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Remember target?

4

Good times…
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CS109 logo with darts

5

Quick check: What is the probability that a dart
hits at (456.2344132343, 532.1865739012)?

The CS109 logo was created by 
throwing 500,000 darts according to a 
joint distribution.

If we throw another dart according to 
the same distribution, what is 
P(dart hits within 𝑟 pixels of center)?
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CS109 logo with darts

6

1 pixel = 1 dart thrown
at screen

Possible dart counts (in 100x100 boxes)

P(dart hits within 𝑟 pixels of center)?
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CS109 logo with darts

7

Possible dart counts (in 50x50 boxes)

P(dart hits within 𝑟 pixels of center)?
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CS109 logo with darts

8

Possible dart counts
(in infinitesimally small boxes)

P(dart hits within 𝑟 pixels of center)?



Lisa Yan, CS109, 2020

Continuous joint probability density functions
If two random variables 𝑋 and 𝑌 are jointly continuous, then there exists a 
joint probability density function 𝑓!,# defined over −∞ < 𝑥, 𝑦 < ∞ such that:

𝑃 𝑎$ ≤ 𝑋 ≤ 𝑎%, 𝑏$≤ 𝑌 ≤ 𝑏% = 0
&!

&"
0
'!

'"
𝑓!,# 𝑥, 𝑦 𝑑𝑦 𝑑𝑥

9
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From one continuous RV to jointly continuous RVs
Single continuous RV 𝑋

• PDF 𝑓! such that ∫()
) 𝑓! 𝑥 𝑑𝑥 = 1

• Integrate to get probabilities

Jointly continuous RVs 𝑋 and 𝑌

• PDF 𝑓!,# such that∫()
) ∫()

) 𝑓!,# 𝑥, 𝑦 𝑑𝑦 𝑑𝑥 = 1
• Double integrate to get probabilities

10

Probability for jointly continuous RVs is volume under a surface.

0 … 44 52 60 … 90
!

Probability = area
under curve
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Double integrals without tears
Let 𝑋 and 𝑌 be two continuous random variables.
• Support: 0 ≤ 𝑋 ≤ 1, 0 ≤ 𝑌 ≤ 2.

Is 𝑔 𝑥, 𝑦 = 𝑥𝑦 a valid joint PDF over 𝑋 and 𝑌?

Write down the definite double integral that
must integrate to 1:

🤔
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Double integrals without tears
Let 𝑋 and 𝑌 be two continuous random variables.
• Support: 0 ≤ 𝑋 ≤ 1, 0 ≤ 𝑌 ≤ 2.

Is 𝑔 𝑥, 𝑦 = 𝑥𝑦 a valid joint PDF over 𝑋 and 𝑌?

Write down the definite double integral that
must integrate to 1:

0
*+,

%
0
-+,

$
𝑥𝑦 𝑑𝑥 𝑑𝑦 = 1 or 0

-+,

$
0
*+,

%
𝑥𝑦 𝑑𝑦 𝑑𝑥 = 1

(used in next slide)
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Double integrals without tears
Let 𝑋 and 𝑌 be two continuous random variables.
• Support: 0 ≤ 𝑋 ≤ 1, 0 ≤ 𝑌 ≤ 2.

Is 𝑔 𝑥, 𝑦 = 𝑥𝑦 a valid joint PDF over 𝑋 and 𝑌?

13

1 = #
!"

"
#
!"

"
𝑔 𝑥, 𝑦 𝑑𝑥 𝑑𝑦 = #

#$%

&
#
'$%

(
𝑥𝑦 𝑑𝑥 𝑑𝑦

#
#$%

&
#
'$%

(
𝑥𝑦 𝑑𝑥 𝑑𝑦 = #

#$%

&
𝑦 #

'$%

(
𝑥 𝑑𝑥 𝑑𝑦 = #

#$%

&
𝑦
𝑥&

2 %

(

𝑑𝑦 = #
#$%

&
𝑦
1
2
𝑑𝑦

#
#$%

&
𝑦
1
2
𝑑𝑦 =

𝑦&

4 #$%

&

= 1 − 0 = 1

1. Evaluate inside integral by treating 𝑦 as a constant:

2. Evaluate remaining (single) integral:

Yes, 𝑔 𝑥, 𝑦 is a valid joint PDF
because it integrates to 1.

0. Set up integral:
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Marginal distributions
Suppose 𝑋 and 𝑌 are continuous random
variables with joint PDF:

The marginal density functions (marginal PDFs) are therefore:

𝑓! 𝑎 = 0
()

)
𝑓!,# 𝑎, 𝑦 𝑑𝑦 𝑓# 𝑏 = 0

()

)
𝑓!,# 𝑥, 𝑏 𝑑x

14

𝑓) 𝑥 𝑓* 𝑦#
!"

"
#
!"

"
𝑓),* 𝑥, 𝑦 𝑑𝑦 𝑑𝑥 = 1
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Back to darts!
Match 𝑋 and 𝑌 to their respective marginal PDFs:

15

(top-down)

(side view)

🤔
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Back to darts!
Match 𝑋 and 𝑌 to their respective marginal PDFs:

16

pixel x pixel y

(top-down)

(side view)
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Extra slides

If you want more practice with double integrals,
I’ve included two exercises at the end of this lecture.

17



Joint CDFs

18

16b_joint_cdfs
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An observation: Connecting CDF to PDF
For a continuous random variable 𝑋 with PDF 𝑓, the CDF (cumulative 
distribution function) is

𝐹 𝑎 = 𝑃 𝑋 ≤ 𝑎 = 0
()

&
𝑓 𝑥 𝑑𝑥

The density 𝑓 is therefore the derivative of the CDF, 𝐹:

𝑓 𝑎 =
𝑑
𝑑𝑎

𝐹 𝑎

19

(Fundamental Theorem 
of Calculus)
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Joint cumulative distribution function

For two random variables 𝑋 and 𝑌, there can be a joint cumulative 
distribution function 𝐹!,#:

𝐹!,# 𝑎, 𝑏 = 𝑃 𝑋 ≤ 𝑎, 𝑌 ≤ 𝑏

20

For continuous 𝑋 and 𝑌:

𝐹!,# 𝑎, 𝑏 = 0
()

&
0
()

'
𝑓!,# 𝑥, 𝑦 𝑑𝑦 𝑑𝑥

𝑓!,# 𝑎, 𝑏 = 1"

1& 1'
𝐹!,# 𝑎, 𝑏

For discrete 𝑋 and 𝑌:

𝐹!,# 𝑎, 𝑏 = :
-2&

:
*2'

𝑝!,#(𝑥, 𝑦)
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Single variable CDF, graphically

21

lim
'→!"

𝐹- 𝑥 = 0

lim
'→."

𝐹) 𝑥 = 1

𝐹! 𝑥 = 𝑃 𝑋 ≤ 𝑥𝑓! 𝑥

Review
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Joint CDF, graphically

22

lim
',#→!"

𝐹),* 𝑥, 𝑦 = 0

lim
',#→."

𝐹),* 𝑥, 𝑦 = 1

𝐹!,# 𝑥, 𝑦 = 𝑃 𝑋 ≤ 𝑥, 𝑌 ≤ 𝑦𝑓!,# 𝑥, 𝑦



Independent 
Continuous RVs

23

16c_indep_cont_rvs
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Independent continuous RVs
Two continuous random variables 𝑋 and 𝑌 are independent if:

𝑃 𝑋 ≤ 𝑥, 𝑌 ≤ 𝑦 = 𝑃 𝑋 ≤ 𝑥 𝑃 𝑌 ≤ 𝑦
Equivalently:

𝐹!,# 𝑥, 𝑦 = 𝐹! 𝑥 𝐹# 𝑦
𝑓!,# 𝑥, 𝑦 = 𝑓! 𝑥 𝑓# 𝑦

Proof of PDF:

24

𝑓),* 𝑥, 𝑦 =
𝜕&

𝜕𝑥 𝜕𝑦
𝐹),* 𝑥, 𝑦 =

𝜕&

𝜕𝑥 𝜕𝑦
𝐹) 𝑥 𝐹* 𝑦

=
𝜕
𝜕𝑥

𝜕
𝜕𝑦

𝐹) 𝑥 𝐹* 𝑦

= 𝑓) 𝑥 𝑓* 𝑦

=
𝜕
𝜕𝑥

𝐹) 𝑥
𝜕
𝜕𝑦

𝐹* 𝑦
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Independent continuous RVs
Two continuous random variables 𝑋 and 𝑌 are independent if:

𝑃 𝑋 ≤ 𝑥, 𝑌 ≤ 𝑦 = 𝑃 𝑋 ≤ 𝑥 𝑃 𝑌 ≤ 𝑦
Equivalently:

𝐹!,# 𝑥, 𝑦 = 𝐹! 𝑥 𝐹# 𝑦
𝑓!,# 𝑥, 𝑦 = 𝑓! 𝑥 𝑓# 𝑦

More generally, 𝑋 and 𝑌 are independent if joint density factors separately:

𝑓!,# 𝑥, 𝑦 = 𝑔 𝑥 ℎ 𝑦 , where−∞ < 𝑥, 𝑦 < ∞

25
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Pop quiz! (just kidding)
Are 𝑋 and 𝑌 independent in the following cases?

26

independent
𝑋 and 𝑌

𝑓!,# 𝑥, 𝑦 = 𝑔 𝑥 ℎ 𝑦 ,
where−∞ < 𝑥, 𝑦 < ∞

1. 𝑓!,# 𝑥, 𝑦 = 6𝑒(3-𝑒(%*
where 0 < 𝑥, 𝑦 < ∞

2. 𝑓!,# 𝑥, 𝑦 = 4𝑥𝑦
where 0 < 𝑥, 𝑦 < 1

3. 𝑓!,# 𝑥, 𝑦 = 24𝑥𝑦
where 0 < 𝑥 + 𝑦 < 1

🤔
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Pop quiz! (just kidding)
Are 𝑋 and 𝑌 independent in the following cases?

27

1. 𝑓!,# 𝑥, 𝑦 = 6𝑒(3-𝑒(%*
where 0 < 𝑥, 𝑦 < ∞

2. 𝑓!,# 𝑥, 𝑦 = 4𝑥𝑦
where 0 < 𝑥, 𝑦 < 1

3. 𝑓!,# 𝑥, 𝑦 = 24𝑥𝑦
where 0 < 𝑥 + 𝑦 < 1

𝑔 𝑥 = 3𝑒!:'
ℎ 𝑦 = 2𝑒!&#

𝑔 𝑥 = 2𝑥
ℎ 𝑦 = 2𝑦

Cannot capture constraint on 𝑥 + 𝑦
into factorization!

independent
𝑋 and 𝑌

𝑓!,# 𝑥, 𝑦 = 𝑔 𝑥 ℎ 𝑦 ,
where−∞ < 𝑥, 𝑦 < ∞

Separable functions:

Separable functions:

If you can factor densities over all of the 
support, you have independence.



Bivariate 
Normal 
Distribution

28

16d_bivariate_normal
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Bivariate Normal Distribution
𝑋$ and 𝑋% follow a bivariate normal distribution if their joint PDF 𝑓 is

𝑓 𝑥!, 𝑥" =
1

2𝜋𝜎!𝜎" 1 − 𝜌"
𝑒
# !
" !#$!

%"#&" !

'"!
# "$ %"#&" %!# &!

'"'!
( %!#&! !

'!!

Can show that 𝑋$~𝒩 𝜇$, 𝜎$% , 𝑋%~𝒩 𝜇%, 𝜎%%

Often written as: 𝑿~𝒩(𝝁, 𝚺)
• Vector 𝑿 = 𝑋$, 𝑋%
• Mean vector 𝝁 = 𝜇(, 𝜇& , Covariance matrix: 𝚺 =

𝜎(& 𝜌𝜎(𝜎&
𝜌𝜎(𝜎& 𝜎&&

29

We will focus on understanding the 
shape of a bivariate Normal RV.Recall correlation: 𝜌 = Cov !!,!"

4!4"

(Ross chapter 6, example 5d)
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Back to darts

30

(top-down)

(side view)

These darts were actually thrown according
to a bivariate normal distribution:

𝝁 = 450, 600

𝚺 = 900&/4 0
0 900&/25

𝑋, 𝑌 ~𝒩 𝝁, 𝚺

pixel x pixel y

Marginal 
PDFs:

𝑋~𝒩 450,
900&

4 𝑌~𝒩 600,
900&

25
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A diagonal covariance matrix
Let 𝑿 = 𝑋$, 𝑋% follow a bivariate normal distribution 𝑿~𝒩(𝝁, 𝚺), where 

𝝁 = 𝜇$, 𝜇% , 𝚺 =
𝜎$% 0
0 𝜎%%

Are 𝑋$ and 𝑋% independent?

31

𝑓 𝑥(, 𝑥& =
1

2𝜋𝜎(𝜎& 1 − 𝜌&
𝑒
! (
& (!;!

'"!<" !

="!
!&; '"!<" '!!<!

="=!
. '!!<! !

=!!

=
1

2𝜋𝜎(𝜎&
𝑒
! (
&

'"!<" !

="!
. '!!<! !

=!!
(Note covariance: 𝜌𝜎(𝜎& = 0)

=
1

𝜎( 2𝜋
𝑒! '"!<" !/&="!

1
𝜎& 2𝜋

𝑒! '!!<! !/&=!!

𝑋( and 𝑋& are independent  
with marginal distributions 
𝑋(~𝒩 𝜇( 𝜎(& , 𝑋&~𝒩(𝜇& 𝜎&&)
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Jointly continuous RVs
𝑋 and 𝑌 are jointly continuous if they have a joint PDF:

𝑓!,# 𝑥, 𝑦 such that 0
()

)
0
()

)
𝑓!,# 𝑥, 𝑦 𝑑𝑦 𝑑𝑥 = 1

Most things we’ve learned about discrete joint distributions translate:

33

Marginal 
distributions

𝑓) 𝑎 = #
!"

"
𝑓),* 𝑎, 𝑦 𝑑𝑦

Independent RVs 𝑝),* 𝑥, 𝑦 = 𝑝) 𝑥 𝑝* 𝑦 𝑓),* 𝑥, 𝑦 = 𝑓) 𝑥 𝑓* 𝑦

𝑝) 𝑎 =K
#

𝑝),* 𝑎, 𝑦

Expectation
(e.g., LOTUS) 𝐸 𝑔 𝑋, 𝑌 =9

!

9
"

𝑔 𝑥, 𝑦 𝑝#,% 𝑥, 𝑦 𝐸 𝑔 𝑋, 𝑌 = ;
&'

'
;
&'

'
𝑔 𝑥, 𝑦 𝑓#,% 𝑥, 𝑦 𝑑𝑦 𝑑𝑥

…etc.

Review



Think
Slide 35 has a question to go over by 
yourself.

Post any clarifications here!
https://us.edstem.org/courses/109/discussion/60584

Think by yourself: 2 min

34

🤔(by yourself)

https://us.edstem.org/courses/109/discussion/60584
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Warmup exercise
𝑋 and 𝑌 have the following joint PDF:

1. Are 𝑋 and 𝑌 independent?

2. What is the marginal
PDF of 𝑋? Of 𝑌?

3. What is 𝐸 𝑋 + 𝑌 ?

35

🤔(by yourself)

𝑓),* 𝑥, 𝑦 = 3𝑒!:'
where 0 < 𝑥 < ∞, 1 < 𝑦 < 2
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Warmup exercise
𝑋 and 𝑌 have the following joint PDF:

1. Are 𝑋 and 𝑌 independent?

2. What is the marginal
PDF of 𝑋? Of 𝑌?

3. What is 𝐸 𝑋 + 𝑌 ?

36

𝑔 𝑥 = 3𝐶𝑒!:', 0 < 𝑥 < ∞
ℎ 𝑦 = 1/𝐶, 1 < 𝑦 < 2

𝐶 is a 
constant

𝑓),* 𝑥, 𝑦 = 3𝑒!:'
where 0 < 𝑥 < ∞, 1 < 𝑦 < 2

𝑥
𝑦

𝑓 )
,*
𝑥,
𝑦
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Warmup exercise
𝑋 and 𝑌 have the following joint PDF:

1. Are 𝑋 and 𝑌 independent?

2. What is the marginal
PDF of 𝑋? Of 𝑌?

3. What is 𝐸 𝑋 + 𝑌 ?

37

𝑓),* 𝑥, 𝑦 = 3𝑒!:'
where 0 < 𝑥 < ∞, 1 < 𝑦 < 2

𝑔 𝑥 = 3𝐶𝑒!:', 0 < 𝑥 < ∞
ℎ 𝑦 = 1/𝐶, 1 < 𝑦 < 2

𝐶 is a 
constant



Breakout 
Rooms

Check out the question on the next slide 
(Slide 39). Post any clarifications here!

https://us.edstem.org/courses/109/discussion/60584

Breakout rooms: 4 min. Introduce yourself!

38

🤔

https://us.edstem.org/courses/109/discussion/60584
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The joy of meetings
Two people set up a meeting time. Each arrives independently at a time uniformly 
distributed between 12pm and 12:30pm.
Define 𝑋 = # minutes past 12pm that person 1 arrives.  𝑋~Unif 0, 30

𝑌 = # minutes past 12pm that person 2 arrives. 𝑌~Unif 0, 30
What is the probability that the first to arrive waits >10 mins for the other?

Compute: 𝑃 𝑋 + 10 < 𝑌 + 𝑃 𝑌 + 10 < 𝑋 = 2𝑃 𝑋 + 10 < 𝑌
1. What is “symmetry” here?
2. How do we integrate to compute this probability?

39

🤔

(by symmetry)
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The joy of meetings
Two people set up a meeting time. Each arrives independently at a time uniformly 
distributed between 12pm and 12:30pm.
Define 𝑋 = # minutes past 12pm that person 1 arrives.  𝑋~Unif 0, 30

𝑌 = # minutes past 12pm that person 2 arrives. 𝑌~Unif 0, 30
What is the probability that the first to arrive waits >10 mins for the other?

Compute: 𝑃 𝑋 + 10 < 𝑌 + 𝑃 𝑌 + 10 < 𝑋 = 2𝑃 𝑋 + 10 < 𝑌

40

(by symmetry)

= 2 ⋅ N
'.(%?#

𝑓),* 𝑥, 𝑦 𝑑𝑥𝑑𝑦 = 2 ⋅ N
'.(%?#,
%@',#,@:%

1/30 &𝑑𝑥𝑑𝑦

=
2
30&

#
(%

:%
#
%

#!(%
𝑑𝑥𝑑𝑦

(independence)

=
2
30&

#
(%

:%
𝑦 − 10 𝑑𝑦 = ⋯ =

4
9



Interlude for 
jokes/announcements

41
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Announcements

42

Problem Set 4

Due: Monday 5/18 10am
Covers: Up to and including today

Mid-quarter feedback form

link
Open until: this Friday

https://docs.google.com/forms/d/e/1FAIpQLScD9SV5V7-IZ4Euv7tysepgrngJtiLgsLMw9E6sAfWPIOi7Nw/viewform%3Fusp=sf_link
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Announcements: CS109 contest

43

Do something cool and creative
with probability

Replaces one “passing” work requirement

Optional Proposal: Sat. 5/23 11:59pm
Due: Monday 6/8, 11:59pm

https://web.stanford.edu/class/cs109/psets/cs109_contest.pdf

https://web.stanford.edu/class/cs109/psets/cs109_contest.pdf
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Even when you shift the probability far left or far 
right, the opposing candidate still gets some wins. 
That doesn’t mean a forecast was wrong. That’s just 
randomness and uncertainty at play. The probability 
estimates the percentage of times you get an 
outcome if you were to do something multiple times.

Interesting probability news

44

CS109 Current Events Spreadsheet
https://flowingdata.com/2016/07/28/
what-that-election-probability-means/

What That Election 
Probability Means

https://docs.google.com/spreadsheets/d/1ijvvCoCKG86gITqSxYEPL_77U7VK__mn-ChvyDkhXX4/
https://flowingdata.com/2016/07/28/what-that-election-probability-means/
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Bivariate Normal Distribution
The bivariate normal distribution of 𝑿 = 𝑋$, 𝑋% :

𝑿~𝒩(𝝁, 𝚺)
• Mean vector 𝝁 = 𝜇(, 𝜇&

• Covariance matrix: 𝚺 =
𝜎(& 𝜌𝜎(𝜎&

𝜌𝜎(𝜎& 𝜎&&

• Marginal distributions: 𝑋$~𝒩 𝜇$, 𝜎$% , 𝑋%~𝒩 𝜇%, 𝜎%%

• For bivariate normals in particular, Cov 𝑋(, 𝑋& = 0 implies 𝑋(, 𝑋& independent.

45

We will focus on understanding the 
shape of a bivariate Normal RV.

Cov 𝑋(, 𝑋) = Cov 𝑋), 𝑋( = 𝜌𝜎(𝜎)

Review



Breakout 
Rooms

Check out the question on the next slide 
(Slide 47). Post any clarifications here!

https://us.edstem.org/courses/109/discussion/60584

Breakout rooms: 3 min. Introduce yourself!

46

🤔

https://us.edstem.org/courses/109/discussion/60584
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𝑋,𝑌 Matching (all have 𝝁 = 0, 0 )

47

🤔

x
y

PD
F

x

y

1.

x
y

PD
F

x

y

3.

x
y

PD
F

x

y

2.

x
y

PD
F

x

y
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𝑋,𝑌 Matching (all have 𝝁 = 0, 0 )
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Note strict inequalities; these properties hold 
for both discrete and continuous RVs.

Probabilities from joint CDFs

49

Recall for a single RV 𝑋 with CDF 𝐹!:
CDF: 𝑃 𝑋 ≤ 𝑥 = 𝐹) 𝑥

𝑃 𝑎 < 𝑋 ≤ 𝑏 = 𝐹! 𝑏 − 𝐹(𝑎)

For two RVs 𝑋 and 𝑌 with joint CDF 𝐹!,#:
Joint CDF: 𝑃 𝑋 ≤ 𝑥, 𝑌 ≤ 𝑦 = 𝐹),* 𝑥, 𝑦

𝑃 𝑎$ < 𝑋 ≤ 𝑎%, 𝑏$ < 𝑌 ≤ 𝑏% =
𝐹!,# 𝑎%,𝑏% − 𝐹!,# 𝑎$,𝑏% − 𝐹!,# 𝑎%,𝑏$ + 𝐹!,# 𝑎$,𝑏$
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Probabilities from joint CDFs

50

𝑃 𝑎$ < 𝑋 ≤ 𝑎%, 𝑏$ < 𝑌 ≤ 𝑏% =
𝐹!,# 𝑎%,𝑏% − 𝐹!,# 𝑎$,𝑏% − 𝐹!,# 𝑎%,𝑏$ + 𝐹!,# 𝑎$,𝑏$

𝑎&𝑎(

𝑏&
𝑏(

𝑥

𝑦

𝑦

𝑏&

𝑏(

𝑎&𝑎(
𝑥
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Probabilities from joint CDFs

51

𝑃 𝑎$ < 𝑋 ≤ 𝑎%, 𝑏$ < 𝑌 ≤ 𝑏% =
𝐹!,# 𝑎%,𝑏% − 𝐹!,# 𝑎$,𝑏% − 𝐹!,# 𝑎%,𝑏$ + 𝐹!,# 𝑎$,𝑏$

𝑦

𝑏&

𝑏(

𝑎&𝑎(
𝑥
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Probabilities from joint CDFs

52

𝑃 𝑎$ < 𝑋 ≤ 𝑎%, 𝑏$ < 𝑌 ≤ 𝑏% =
𝐹!,# 𝑎%,𝑏% − 𝐹!,# 𝑎$,𝑏% − 𝐹!,# 𝑎%,𝑏$ + 𝐹!,# 𝑎$,𝑏$

𝑦

𝑏&

𝑏(

𝑎&𝑎(
𝑥
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Probabilities from joint CDFs
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𝑃 𝑎$ < 𝑋 ≤ 𝑎%, 𝑏$ < 𝑌 ≤ 𝑏% =
𝐹!,# 𝑎%,𝑏% − 𝐹!,# 𝑎$,𝑏% − 𝐹!,# 𝑎%,𝑏$ + 𝐹!,# 𝑎$,𝑏$

𝑦

𝑏&

𝑏(

𝑎&𝑎(
𝑥
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Probabilities from joint CDFs
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𝑃 𝑎$ < 𝑋 ≤ 𝑎%, 𝑏$ < 𝑌 ≤ 𝑏% =
𝐹!,# 𝑎%,𝑏% − 𝐹!,# 𝑎$,𝑏% − 𝐹!,# 𝑎%,𝑏$ + 𝐹!,# 𝑎$,𝑏$

𝑦

𝑏&

𝑏(

𝑎&𝑎(
𝑥
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Probabilities from joint CDFs
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𝑃 𝑎$ < 𝑋 ≤ 𝑎%, 𝑏$ < 𝑌 ≤ 𝑏% =
𝐹!,# 𝑎%,𝑏% − 𝐹!,# 𝑎$,𝑏% − 𝐹!,# 𝑎%,𝑏$ + 𝐹!,# 𝑎$,𝑏$

𝑦

𝑏&

𝑏(

𝑎&𝑎(
𝑥
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Probabilities from joint CDFs

56

𝑃 𝑎$ < 𝑋 ≤ 𝑎%, 𝑏$ < 𝑌 ≤ 𝑏% =
𝐹!,# 𝑎%,𝑏% − 𝐹!,# 𝑎$,𝑏% − 𝐹!,# 𝑎%,𝑏$ + 𝐹!,# 𝑎$,𝑏$

𝑦

𝑏&

𝑏(

𝑎&𝑎(
𝑥
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Probability with Instagram!

57

In image processing, a Gaussian blur is the result of blurring an 
image by a Gaussian function. It is a widely used effect in 
graphics software, typically to reduce image noise.

𝑃 𝑎! < 𝑋 ≤ 𝑎", 𝑏! < 𝑌 ≤ 𝑏" =
𝐹#,% 𝑎",𝑏" − 𝐹#,% 𝑎!,𝑏" − 𝐹#,% 𝑎",𝑏! + 𝐹#,% 𝑎!,𝑏!

(for next 
time)
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Gaussian blur
In a Gaussian blur, for every pixel:
• Weight each pixel by the probability that 𝑋

and 𝑌 are both within the pixel bounds
• The weighting function is a Bivariate 

Gaussian (Normal) standard deviation 
parameter 𝜎

Gaussian blurring with 𝜎 = 3:

𝑓),* 𝑥, 𝑦 =
1

2𝜋 ⋅ 3&
𝑒! '!.#! /&⋅:!

What is the weight of the center pixel?

Center pixel: (0, 0)
Pixel bounds:
−0.5 < 𝑥 ≤ 0.5
−0.5 < 𝑦 ≤ 0.5

58

𝑃 𝑎! < 𝑋 ≤ 𝑎", 𝑏! < 𝑌 ≤ 𝑏" =
𝐹#,% 𝑎",𝑏" − 𝐹#,% 𝑎!,𝑏" − 𝐹#,% 𝑎",𝑏! + 𝐹#,% 𝑎!,𝑏!

Weight matrix:

𝑃 −0.5 < 𝑋 ≤ 0.5, −0.5 < 𝑌 ≤ 0.5 =

= 0.206

à Independent 𝑋~𝒩 0, 3& , 𝑌~𝒩 0, 3&

à Joint CDF: 𝐹),* 𝑥, 𝑦 = Φ '
:
Φ #

:

(for next time)



Extra

59

16f_extra
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1. Integral practice
Let 𝑋 and 𝑌 be two continuous random 
variables with joint PDF:
What is 𝑃 𝑋 ≤ 𝑌 ?

60

𝑃 𝑋 ≤ 𝑌 = N
'@#,

%@',#@(

4𝑥𝑦 𝑑𝑥 𝑑𝑦 = #
#$%

(

#
'@#

4𝑥𝑦 𝑑𝑥 𝑑𝑦 = #
#$%

(

#
'$%

#

4𝑥𝑦 𝑑𝑥 𝑑𝑦

= #
#$%

(

4𝑦
𝑥&

2 %

#

𝑑𝑦 = #
#$%

(

2𝑦:𝑑𝑦 =
2
4
𝑦B

%

(
=
1
2

𝑓 𝑥, 𝑦 = L4𝑥𝑦 0 ≤ 𝑥, 𝑦 ≤ 1
0 otherwise
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2. How do you integrate over a circle?
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𝑃 𝑋% + 𝑌% ≤ 10% = 00𝑓!,# 𝑥, 𝑦 𝑑𝑦 𝑑𝑥
𝑥) + 𝑦) ≤ 10)

P(dart hits within 𝑟 = 10 pixels of center)?

Let’s try an example that doesn’t 
involve integrating a Normal RV 
J
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2. Imperfection on Disk
You have a disk surface, a circle of radius 𝑅. 
Suppose you have a single point imperfection 
uniformly distributed on the disk.
What are the marginal distributions of 𝑋 and 𝑌? 
Are 𝑋 and 𝑌 independent?
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𝑓),* 𝑥, 𝑦 = V
1
𝜋𝑅&

𝑥& + 𝑦& ≤ 𝑅&

0 otherwise

𝑓) 𝑥 = #
!"

"
𝑓),* 𝑥, 𝑦 𝑑𝑦 =

1
𝜋𝑅&

#
'!.#!@C!

𝑑𝑦

=
1
𝜋𝑅&

#
#$! C!!'!

C!!'!

𝑑𝑦

where −𝑅 ≤ 𝑥 ≤ 𝑅

=
2 𝑅& − 𝑥&

𝜋𝑅&

𝑓* 𝑦 =
2 𝑅& − 𝑦&

𝜋𝑅&
where −𝑅 ≤ 𝑦 ≤ 𝑅, by symmetry

No, 𝑋 and 𝑌 are dependent.
𝑓),* 𝑥, 𝑦 ≠ 𝑓) 𝑥 𝑓* 𝑦


