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Independent discrete RVs
Recall the definition of independent
events 𝐸 and 𝐹:

Two discrete random variables 𝑋 and 𝑌 are independent if:

𝑃 𝑋 = 𝑥, 𝑌 = 𝑦 = 𝑃 𝑋 = 𝑥 𝑃 𝑌 = 𝑦

𝑝!,# 𝑥, 𝑦 = 𝑝! 𝑥 𝑝# 𝑦

• Intuitively: knowing value of 𝑋 tells us nothing about
the distribution of 𝑌 (and vice versa)

• If two variables are not independent, they are called dependent.

4

for all 𝑥, 𝑦:

Different notation,
same idea:

𝑃 𝐸𝐹 = 𝑃 𝐸 𝑃 𝐹
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Dice (after all this time, still our friends)
Let: 𝐷$ and 𝐷% be the outcomes of two rolls

𝑆 = 𝐷$ + 𝐷%, the sum of two rolls
• Each roll of a 6-sided die is an independent trial.
• Random variables 𝐷! and 𝐷" are independent.

1. Are events 𝐷$ = 1 and
𝑆 = 7 independent?

2. Are events 𝐷$ = 1 and
𝑆 = 5 independent?

3. Are random variables 𝐷$ and 𝑆 independent?

5

🤔
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Dice (after all this time, still our friends)
Let: 𝐷$ and 𝐷% be the outcomes of two rolls

𝑆 = 𝐷$ + 𝐷%, the sum of two rolls
• Each roll of a 6-sided die is an independent trial.
• Random variables 𝐷! and 𝐷" are independent.

1. Are events 𝐷$ = 1 and
𝑆 = 7 independent?

2. Are events 𝐷$ = 1 and
𝑆 = 5 independent?

3. Are random variables 𝐷$ and 𝑆 independent?
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Event 𝑆 = 7 : { 1,6 , 2,5 , 3,4 , 4,3 , 5,2 , 6,1 }

Event 𝑆 = 5 : { 1,4 , 2,3 , 3,2 , 4,1 }

All events 𝑋 = 𝑥, 𝑌 = 𝑦 must be independent for 𝑋, 𝑌 to be independent RVs.
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What about continuous random variables?
Continuous random variables can also be independent! We’ll see this later.

Today’s goal:
How can we model sums of discrete random variables?

Big motivation: Model total successes observed over
multiple experiments

7



Sums of 
independent 
Binomial RVs
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Sum of independent Binomials

Intuition:
• Each trial in 𝑋 and 𝑌 is independent and has same success probability 𝑝
• Define 𝑍 =# successes in 𝑛! + 𝑛" independent trials, each with success 

probability 𝑝. 𝑍~Bin 𝑛! + 𝑛", 𝑝 , and also 𝑍 = 𝑋 + 𝑌

9

𝑋~Bin(𝑛!, 𝑝)
𝑌~Bin(𝑛", 𝑝) 𝑋 + 𝑌 ~Bin(𝑛- + 𝑛., 𝑝)

If only it were 
always so 

simple…

𝑋, 𝑌 independent

𝑋,~Bin(𝑛,, 𝑝)
𝑋, independent for 𝑖 = 1,… , 𝑛

1
01$

2

𝑋0 ~Bin(1
01$

2

𝑛0 , 𝑝)
Holds in general case:



Convolution: 
Sum of 
independent 
Poisson RVs
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Convolution: Sum of independent random variables
For any discrete random variables 𝑋 and 𝑌:

𝑃 𝑋 + 𝑌 = 𝑛 =1
3

𝑃 𝑋 = 𝑘, 𝑌 = 𝑛 − 𝑘

In particular, for independent discrete random variables 𝑋 and 𝑌:

𝑃 𝑋 + 𝑌 = 𝑛 =1
3

𝑃 𝑋 = 𝑘 𝑃 𝑌 = 𝑛 − 𝑘

11

the convolution of 𝑝- and 𝑝.
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the convolution
of 𝑝- and 𝑝.

Insight into convolution
For independent discrete random variables 𝑋 and 𝑌:

𝑃 𝑋 + 𝑌 = 𝑛 ='
!

𝑃 𝑋 = 𝑘 𝑃 𝑌 = 𝑛 − 𝑘

Suppose 𝑋 and 𝑌 are independent, both with support 0, 1, … , 𝑛, … :

12

𝑋

0 1 2 … 𝑛 𝑛 + 1 …

𝑌

0
…

𝑛 − 2
𝑛 − 1
𝑛

𝑛 + 1
…

✔
✔

✔

✔
…

• ✔: event where 𝑋 + 𝑌 = 𝑛
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Sum of 2 dice rolls
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The distribution of a sum of 
2 dice rolls is a convolution 
of 2 PMFs.

Example:
𝑃 𝑋 + 𝑌 = 4 =

𝑃 𝑋 = 1 𝑃 𝑌 = 3
+ 𝑃 𝑋 = 2 𝑃 𝑌 = 2
+ 𝑃 𝑋 = 3 𝑃 𝑌 = 1
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Sum of 10 dice rolls (fun preview)
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The distribution of a sum of 
10 dice rolls is a convolution 
10 PMFs.

𝑋! + 𝑋" +⋯+ 𝑋!5 = 𝑛

𝑃
𝑋 !
+
𝑋 "
+
⋯
+
𝑋 !

5
=
𝑛

Looks kinda Normal…???
(more on this in Week 7)
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Sum of independent Poissons
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𝑋~Poi 𝜆! , 𝑌~Poi 𝜆"
𝑋, 𝑌 independent 𝑋 + 𝑌 ~Poi(𝜆- + 𝜆.)

𝑃 𝑋 + 𝑌 = 𝑛 =7
6

𝑃 𝑋 = 𝑘 𝑃 𝑌 = 𝑛 − 𝑘 𝑋 and 𝑌 independent, 
convolution

= 7
675

8

𝑒9:!
𝜆!6

𝑘!
𝑒9:"

𝜆"896

(𝑛 − 𝑘)!
= 𝑒9(:!<:")7

675

8
𝜆!6 𝜆"896

𝑘! (𝑛 − 𝑘)!
PMF of Poisson RVs

=
𝑒9 :!<:"

𝑛!
7
675

8
𝑛!

𝑘! (𝑛 − 𝑘)!
𝜆!6 𝜆"896 =

𝑒9 :!<:"

𝑛!
𝜆! + 𝜆" 8

Proof (just for reference):

𝑎 + 𝑏 ! = A
"#$

!
𝑛
𝑘 𝑎"𝑏!%"

Binomial Theorem:

Poi 𝜆! + 𝜆"
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General sum of independent Poissons
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Holds in general case:

𝑋,~Poi 𝜆,
𝑋, independent for 𝑖 = 1,… , 𝑛 1

01$

2

𝑋0 ~Poi(1
01$

2

𝜆0)
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Quiz #1: Closing remarks

18

however…
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Quiz #1: Closing remarks
Learning goals:
• This quiz was designed for a range of students to test their knowledge.
• We have kept the rigor the same as regular quarters of CS109.
• 2-hour exam length + typesetting, to be completed in 24 hours

A mid-quarter feedback form will be going out sometime next week
• How the course is going overall
• How you are doing overall
• Quiz 1 feedback (start time, duration), so that we can improve

A word about the Honor Code. 
https://communitystandards.stanford.edu/policies-and-guidance/honor-code

19

https://communitystandards.stanford.edu/policies-and-guidance/honor-code
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Independent discrete RVs
Two discrete random variables 𝑋 and 𝑌 are independent if:

𝑃 𝑋 = 𝑥, 𝑌 = 𝑦 = 𝑃 𝑋 = 𝑥 𝑃 𝑌 = 𝑦

𝑝!,# 𝑥, 𝑦 = 𝑝! 𝑥 𝑝# 𝑦

20

for all 𝑥, 𝑦:

Review

Important: Joint PMF must decompose into 
product of marginal PMFs for ALL values of 𝑋
and 𝑌 for 𝑋, 𝑌 to be independent RVs.

The sum of 2 dice and
the outcome of 1st die
are dependent RVs.



Think
Slide 22 has a question to go over by 
yourself.

Post any clarifications here!
https://us.edstem.org/courses/109/discussion/46502

Think by yourself: 2 min

21

🤔(by yourself)

https://us.edstem.org/courses/109/discussion/46502
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Coin flips
Flip a coin with probability 𝑝 of “heads” a total of 𝑛 +𝑚 times.
Let 𝑋 = number of heads in first 𝑛 flips. 𝑋~Bin(𝑛, 𝑝)

𝑌 = number of heads in next 𝑚 flips. 𝑌~Bin 𝑚, 𝑝
𝑍 = total number of heads in 𝑛 +𝑚 flips.

1. Are 𝑋 and 𝑍 independent?
2. Are 𝑋 and 𝑌 independent?

22

🤔(by yourself)
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Coin flips
Flip a coin with probability 𝑝 of “heads” a total of 𝑛 +𝑚 times.
Let 𝑋 = number of heads in first 𝑛 flips. 𝑋~Bin(𝑛, 𝑝)

𝑌 = number of heads in next 𝑚 flips. 𝑌~Bin(𝑚, 𝑝)
𝑍 = total number of heads in 𝑛 +𝑚 flips.

1. Are 𝑋 and 𝑍 independent?
2. Are 𝑋 and 𝑌 independent?
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𝑃 𝑋 = 𝑥, 𝑌 = 𝑦 = 𝑃 first 𝑛 flips have 𝑥 heads
and next 𝑚 flips have 𝑦 heads

# of mutually exclusive
outcomes in event ∶ 𝑛

𝑥
𝑚
𝑦

𝑃 each outcome
= 𝑝! 1 − 𝑝 "#!𝑝$ 1 − 𝑝 %#$

= 𝑛
𝑥 𝑝C 1 − 𝑝 89C 𝑚

𝑦 𝑝D 1 − 𝑝 E9D

= 𝑃 𝑋 = 𝑥 𝑃 𝑌 = 𝑦

✅

Counterexample: What if 𝑍 = 0?

This probability (found through 
counting) is the product of the 
marginal PMFs.
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Sum of independent Poissons

• 𝑛 servers with independent number of requests/minute
• Server 𝑖’s requests each minute can be modeled as 𝑋0~Poi 𝜆0

What is the probability that the total number of web requests received at all 
servers in the next minute exceeds 10?

24

𝑋~Poi 𝜆! , 𝑌~Poi 𝜆"
𝑋, 𝑌 independent 𝑋 + 𝑌 ~Poi(𝜆- + 𝜆.)



Breakout 
Rooms

Slide 47 has two questions to go over in 
groups.

ODD breakout rooms: Try question 1
EVEN breakout rooms: Try question 2

Post any clarifications here!
https://us.edstem.org/courses/109/discussion/46502

Breakout rooms: 5 min. Introduce yourself!

25

🤔

https://us.edstem.org/courses/109/discussion/46502
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🤔
26

Independent questions

1. Let 𝑋~Bin 30, 0.01 and 𝑌~Bin 50, 0.02 be independent RVs.
• How do we compute 𝑃 𝑋 + 𝑌 = 2 using a Poisson approximation?
• How do we compute 𝑃 𝑋 + 𝑌 = 2 exactly?

2. Let 𝑁 = # of requests to a web server per day. Suppose 𝑁~Poi 𝜆 .
• Each request independently comes from a human (prob. 𝑝), or bot (1 − 𝑝).
• Let 𝑋 be # of human requests/day, and 𝑌 be # of bot requests/day.
Are 𝑋 and 𝑌 independent? What are their marginal PMFs?



Lisa Yan, CS109, 2020

1. Approximating the sum of independent Binomial RVs
Let 𝑋~Bin 30, 0.01 and 𝑌~Bin 50, 0.02 be independent RVs.

• How do we compute 𝑃 𝑋 + 𝑌 = 2 using a Poisson approximation?

• How do we compute 𝑃 𝑋 + 𝑌 = 2 exactly?

27

𝑃 𝑋 + 𝑌 = 2 = 7
675

"

𝑃 𝑋 = 𝑘 𝑃 𝑌 = 2 − 𝑘

= A
&'(

)
30
𝑘 0.01& 0.99 *(#& 50

2 − 𝑘 0.02)#&0.98+(#()#&)≈ 0.2327
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2. Web server requests
Let 𝑁 = # of requests to a web server per day. Suppose 𝑁~Poi 𝜆 .
• Each request independently comes from a human (prob. 𝑝), or bot (1 − 𝑝).
• Let 𝑋 be # of human requests/day, and 𝑌 be # of bot requests/day.
Are 𝑋 and 𝑌 independent? What are their marginal PMFs?
𝑃 𝑋 = 𝑛, 𝑌 = 𝑚 = 𝑃 𝑋 = 𝑛, 𝑌 = 𝑚 𝑁 = 𝑛 +𝑚 𝑃 𝑁 = 𝑛 +𝑚

+𝑃 𝑋 = 𝑛, 𝑌 = 𝑚 𝑁 ≠ 𝑛 +𝑚 𝑃 𝑁 ≠ 𝑛 +𝑚

= 𝑃 𝑋 = 𝑛 𝑁 = 𝑛 +𝑚 𝑃 𝑌 = 𝑚| 𝑋 = 𝑛,𝑁 = 𝑛 +𝑚 𝑃 𝑁 = 𝑛 +𝑚

= 𝑛 +𝑚
𝑛 𝑝8 1 − 𝑝 E ⋅ 1 ⋅ 𝑒9:

𝜆8<E

𝑛 +𝑚 !

=
𝑛 +𝑚 !
𝑛!𝑚!

𝑒!"
𝜆𝑝 # 𝜆 1 − 𝑝

$

𝑛 +𝑚 !
= 𝑒!"%

𝜆𝑝 #

𝑛!
⋅ 𝑒!" &!% 𝜆 1 − 𝑝

$

𝑚!

= 𝑃 𝑋 = 𝑛 𝑃 𝑌 = 𝑚
28

Given 𝑁 = 𝑛 +𝑚 indep. trials, 
𝑋|𝑁 = 𝑛 +𝑚~Bin 𝑝, 𝑛 + 𝑚

where 𝑋~Poi 𝜆𝑝 , 𝑌~Poi 𝜆 1 − 𝑝
Yes, 𝑋 and 𝑌 are 

independent!

Law of Total 
Probability

Chain Rule



Interlude for 
jokes/announcements

29
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Announcements

30

Quiz #1

Grades/solutions:
Next week

Problem Set 3

Due: Monday 5/8 10am
Covers: Up to and including Lecture 11

CS109 Contest

Make up any part(s) of your grade
Details Next week
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Interesting probability news

31

https://www.latimes.com/business/story/2020-02-
27/astros-cheating-analysis

CS109 Current Events Spreadsheet

”…new analyses of the Astros’ 
2017 season by baseball’s corps 
of unofficial statisticians —
“sabermetricians,” to the sport —
indicate that the Astros didn’t 
gain anything from their cheating; 
in fact, it may have hurt them.”

https://www.latimes.com/business/story/2020-02-27/astros-cheating-analysis
https://docs.google.com/spreadsheets/d/1ijvvCoCKG86gITqSxYEPL_77U7VK__mn-ChvyDkhXX4/edit%3Fusp=sharing
https://en.wikipedia.org/wiki/Sabermetrics
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Independence of multiple random variables
Recall independence of
𝑛 events 𝐸$, 𝐸%, … , 𝐸2:

We have independence of 𝑛 discrete random variables 𝑋$, 𝑋%, … , 𝑋2 if
for 𝑟 = 1,… , 𝑛:

for all subsets 𝑥$, 𝑥%, … , 𝑥J :

𝑃 𝑋 = 𝑥$, 𝑋 = 𝑥%, … , 𝑋J = 𝑥J =C
01$

J

𝑃 𝑋0 = 𝑥0

32

for 𝑟 = 1,… , 𝑛:
for every subset 𝐸!, 𝐸", … , 𝐸F: 

𝑃 𝐸!, 𝐸", … , 𝐸F = 𝑃 𝐸! 𝑃 𝐸" ⋯𝑃 𝐸F
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Independence is symmetric
If 𝑋 and 𝑌 are independent random variables, then

𝑋 is independent of 𝑌, and 𝑌 is independent of 𝑋

Let 𝑁 be the number of times you roll 2 dice repeatedly until a 4 is rolled 
(the player wins), or a 7 is rolled (the player loses).
Let 𝑋 be the value (4 or 7) of the final throw.
• Is 𝑁 independent of 𝑋? 𝑃 𝑁 = 𝑛|𝑋 = 7 = 𝑃 𝑁 = 𝑛 ?

𝑃 𝑁 = 𝑛|𝑋 = 4 = 𝑃 𝑁 = 𝑛 ?
• Is 𝑋 independent of 𝑁? 𝑃 𝑋 = 4|𝑁 = 𝑛 = 𝑃 𝑋 = 4 ?

𝑃 𝑋 = 7|𝑁 = 𝑛 = 𝑃 𝑋 = 7 ?

In short: Independence is not always intuitive, but it is symmetric.

33

…duh?

(yes, easier
to intuit)



Statistics of 
Two RVs

34

LIVE
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Expectation and Covariance
In real life, we often have many RVs interacting at once.
• We’ve seen some simpler cases (e.g., sum of independent Poissons).
• Computing joint PMFs in general is hard!
• But often you don’t need to model joint RVs completely. 

Instead, we’ll focus next on reporting statistics of multiple RVs:
• Expectation of sums (you’ve seen some of this)
• Covariance: a measure of how two RVs vary with each other 

35
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Properties of Expectation, extended to two RVs

36

(we’ve seen this; 
we’ll prove this next)

True for both independent 
and dependent random 
variables!

1. Linearity:
𝐸 𝑎𝑋 + 𝑏𝑌 + 𝑐 = 𝑎𝐸 𝑋 + 𝑏𝐸 𝑌 + 𝑐

2. Expectation of a sum = sum of expectation:

𝐸 𝑋 + 𝑌 = 𝐸 𝑋 + 𝐸 𝑌

3. Unconscious statistician:

𝐸 𝑔 𝑋, 𝑌 =1
K

1
L

𝑔 𝑥, 𝑦 𝑝!,#(𝑥, 𝑦)
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Proof of expectation of a sum of RVs

37

𝐸 𝑋 + 𝑌 = 𝐸 𝑋 + 𝐸 𝑌

7
C

7
D

𝑥 + 𝑦 𝑝-,. 𝑥, 𝑦
LOTUS,
𝑔 𝑋, 𝑌 = 𝑋 + 𝑌

=7
C

7
D

𝑥𝑝-,. 𝑥, 𝑦 +7
C

7
D

𝑦𝑝-,. 𝑥, 𝑦
Linearity of summations
(cont. case: linearity of integrals)

=7
C

𝑥7
D

𝑝-,. 𝑥, 𝑦 +7
D

𝑦7
C

𝑝-,. 𝑥, 𝑦

Marginal PMFs for 𝑋 and 𝑌=7
C

𝑥𝑝- 𝑥 +7
D

𝑦𝑝. 𝑦

= 𝐸 𝑋 + 𝐸[𝑌]

𝐸 𝑋 + 𝑌 =
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Expectations of common RVs: Binomial

38

𝑋~Bin(𝑛, 𝑝) 𝐸 𝑋 = 𝑛𝑝

Review

# of successes in 𝑛 independent trials
with probability of success 𝑝

𝑋 =0
56!

7

𝑋5

Recall: Bin 1, 𝑝 = Ber 𝑝

𝐸 𝑋 = 𝐸 7
,7!

8

𝑋, =7
,7!

8

𝐸 𝑋, =7
,7!

8

𝑝 = 𝑛𝑝Let 𝑋! = 𝑖th trial is heads
𝑋!~Ber 𝑝 , 𝐸 𝑋! = 𝑝



Think
Slide 40 has a question to go over by 
yourself.

Post any clarifications here!
https://us.edstem.org/courses/109/discussion/46502

Think by yourself: 2 min

39

🤔(by yourself)

https://us.edstem.org/courses/109/discussion/46502
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Expectations of common RVs: Negative Binomial

40

# of independent trials with probability
of success 𝑝 until 𝑟 successes𝑌~NegBin(𝑟, 𝑝) 𝐸 𝑌 = J

M

1. How should we define 𝑌0?

2. How many terms are in our summation?
𝑌 =0

56!

?

𝑌5

🤔

Recall: NegBin 1, 𝑝 = Geo 𝑝

(by yourself)
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Expectations of common RVs: Negative Binomial

41

# of independent trials with probability
of success 𝑝 until 𝑟 successes𝑌~NegBin(𝑟, 𝑝) 𝐸 𝑌 = J

M

Let 𝑌! = # trials to get 𝑖th success (after
𝑖 − 1 th success)

𝑌!~Geo 𝑝 , 𝐸 𝑌! = "
#

𝐸 𝑌 = 𝐸 7
,7!

F

𝑌, =7
,7!

F

𝐸 𝑌, =7
,7!

F
1
𝑝
=
𝑟
𝑝

𝑌 =0
56!

?

𝑌5

Recall: NegBin 1, 𝑝 = Geo 𝑝



Lisa Yan, CS109, 2020 42



Lisa Yan, CS109, 2020 43


