccess = 0
for i in range(NTRIALS):

w = stats.norm.rvs(WARRIORS_ELO, STDEV)
b = stats.norm.rvs(OPPONENT_ELO, STDEV)
if w > b:
nSuccess += 1

print("Warriors sampled win fraction", 
float(nSuccess) / NTRIALS)
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Is there a better way?

𝑃 𝐴! > 𝐴"
• This is a probability of an event involving two random variables!
• We’ll solve this problem analytically in two weeks’ time.

Big goal for next time: Events involving two discrete random variables.
Stay tuned!

54


