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Normal RVs

• Used to model many real-life situations because it maximizes entropy 
(i.e., randomness) for a given mean and variance

• Also useful for approximating the Binomial random variable!

4

𝑋~𝒩(𝜇, 𝜎!)
mean variance
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Website testing
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Approach 1: Binomial

𝑋~Bin 𝑛 = 100, 𝑝 = 0.5
Want: 𝑃 𝑋 ≥ 65

𝑃 𝑋 ≥ 65 = .
!"#$

%&&
100
𝑖 0.5! 1 − 0.5 %&&'!

Define

Solve

• 100 people are given a new website design.
• 𝑋 = # people whose time on site increases
• The design actually has no effect, so P(time on site increases) = 0.5 independently.
• CEO will endorse the new design if 𝑋 ≥ 65.

What is 𝑃 CEO endorses change ? Give a numerical approximation.
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Don’t worry, Normal approximates Binomial

Galton Board

(We’ll explain why
in 2 weeks’ time)
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Website testing

7

Approach 1: Binomial

𝑋~Bin 𝑛 = 100, 𝑝 = 0.5
Want: 𝑃 𝑋 ≥ 65

Define

Approach 2: approximate with Normal
Define
𝑌~𝒩 𝜇, 𝜎(

𝜇 = 𝑛𝑝 = 50
𝜎! = 𝑛𝑝 1 − 𝑝 = 25
𝜎 = 25 = 5

𝑃 𝑋 ≥ 65 ≈ 0.0018
𝑃 𝑋 ≥ 65 ≈ 𝑃 𝑌 ≥ 65 = 1 − 𝐹"(65)

= 1 − Φ #$%$&
$ = 1 −Φ 3 ≈ 0.0013 ?

(this approach is actually missing something)⚠⚠

🤨

• 100 people are given a new website design.
• 𝑋 = # people whose time on site increases
• The design actually has no effect, so P(time on site increases) = 0.5 independently.
• CEO will endorse the new design if 𝑋 ≥ 65.

What is 𝑃 CEO endorses change ? Give a numerical approximation.

Solve
Solve
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Website testing (with continuity correction)

8

64 65 66               

𝑃 𝑋 ≥ 65

65

≈ 𝑃 𝑌 ≥ 64.5

≈ 0.0018 the better
Approach 2

Binomial

Normal

You must perform a continuity correction when 
approximating a Binomial RV with a Normal RV.

In our website testing, 𝑌~𝒩 50, 25 approximates 𝑋~Bin 100,0.5 .
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Continuity correction
If 𝑌~𝒩 𝑛𝑝, 𝑛𝑝(1 − 𝑝) approximates 𝑋~Bin(𝑛, 𝑝), how do we approximate 
the following probabilities?

9

Discrete (e.g., Binomial) 
probability question

Continuous (Normal) 
probability question

𝑃 𝑋 = 6
𝑃 𝑋 ≥ 6
𝑃 𝑋 > 6
𝑃 𝑋 < 6
𝑃 𝑋 ≤ 6

…  5 6 7 …

🤔
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Continuity correction
If 𝑌~𝒩 𝑛𝑝, 𝑛𝑝(1 − 𝑝) approximates 𝑋~Bin(𝑛, 𝑝), how do we approximate 
the following probabilities?
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Discrete (e.g., Binomial) 
probability question

Continuous (Normal) 
probability question

𝑃 𝑋 = 6
𝑃 𝑋 ≥ 6
𝑃 𝑋 > 6
𝑃 𝑋 < 6
𝑃 𝑋 ≤ 6

𝑃 5.5 ≤ 𝑌 ≤ 6.5
𝑃 𝑌 ≥ 5.5
𝑃 𝑌 ≥ 6.5
𝑃 𝑌 ≤ 5.5
𝑃 𝑌 ≤ 6.5

…  5 6 7 …
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Who gets to approximate?

11

𝑋~Bin 𝑛, 𝑝
𝐸 𝑋 = 𝑛𝑝

Var 𝑋 = 𝑛𝑝(1 − 𝑝)

𝑌~𝒩 𝜇, 𝜎!
𝜇 = 𝑛𝑝

𝜎( = 𝑛𝑝(1 − 𝑝)

𝑌~Poi(𝜆)
𝜆 = 𝑛𝑝

?
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1. If there is a choice, use Normal to approximate.
2. When using Normal to approximate a discrete RV, use a continuity correction.

Who gets to approximate?

12

Poisson approximation
𝑛 large (> 20), 𝑝 small (< 0.05)

slight dependence okay

Normal approximation
𝑛 large (> 20), 𝑝 mid-ranged (𝑛𝑝 1 − 𝑝 > 10)

independence

0

0.05

0.1

0.15

0.2

0.25

0 10

!(
"

= 
#)

$

Bin(100,0.04)

N(4,1.96)

Poi(4)

0
0.01
0.02

0.03
0.04
0.05

0.06
0.07
0.08
0.09

30 40 50 60 70

!(
"

= 
#)

$

Bin(100,0.5)

N(50,5)

Poi(50)



Discrete Joint 
RVs

13

11b_discrete_joint
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From last time

What is the probability that the Warriors win?
How do you model zero-sum games?

Review

𝑃 𝐴! > 𝐴"
This is a probability of an event 
involving two random variables!
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Joint probability mass functions

15

Roll two 6-sided dice, yielding values 𝑋 and 𝑌.

𝑃 𝑋 = 1
probability of

an event

𝑃 𝑋 = 𝑘
probability mass function

𝑋
random variable
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Joint probability mass functions

16

Roll two 6-sided dice, yielding values 𝑋 and 𝑌.

𝑋
random variable

𝑃 𝑋 = 1
probability of

an event

𝑃 𝑋 = 𝑘
probability mass function

𝑃 𝑋 = 1 ∩ 𝑌 = 6

probability of the intersection
of two events

𝑃 𝑋 = 1, 𝑌 = 6
new notation: the comma

𝑋, 𝑌
random variables

𝑃 𝑋 = 𝑎, 𝑌 = 𝑏

joint probability mass function
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Discrete joint distributions
For two discrete joint random variables 𝑋 and 𝑌,
the joint probability mass function is defined as:

𝑝!,# 𝑎, 𝑏 = 𝑃 𝑋 = 𝑎, 𝑌 = 𝑏

The marginal distributions of the joint PMF are defined as:

17

𝑝) 𝑎 = 𝑃 𝑋 = 𝑎 =.
*

𝑝),, 𝑎, 𝑦

𝑝, 𝑏 = 𝑃 𝑌 = 𝑏 =.
-

𝑝),, 𝑥, 𝑏 Use marginal distributions to 
get a 1-D RV from a joint PMF.
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Two dice
Roll two 6-sided dice, yielding values 𝑋 and 𝑌.
1. What is the joint PMF of 𝑋 and 𝑌?

18

𝑝),, 𝑎, 𝑏 = 1/36 𝑎, 𝑏 ∈ 1,1 , … , 6,6
𝑋

1 2 3 4 5 6

𝑌

1 1/36 ... ... ... ... 1/36 

2 ... ... ... ... ... ...

3 ... ... ... ... ... ...

4 ... ... ... ... ... ...

5 ... ... ... ... ... ...

6 1/36 ... ... ... ... 1/36 

Probability table
• All possible outcomes

for several discrete RVs
• Not parametric (e.g., 

parameter 𝑝 in Ber(𝑝))

𝑃 𝑋 = 4, 𝑌 = 2
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Two dice
Roll two 6-sided dice, yielding values 𝑋 and 𝑌.
1. What is the joint PMF of 𝑋 and 𝑌?

2. What is the marginal PMF of 𝑋?

19

𝑝),, 𝑎, 𝑏 = 1/36 𝑎, 𝑏 ∈ 1,1 , … , 6,6

𝑝) 𝑎 = 𝑃 𝑋 = 𝑎 =>
*

𝑝)," 𝑎, 𝑦 = >
*,-

#
1
36

=
1
6 𝑎 ∈ 1,… , 6
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A computer (or three) in every house.

20

0 1 2 3

0 .16 ? .07 .04

1 .12 .14 .12 0

2 .07 .12 0 0

3 .04 0 0 0

𝑋 (# Macs)

𝑌
(#

 P
Cs

)
Consider households in Silicon Valley.
• A household has 𝑋 Macs and 𝑌 PCs.
• Each house has a maximum of 3 computers (Macs + PCs) in the house.

1. What is 𝑃 𝑋 = 1, 𝑌 = 0 , the missing entry in the probability table?

🤔
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Consider households in Silicon Valley.
• A household has 𝑋 Macs and 𝑌 PCs.
• Each house has a maximum of 3 computers (Macs + PCs) in the house.

1. What is 𝑃 𝑋 = 1, 𝑌 = 0 , the missing entry in the probability table?

A computer (or three) in every house.

21

0 1 2 3

0 .16 .12 .07 .04

1 .12 .14 .12 0

2 .07 .12 0 0

3 .04 0 0 0

𝑋 (# Macs)

𝑌
(#

 P
Cs

)

>
.

>
*

𝑝)," 𝑥, 𝑦 = 1

A joint PMF must sum to 1:
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0 1 2 3

0 .16 .12 .07 .04 .39

1 .12 .14 .12 0 .38

2 .07 .12 0 0 .19

3 .04 0 0 0 .04

.39 .38 .19 .04

A computer (or three) in every house.

22

𝑋 (# Macs)

𝑌
(#

 P
Cs

)
Consider households in Silicon Valley.
• A household has 𝑋 Macs and 𝑌 PCs.
• Each house has a maximum of 3 computers (Macs + PCs) in the house.

2. How do you compute the marginal PMF of 𝑋?

A

sum rows here
B

C
su

m
 c

ol
s 

he
re

🤔



Lisa Yan, CS109, 2020

0 1 2 3

0 .16 .12 .07 .04 .39

1 .12 .14 .12 0 .38

2 .07 .12 0 0 .19

3 .04 0 0 0 .04

.39 .38 .19 .04

A computer (or three) in every house.
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𝑋 (# Macs)

𝑌
(#

 P
Cs

)
Consider households in Silicon Valley.
• A household has 𝑋 Macs and 𝑌 PCs.
• Each house has a maximum of 3 computers (Macs + PCs) in the house.

2. How do you compute the marginal PMF of 𝑋?

A

sum rows here
B

C
su

m
 c

ol
s 

he
re

A. 𝑝)," 𝑥, 0 = 𝑃 𝑋 = 𝑥, 𝑌 = 0
B. Marginal PMF of 𝑋

C. Marginal PMF of 𝑌

𝑝! 𝑥 =2
"

𝑝!,$ 𝑥, 𝑦

𝑝$ 𝑦 =2
%

𝑝!,$ 𝑥, 𝑦

To find a marginal distribution over one variable, 
sum over all other variables in the joint PMF.
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A computer (or three) in every house.

24

0 1 2 3

0 .16 .12 .07 .04

1 .12 .14 .12 0

2 .07 .12 0 0

3 .04 0 0 0

𝑋 (# Macs)

𝑌
(#

 P
Cs

)
Consider households in Silicon Valley.
• A household has 𝑋 Macs and 𝑌 PCs.
• Each house has a maximum of 3 computers (Macs + PCs) in the house.

3. Let 𝐶 = 𝑋 + 𝑌. What is 𝑃 𝐶 = 3 ?

🤔
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A computer (or three) in every house.

25

0 1 2 3

0 .16 .12 .07 .04

1 .12 .14 .12 0

2 .07 .12 0 0

3 .04 0 0 0

𝑋 (# Macs)

𝑌
(#

 P
Cs

)
Consider households in Silicon Valley.
• A household has 𝑋 Macs and 𝑌 PCs.
• Each house has a maximum of 3 computers (Macs + PCs) in the house.

3. Let 𝐶 = 𝑋 + 𝑌. What is 𝑃 𝐶 = 3 ?

𝑃 𝐶 = 3 = 𝑃 𝑋 + 𝑌 = 3

=1
!

1
"

𝑃 𝑋 + 𝑌 = 3|𝑋 = 𝑥, 𝑌 = 𝑦 𝑃 𝑋 = 𝑥, 𝑌 = 𝑦

= 𝑃 𝑋 = 0, 𝑌 = 3 + 𝑃 𝑋 = 1, 𝑌 = 2
+𝑃 𝑋 = 2, 𝑌 = 1 + 𝑃 𝑋 = 3, 𝑌 = 0

Law of Total Probability

We’ll come back to sums of RVs next lecture!



Multinomial RV

26

11c_multinomial
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Recall the good times

27

Permutations
𝑛!

How many ways are 
there to order 𝑛

objects?
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Multinomials generalize 
Binomials for counting.

Counting unordered objects

28

Binomial coefficient

How many ways are there
to group 𝑛 objects into

two groups of size 𝑘 and 
𝑛 − 𝑘, respectively?

Called the binomial coefficient
because of something from Algebra

Multinomial coefficient

How many ways are there
to group 𝑛 objects into

𝑟 groups of sizes 𝑛-, 𝑛!, …, 𝑛4
respectively?

𝑛
𝑘 =

𝑛!
𝑘! 𝑛 − 𝑘 !

𝑛
𝑛%, 𝑛(, … , 𝑛8 =

𝑛!
𝑛%! 𝑛(!⋯𝑛8!
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Multinomial RVs also generalize 
Binomial RVs for probability!

Probability

29

Binomial RV

What is the probability
of getting 𝑘 successes 

and 𝑛 − 𝑘 failures
in 𝑛 trials?

Binomial # of ways of 
ordering the successes

Probability of each ordering 
of 𝑘 successes is equal + 
mutually exclusive 

𝑃 𝑋 = 𝑘 = 𝑛
𝑘 𝑝! 1 − 𝑝 "#!

Multinomial RV

What is the probability of 
getting 𝑐- of outcome 1,
𝑐! of outcome 2, …, and

𝑐5 of outcome 𝑚
in 𝑛 trials?
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Multinomial Random Variable
Consider an experiment of 𝑛 independent trials:
• Each trial results in one of 𝑚 outcomes. 𝑃 outcome 𝑖 = 𝑝!, 
• Let 𝑋!= # trials with outcome 𝑖

30

Joint PMF
𝑃 𝑋! = 𝑐!, 𝑋" = 𝑐", … , 𝑋# = 𝑐# =

𝑛
𝑐!, 𝑐", … , 𝑐# 𝑝!

$!𝑝"
$"⋯𝑝#

$#

where >
6,-

5

𝑐6 = 𝑛 and >
6,-

5

𝑝6 = 1

Multinomial # of ways of 
ordering the outcomes

Probability of each ordering is 
equal + mutually exclusive 

1
#$%

&

𝑝# = 1
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Hello dice rolls, my old friends
A 6-sided die is rolled 7 times.
What is the probability of getting:

31

• 1 one
• 1 two

• 0 threes
• 2 fours

• 0 fives
• 3 sixes

🤔
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Hello dice rolls, my old friends
A 6-sided die is rolled 7 times.
What is the probability of getting:

32

• 1 one
• 1 two

• 0 threes
• 2 fours

• 0 fives
• 3 sixes

𝑃 𝑋% = 1, 𝑋( = 1, 𝑋< = 0, 𝑋= = 2, 𝑋$ = 0, 𝑋# = 3

= 7
1,1,0,2,0,3

1
6

% 1
6

% 1
6

& 1
6

( 1
6

& 1
6

<

= 420
1
6

>
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Hello dice rolls, my old friends
A 6-sided die is rolled 7 times.
What is the probability of getting:

33

• 1 one
• 1 two

• 0 threes
• 2 fours

• 0 fives
• 3 sixes

𝑃 𝑋% = 1, 𝑋( = 1, 𝑋< = 0, 𝑋= = 2, 𝑋$ = 0, 𝑋# = 3

= 7
1,1,0,2,0,3

1
6

% 1
6

% 1
6

& 1
6

( 1
6

& 1
6

<

= 420
1
6

>

# of times
a six appears

probability
of rolling a sixchoose where

the sixes appear
this many times



(live)
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Distributions
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Normal RVs

• Used to model many real-life situations because it maximizes entropy 
(i.e., randomness) for a given mean and variance

• Also useful for approximating the Binomial random variable!

35

𝑋~𝒩(𝜇, 𝜎!)
mean variance
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Who gets to approximate?

36

𝑋~Bin 𝑛, 𝑝
𝐸 𝑋 = 𝑛𝑝

Var 𝑋 = 𝑛𝑝(1 − 𝑝)

𝑌~𝒩 𝜇, 𝜎!
𝜇 = 𝑛𝑝

𝜎( = 𝑛𝑝(1 − 𝑝)

𝑌~Poi(𝜆)
𝜆 = 𝑛𝑝

𝑛 large (> 20)
𝑝 small (< 0.05)
slight dependence okay

𝑛 large (> 20), 𝑝 mid-ranged (𝑛𝑝 1 − 𝑝 > 10)
independence
need continuity correction

Review

• Computing probabilities on 
Binomial RVs is often 
computationally expensive.

• Two reasonable 
approximations,
but when to use which?



Think

Check out the question on the next slide 
(Slide 38). Post any clarifications here!

https://us.edstem.org/courses/109/discussion/46501

37

🤔(by yourself)

https://us.edstem.org/courses/109/discussion/46501
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Stanford Admissions (a while back)
Stanford accepts 2480 students.
• Each accepted student has 68% chance of attending (independent trials)
• Let 𝑋 = # of students who will attend

What is 𝑃 𝑋 > 1745 ? Give a numerical approximation.

38

Strategy:

🤔(by yourself)

A. Just Binomial
B. Poisson
C. Normal
D. None/other
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Stanford Admissions (a while back)
Stanford accepts 2480 students.
• Each accepted student has 68% chance of attending (independent trials)
• Let 𝑋 = # of students who will attend

What is 𝑃 𝑋 > 1745 ? Give a numerical approximation.

39

Strategy: A. Just Binomial
B. Poisson
C. Normal
D. None/other

𝐸 𝑋 = 𝑛𝑝 = 1686
Var 𝑋 = 𝑛𝑝 1 − 𝑝 ≈ 540 → 𝜎 = 23.3

not an approximation (also computationally expensive)
𝑝 = 0.68, not small enough
Variance 𝑛𝑝 1 − 𝑝 = 540 > 10

Define an approximation Solve
Let 𝑌~𝒩 𝐸 𝑋 , Var 𝑋

𝑃 𝑋 > 1745 ≈ 𝑃 𝑌 ≥ 1745.5 Continuity
correction

⚠

𝑃 𝑌 ≥ 1745.5 = 1 − 𝐹 1745.5

= 1 − Φ
1745.5 − 1686

23.3
= 1 − Φ 2.54 ≈ 0.0055

✅
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Changes in Stanford Admissions
Stanford accepts 2480 students.
• Each accepted student has 68% chance of attending (independent trials)
• Let 𝑋 = # of students who will attend

What is 𝑃 𝑋 > 1745 ? Give a numerical approximation.

40

Admit rate: 4.3%

Yield rate: 81.9%

Yield rate 20 
years ago

People love coming to Stanford!
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Multinomial Random Variable
Consider an experiment of 𝑛 independent trials:
• Each trial results in one of 𝑚 outcomes. 𝑃 outcome 𝑖 = 𝑝!, 
• Let 𝑋!= # trials with outcome 𝑖

Example:
• Rolling 2 twos, 3 threes, and 5 fives on 10 rolls of a fair-sided die
• Generating a random 5-word phrase with 1 “the”, 2 “bacon”, 1 “put”, 1 “on”

41

Joint PMF
𝑃 𝑋! = 𝑐!, 𝑋" = 𝑐", … , 𝑋# = 𝑐# =

𝑛
𝑐!, 𝑐", … , 𝑐# 𝑝!

$!𝑝"
$"⋯𝑝#

$#

where >
6,-

5

𝑐6 = 𝑛 and >
6,-

5

𝑝6 = 1

1
#$%

&

𝑝# = 1

Review
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Hello dice rolls, my old friends
A 6-sided die is rolled 7 times.
What is the probability of getting:

42

• 1 one
• 1 two

• 0 threes
• 2 fours

• 0 fives
• 3 sixes

𝑃 𝑋% = 1, 𝑋( = 1, 𝑋< = 0, 𝑋= = 2, 𝑋$ = 0, 𝑋# = 3

= 7
1,1,0,2,0,3

1
6

% 1
6

% 1
6

& 1
6

( 1
6

& 1
6

<

= 420
1
6

>

Review

# of times
a six appears

probability
of rolling a sixchoose where

the sixes appear
this many times
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Parameters of a Multinomial RV?
𝑋~Bin 𝑛, 𝑝 has parameters 𝑛, 𝑝…

A Multinomial RV has parameters 𝑛, 𝑝%, 𝑝(, … , 𝑝H (Note 𝑝H = 1 − ∑!"%H'% 𝑝!)

43

𝑃 𝑋! = 𝑐!, 𝑋" = 𝑐", … , 𝑋# = 𝑐# =
𝑛

𝑐!, 𝑐", … , 𝑐# 𝑝!
$!𝑝"

$"⋯𝑝#
$#

𝑃 𝑋 = 𝑘 = 𝑛
𝑘 𝑝% 1 − 𝑝 &'% 𝑝: probability of 

success outcome 
on a single trial

𝑝6: probability of outcome 𝑖 on a single trial

Where do we get 𝑝6 from?



Interlude for 
jokes/announcements

44
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Announcements

45

Quiz #1

Time frame: Thursday 4/30 12:00am-11:59pm PT
Covers: Up to end of Week 3 (including Lecture 9)
Info and practice: https://web.stanford.edu/class/cs109/exams/quizzes.html

Other things this week

• Section optional 
(not graded), attend 
any section

• Friday’s concept 
check #12 EC

Thoughts pre-quiz:
• A checkpoint for you, not other people
• We are all here to learn. This exam was

designed for a range of students.
• Typesetting will take a bit of time (total: ~2 hr + typeset) 

• Take breaks, stretch, sleep
• The staff and I are here for you. 

https://web.stanford.edu/class/cs109/exams/quizzes.html
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Interesting probability news

46

https://medium.com/@jsteinhardt/estimating-coronavirus-
prevalence-by-cross-checking-countries-c7e4211f0e18

CS109 Current Events Spreadsheet

Estimating Coronavirus 
Prevalence by Cross-
Checking Countries

We’ll make the modeling assumption 
that Nᵢⱼ is a Poisson distribution with rate 
parameter Aᵢⱼ * λᵢ * αⱼ. What this means is 
that the expected number of cases should 
be equal to the total amount of travel, 
times some source-dependent 
multiplier αⱼ …, times some country-
dependent multiplier λᵢ (the infection 
prevalence in country i).”

POISSON!!
!!!!!!!!

https://medium.com/@jsteinhardt/estimating-coronavirus-prevalence-by-cross-checking-countries-c7e4211f0e18
https://docs.google.com/spreadsheets/d/1ijvvCoCKG86gITqSxYEPL_77U7VK__mn-ChvyDkhXX4/edit%3Fusp=sharing


The Federalist 
Papers

47

LIVE
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Probabilistic text analysis
Ignoring the order of words…
What is the probability of any given word that you write in English?
• 𝑃 word = “the” > 𝑃 word = “pokemon”
• 𝑃 word = “Stanford” > 𝑃 word = “Cal”

Probabilities of counts of words = Multinomial distribution

48

👈

A document is a large multinomial.
(according to the Global Language Monitor,
there are 988,968 words in the English language 
used on the internet.)
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Probabilistic text analysis
Probabilities of counts of words = Multinomial distribution

Example document:
“When my late husband was alive he deposited some amount of Money 
with china Bank in which the amount will be declared to you once you 

respond to this message indicating your interest in helping to receive the 
fund and use it for Gods work as my wish.”

49

#words: 𝑛 = 48

𝑃 spam =
𝑛!

1! 1! 1! 1!⋯3!
𝑝bank
% 𝑝fund

% ⋯𝑝to
<

bank = 1
fund = 1
money = 1
wish = 1
…
to = 3 Note: 𝑃 bank spam

writer ≫ 𝑃 bank writer=
you
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Probabilistic text analysis

Probabilities of counts of words = Multinomial distribution

What about probability of those same words in someone else’s writing?
• 𝑃 word = “probability” writer =

you > 𝑃 word = “probability” writer =
non−CS109 student

To determine authorship:
1. Estimate 𝑃 word|writer from known writings
2. Use Bayes’ Theorem to determine 𝑃 writer|document for a new writing!

50

Who wrote the Federalist Papers?

👈
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Old and New Analysis

Authorship of the Federalist Papers
• 85 essays advocating ratification

of the US constitution
• Written under the pseudonym “Publius”

(really, Alexander Hamilton, James Madison, John Jay)

Who wrote which essays?
• Analyze probability of words in each essay

and compare against word distributions from known writings of three 
authors

51

Let’s write a program! website demo

http://web.stanford.edu/class/cs109/demos/https:/drive.google.com/file/d/1cENDTRBWydzUkJvdeRnRn7oMTTEHZm9j/view%3Fusp=sharing
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Step 1. Generate probability lookups
𝑚( Frequency of word 𝑖 in Madison's writing, ∝ 𝑃 word 𝑖 |Madison
ℎ( Frequency of word 𝑖 in Hamilton's writing, ∝ 𝑃 word 𝑖 |Hamilton
4. How will these values help us compute probabilities on a sentence being 

written by Hamilton or Madison?
◦ "The People The Congress"
◦ "People Congress The Rambutans"  

5. [reach] Why don't the total numbers for
just Madison add up to *exactly* one?

6. [reach] How does returning EPSILON
for unknown words help us?

52
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Step 2. Unknown document counts
2. How would you represent the probability of Madison writing this 

document with a Multinomial? Let 𝑐! be the count of word 𝑖.

53
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Step 3. Bayes’ Theorem

𝑃 Madison |unknownDoc =
𝑃 Madison |unknownDoc

𝑃 unknownDoc
Assume that 𝑃 writer = 0.5. We can rewrite this into a decision:

𝑃 unknownDoc|Madison
𝑃 unknownDoc|Hamilton

> 1

54

(If true, Madison is writer)

(Bayes)
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Step 3 (tractable): Use log probabilities
We can rewrite our intractable decision making (if true, Madison is writer)

into:

55

𝑃 unknownDoc|Madison
𝑃 unknownDoc|Hamilton

> 1

log 𝑃 unknownDoc|Madison − log𝑃 unknownDoc|Hamilton > 0


