19: Sampling and the Bootstrap

Lisa Yan May 18, 2020

Quick slide reference

- 3 Sampling definitions 19a_intro
- 11 Unbiased estimators 19b sample stats
- 23 Reporting estimation error 19c_statistical_error
- 29 Bootstrap: Sample mean 19d_bootstrap_mean
- 40 Bootstrap: Sample variance LIVE
- * Bootstrap: Hypothesis testing \blacksquare

19a_intro

Sampling definitions

Motivating example

You want to know the true mean and variance of happiness in Bhutan.

- But you can't ask everyone.
- You poll 200 random people.
- Your data looks like this:

Happiness = {72, 85, 79, 91, 68, …, 71}

• The mean of all these numbers is 83. Is this the true mean happiness of Bhutanese people?

Population

This is a population.

Sample

A sample is selected from a population.

Sample

A sample is selected from a population.

A sample, mathematically

Consider *n* random variables $X_1, X_2, ..., X_n$.

The sequence $X_1, X_2, ..., X_n$ is a sample from distribution F if:

- X_i are all independent and identically distributed (i.i.d.)
- X_i all have same distribution function F (the underlying distribution), where $E[X_i] = \mu$, $Var(X_i) = \sigma^2$ Population Happiness ($N = 10000$)

A sample, mathematically

A sample of sample size 8: $(X_1, X_2, X_3, X_4, X_5, X_6, X_7, X_8)$

A realization of a sample of size 8: 59, 87, 94, 99, 87, 78, 69, 91

A single sample

A happy Bhutanese person

If we had a distribution F of our entire population, we could compute exact statistics about about happiness.

But we only have 200 people (a sample).

Today: If we only have a single sample,

- How do we report *estimated* statistics?
- How do we report estimated error of these estimates?
- How do we perform hypothesis testing?

19b_sample_stats

Unbiased estimators

A single sample

A happy Bhutanese person

If we had a distribution F of our entire population, we could compute exact statistics about about happiness.

But we only have 200 people (a sample).

So these population statistics are unknown:

- \cdot μ , the population mean
- \cdot σ^2 , the population variance

A single sample

A happy Bhutanese person

If we had a distribution F of our entire population, we could compute exact statistics about about happiness.

But we only have 200 people (a sample).

- From these 200 people, what is our best estimate of **population mean** and population variance?
- How do we define best estimate?

Estimating the population mean

1. What is our best estimate of μ , the mean happiness of Bhutanese people?

If we only have a sample, $(X_1, X_2, ..., X_n)$:

The best estimate of μ is the sample mean:

$$
\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i
$$

 \overline{X} is an unbiased estimator of the population mean μ . $E[\overline{X}] = \mu$

Intuition: By the CLT, $\bar{X} \sim \mathcal{N}(\mu, \mathcal{N}(\mu, \mathcal{N}))$ σ^2

Lisa Yan, CS109, 2020 **Stanford University** 14 \widehat{n}) If we could take *multiple* samples of size *n*: 1. For each sample, compute sample mean 2. On average, we would get the population mean

Sample mean

Even if we can't report μ , we can report our sample mean 83.03, which is an unbiased estimate of μ .

Estimating the population variance

2. What is σ^2 , the variance of happiness of Bhutanese people?

If we knew the entire population $(x_1, x_2, ..., x_N)$:

population mean

population variance
$$
\sigma^2 = E[(X - \mu)^2] = \frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2
$$

If we only have a sample, $(X_1, X_2, ..., X_n)$: sample mean

variance

sample
ariance
$$
S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2
$$

Actual, σ^2

Population size, N

Calculating population statistics exactly requires us knowing all N datapoints.

Estimating the population variance

2. What is σ^2 , the variance of happiness of Bhutanese people?

If we only have a sample, $(X_1, X_2, ..., X_n)$:

The best estimate of σ^2 is the sample variance:

$$
S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2}
$$

 S^2 is an unbiased estimator of the population variance, σ^2 . $E[S^2] = \sigma^2$

Proof that S^2 is unbiased (just for reference) $E[S^2] = \sigma^2$

$$
E[S^2] = E\left[\frac{1}{n-1}\sum_{i=1}^n (X_i - \bar{X})^2\right] \Rightarrow (n-1)E[S^2] = E\left[\sum_{i=1}^n (X_i - \bar{X})^2\right]
$$

\n
$$
(n-1)E[S^2] = E\left[\sum_{i=1}^n ((X_i - \mu) + (\mu - \bar{X}))^2\right]
$$

\n
$$
= E\left[\sum_{i=1}^n (X_i - \mu)^2 + \sum_{i=1}^n (\mu - \bar{X})^2 + 2\sum_{i=1}^n (X_i - \mu)(\mu - \bar{X})\right]
$$

\n
$$
= E\left[\sum_{i=1}^n (X_i - \mu)^2 + n(\mu - \bar{X})^2 - 2n(\mu - \bar{X})^2\right]
$$

\n
$$
= E\left[\sum_{i=1}^n (X_i - \mu)^2 + n(\mu - \bar{X})^2 - 2n(\mu - \bar{X})^2\right]
$$

\n
$$
= E\left[\sum_{i=1}^n (X_i - \mu)^2 - n(\mu - \bar{X})^2\right] = \sum_{i=1}^n E[(X_i - \mu)]^2 - nE[(\bar{X} - \mu)^2]
$$

\n
$$
= n\sigma^2 - n\text{Var}(\bar{X}) = n\sigma^2 - n\sigma^2 = n\sigma^2 - n\sigma^2 = (n-1)\sigma^2
$$
Therefore $E[S^2] = \sigma^2$

 \overline{n}

Stanford University 22

19c_standard_error

Standard error

A particular outcome

- 1. Collect a sample, X_1, X_2, \ldots, X_n . $(72, 85, 79, 79, 91, 68, \ldots, 71)$ $n = 200$
- 2. Compute sample mean, $\bar{X} = \frac{1}{x}$ $\frac{1}{n}\sum_{i=1}^n X_i$. $\overline{X} = 83$
- 3. Compute sample deviation, $X_i \overline{X}$. $(-11, 2, -4, -4, 8, -15, \dots, -12)$
- 4. Compute sample variance, $S^2 = \frac{1}{r^2}$ $\frac{1}{n-1}\sum_{i=1}^n (X_i - \overline{X})^2$. $S^2 = 793$

How "close" are our estimates \overline{X} and S^2 ?

Sample mean

- Var (\bar{X}) is a measure of how "close" X is to μ .
- How do we estimate $\text{Var}(\bar{X})$?

How "close" is our estimate X to μ ?

$$
E[\bar{X}] = \mu
$$

 $Var(\overline{X})$

def The standard error of the mean is an estimate of the standard deviation of X .

Intuition:

- $S²$ is an unbiased estimate of $\sigma²$
- S^2/n is an unbiased estimate of $\sigma^2/n = \text{Var}(\bar{X})$
- $\sqrt{S^2/n}$ can estimate $\sqrt{\text{Var}(\bar{X})}$

Standard error of the mean

These 2 statistics give a sense of how the sample mean random variable \overline{X} behaves. 1. Mean happiness:

19d_bootstrap_mean

Bootstrap: Sample mean

The Bootstrap:

Probability for Computer Scientists

Computing statistic of sample mean

What is the standard deviation of the sample mean X? (sample size $n = 200$)

But Lisa is sharing the exact statistic with you. Lisa Yan, CS109, 2020 Note: We don't have access to the population.

Bootstrap insight 1: Estimate the true distribution

Bootstrap insight 1: Estimate the true distribution

You can estimate the PMF of the underlying distribution, using your sample.*

*This is just a histogram of your data!

Bootstrap insight 2: Simulate a distribution

Approximate the procedure of simulating a distribution of a statistic, e.g., X .

Stanford University 34

Bootstrapped sample means

using our "PMF" (histogram) of our sample.

bunch of sample means of this estimated distribution… standard deviation of this distribution.

Computing statistic of sample mean

What is the standard deviation of the sample mean X? (sample size $n = 200$)

Bootstrap Algorithm (sample):

- 1. Estimate the **PMF** using the sample
- 2. Repeat **10,000** times:
	- a. Resample **sample.size**() from PMF
	- b. Recalculate the **sample mean** on the resample
- 3. You now have a **distribution of your sample mean**

What is the distribution of your sample mean?

We'll talk about this algorithm in detail during live lecture!

Bootstrap Algorithm (sample): 1. Estimate the **PMF** using the sample 2. Repeat **10,000** times: a. Resample **sample.size**() from PMF b. Recalculate the **statistic** on the resample 3. You now have a **distribution of your statistic**

What is the distribution of your statistic?

Bootstrap Algorithm (sample):

- 1. Estimate the **PMF** using the sample
- 2. Repeat **10,000** times:
	- a. Resample **sample.size**() from PMF
	- **b. Recalculate the sample variance** on the resample

3. You now have a **distribution of your sample variance**

What is the distribution of your sample variance?

Even if we don't have a closed form equation, we estimate statistics of sample variance with bootstrapping!

(live) 19: Sampling and the Bootstrap

Lisa Yan May 18, 2020

Quick check

- 1. μ , the population mean
- 2. $(X_1, X_2, X_3, X_4, X_5, X_6, X_7, X_8)$, a sample
- 3. σ^2 , the population variance
- 4. \bar{X} , the sample mean

5. $\bar{X} = 83$

6.
$$
(X_1 = 59, X_2 = 87, X_3 = 94, X_4 = 99, X_5 = 87, X_6 = 78, X_7 = 69, X_8 = 91)
$$

- A. Random variable(s)
- B. Value
- C. Event

Quick check

- 1. μ , the population mean
- 2. $(X_1, X_2, X_3, X_4, X_5, X_6, X_7, X_8)$, a sample
- 3. σ^2 , the population variance
- 4. \overline{X} , the sample mean
- 5. $\bar{X} = 83$

6.
$$
(X_1 = 59, X_2 = 87, X_3 = 94, X_4 = 99, X_5 = 87, X_6 = 78, X_7 = 69, X_8 = 91)
$$

- A. Random variable(s)
- B. Value
- C. Event

Stanford University 42

Hypothetical questions:

- What is the probability that a Bhutanese peep is just straight up loving life?
- What is the probability that the mean of a subsample of 200 people is within the range 81 to 85?
- What is the variance of the sample variance of subsamples of 200 people?

The Bootstrap:

Probability for Computer Scientists

Allows you to do the following:

- Calculate distributions over statistics
- Calculate p values

How "close" is our estimate X to μ ?

$$
E\big[\bar{X}\big] = \mu
$$

 $Var(\overline{X})$

def The standard error of the mean is an estimate of the standard deviation of \overline{X} .

Intuition:

- $S²$ is an unbiased estimate of $\sigma²$
- S^2/n is an unbiased estimate of $\sigma^2/n = \text{Var}(\bar{X})$
- $\sqrt{S^2/n}$ is an unbiased estimate of $\sqrt{\text{Var}(\bar{X})}$

Standard error

Review

Standard error

1. Mean happiness:

Claim: The average happiness of Bhutan is 83, with a standard error of 1.99.

$$
\begin{array}{cc}\n\text{Closed} & SE = \sqrt{\frac{S^2}{n}} \\
\text{form:} & \end{array}
$$

2. Variance of happiness:

Claim: The variance of happiness of Bhutan is 793.

Closed form: in CS109 Not covered

Lisa Yan, CS109, 2020

We can bootstrap for standard error of sample variance—a statistic of a statistic.

Review

Computing statistic of sample mean

What is the standard deviation of the sample mean X? (sample size $n = 200$)

Review

Lisa Yan, CS109, 2020

Bootstrap Algorithm (sample):

- 1. Estimate the **PMF** using the sample
- 2. Repeat **10,000** times:
	- a. Resample **sample.size**() from PMF
	- **b. Recalculate the sample variance** on the resample

3. You now have a **distribution of your sample variance**

What is the distribution of your sample variance?

Estimate the PMF using the sample

2. Repeat **10,000** times:

a. Resample **sample.size**() from PMF

b. Recalculate the **sample variance** on the resample

3. You now have a **distribution of your sample variance**

1. Estimate the **PMF** using the sample

- 2. Repeat **10,000** times:
	- a. Resample **sample.size**() from PMF
	- b. Recalculate the **sample variance** on the resample

3. You now have a **distribution of your sample variance**

Why are these

samples different?

⚠

- 1. Estimate the **PMF** using the sample
- 2. Repeat **10,000** times:
	- a. Resample **sample.size**() from PMF
		- b. Recalculate the **sample variance** on the resample

3. You now have a distribution of your

This resampled sample is generated with replacement.

- 1. Estimate the **PMF** using the sample
- 2. Repeat **10,000** times:
	- a. Resample **sample.size**() from PMF
	- b. Recalculate the **sample variance** on the resample
- 3. You now have a **distribution of your sample variance**

```
variances = [827.4]
```


1. Estimate the **PMF** using the sample

- 2. Repeat **10,000** times:
	- a. Resample **sample.size**() from PMF
	- b. Recalculate the **sample variance** on the resample

3. You now have a **distribution of your sample variance** variances = [827.4]

- 1. Estimate the **PMF** using the sample
- 2. Repeat **10,000** times: a. Resample **sample.size**() from PMF b. Recalculate the **sample variance** on the resample 3. You now have a **distribution of your sample variance** variances = [827.4]

- 1. Estimate the **PMF** using the sample
- 2. Repeat **10,000** times:

a. Resample **sample.size**() from PMF

b. Recalculate the **sample variance** on the resample

3. You now have a **distribution of your sample variance**

variances = [827.4, 846.1]

1. Estimate the **PMF** using the sample

- 2. Repeat **10,000** times:
	- a. Resample **sample.size**() from PMF
	- b. Recalculate the **sample variance** on the resample

3. You now have a **distribution of your sample variance**

variances = [827.4, 846.1]

Lisa Yan, CS109, 2020

3. You now have a distribution of your sample variance

```
variances = [827.4,
    846.1, 726.0, …,
    860.7]
```
What is the bootstrapped standard error?

np.std(variances)

Bootstrapped standard error: 66.16

Standard error

1. Mean happiness:

- 1. Estimate the **PMF** using the sample
- 2. Repeat **10,000** times:
	- a. Resample **sample.size**() from PMF
	- b. Recalculate the **statistic** on the resample
- 3. You now have a **distribution of your statistic**

 Ω

1. Estimate the **PMF** using the sample

2. Repeat **10,000** times:

a. Resample **sample.size**() from PMF

b. Recalculate the **statistic** on the resample

3. You now have a **distribution of your statistic**

 Ω

def resample(sample, n): # estimate the PMF using the sample # draw n new samples from the PMF return np.random.choice(sample, n, replace=True)

1. Estimate the **PMF** using the sample

2. Repeat **10,000** times:

a. Resample **sample.size**() from PMF, **with replacement**

b. Recalculate the **statistic** on the resample

3. You now have a **distribution of your statistic**

Bootstrap provides a way to calculate probabilities of statistics using code.

- Invented bootstrapping in 1979
- Still a professor at Stanford
- Won a National Science Medal

Efron's dice: 4 dice A , B , C , D such that

 $P(A > B) = P(B > C) = P(C > D) = P(D > A) =$ $\overline{2}$ 3

Bootstrap provides a way to calculate probabilities of statistics using code. Bootstrapping works for any statistic*

*as long as your sample is i.i.d. and the underlying distribution does not have a long tail

LIVE

Bootstrap: p-value

Null hypothesis test

Claim: Sample 1 and Sample 2 have a 0.7 difference of means.

Null hypothesis test

Claim: The difference in mean happiness between Nepal and Bhutan is 0.7 happiness points, and this is significant.

def null hypothesis – Even if there is no pattern (i.e., the two samples are from identical distributions), your claim might have arisen by chance.

def p-value – What is the probability that, under the null hypothesis, the observed difference occurs?

Claim: The difference in mean happiness between Nepal and Bhutan is 0.7 happiness points, and this is significant.

Universal sample

(this is what the null hypothesis assumes)

Want **p-value**: probability $|\bar{X}_1 - \bar{X}_2| = |3.1 - 2.4|$ happens under null hypothesis
1. Create a universal sample using your two samples

Recreate the null hypothesis

1. Create a universal sample using your two samples

2. Repeat **10,000** times:

- a. Resample **both samples**
- b. Recalculate the **mean difference** between the resamples

3. p-value = # (mean diffs >= observed diff) n

Probability that observed difference arose by chance

```
def pvalue_boot(bhutan_sample, nepal_sample):
   N = size of the bhutan_sample
    M = size of the nepal_sample
    observed_diff = |mean of bhutan_sample – mean of nepal_sample|
    uni_sample = combine bhutan_sample and nepal_sample
    count = 0repeat 10,000 times:
        bhutan_resample = draw N resamples from the uni_sample
        nepal_resample = draw M resamples from the uni_sample
        muBhutan = sample mean of the bhutan_resample
        muNepal = sample mean of the nepal_resample
        diff = |muNepal - muBhutan|
        if diff >= observed_diff: 
            count += 1
```
Bootstrap for p-values **def** pvalue_boot(**bhutan_sample**, **nepal_sample**): N = size of the **bhutan_sample** M = size of the **nepal sample** observed_diff = |mean of **bhutan_sample** – mean of **nepal_sample**| **uni_sample** = combine **bhutan_sample** and **nepal_sample count** = 0 1. Create a universal sample using your two samples

```
repeat 10,000 times:
   bhutan_resample = draw N resamples from the uni_sample
   nepal_resample = draw M resamples from the uni_sample
   muBhutan = sample mean of the bhutan_resample
   muNepal = sample mean of the nepal_resample
   diff = |muNepal - muBhutan|
    if diff >= observed_diff: 
       count += 1
```

```
def pvalue_boot(bhutan_sample, nepal_sample):
    N = size of the <b>bhutan</b> sampleM = size of the nepal_sample
    observed_diff = |mean of bhutan_sample – mean of nepal_sample|
```

```
uni_sample = combine bhutan_sample and nepal_sample
count = 0
```

```
repeat 10,000 times:
```

```
bhutan_resample = draw N resamples from the uni_sample
nepal_resample = draw M resamples from the uni_sample
muBhutan = sample mean of the bhutan_resample
muNepal = sample mean of the nepal_resample
diff = |muNepal - muBhutan|
if diff >= observed_diff: 
    count += 1
```

```
def pvalue_boot(bhutan_sample, nepal_sample):
    N = size of the bhutan sample
    M = size of the nepal_sample
    observed_diff = |mean of bhutan_sample – mean of nepal_sample|
    uni_sample = combine bhutan_sample and nepal_sample
    count = 0repeat 10,000 times:
        bhutan_resample = draw N resamples from the uni_sample
        nepal_resample = draw M resamples from the uni_sample
        muBhutan = sample mean of the bhutan_resample
        muNepal = sample mean of the nepal_resample
        diff = |muNepal - muBhutan|
        if diff >= observed_diff: 
            count += 1
```
n

```
def pvalue_boot(bhutan_sample, nepal_sample):
   N = size of the <b>bhutan</b> sampleM = size of the nepal_sample
    observed_diff = |mean of bhutan_sample – mean of nepal_sample|
    uni_sample = combine bhutan_sample and nepal_sample
    count = 0repeat 10,000 times:
        bhutan_resample = draw N resamples from the uni_sample
        nepal_resample = draw M resamples from the uni_sample
        muBhutan = sample mean of the bhutan_resample
        muNepal = sample mean of the nepal_resample
        diff = |muNepal - muBhutan|
        if diff >= observed_diff: 
            count += 1
```

```
def pvalue_boot(bhutan_sample, nepal_sample):
    N = size of the <b>bhutan</b> sampleM = size of the nepal_sample
    observed_diff = |mean of bhutan_sample – mean of nepal_sample|
```

```
uni_sample = combine bhutan_sample and nepal_sample
count = 0
```

```
with replacement!
```

```
repeat 10,000 times:
```

```
bhutan_resample = draw N resamples from the uni_sample
nepal_resample = draw M resamples from the uni_sample
muBhutan = sample mean of the bhutan_resample
muNepal = sample mean of the nepal_resample
diff = |muNepal - muBhutan|
if diff >= observed_diff: 
    count += 1
```
Bootstrap

Let's try it!

Null hypothesis test

Claim: The happiness of Nepal and Bhutan have a 0.7 difference of means, and this is significant ($p < 0.01$).

[Cloud recording today](https://stanford.zoom.us/rec/play/v5AlIun7qDo3GdDGsASDU6R5W427KPis0CEXrvIPnh29VXIEMQH0NeMTYrSirUNR6iyXB4P0MPVBj3yM%3FcontinueMode=true&_x_zm_rtaid=F2jTZc_2QQCu-okyhY9Krw.1589849628626.72cd8e06b89a0cf03b4ea163319c677a&_x_zm_rhtaid=460)

Click here to access:

https://stanford.zoom.us/rec/play/v5Allun7qD PisOCEXrvIPnh29VXIEMQH0NeMTYrSirUNR6iyXI ode=true& x_zm_rtaid=F2jTZ okyhY9Krw.1589849628626.72cd8e06b89a0 x_zm_rhtaid=460

Lisa Yan, CS109, 2020