23: Naïve Bayes

Lisa Yan May 29, 2020

Quick slide reference

- 3 Intro: Machine Learning
- ²¹ "Brute Force Bayes"
- 32 Naïve Bayes Classifier

24c_naive_bayes

23a_intro

2 10_11a100_80300

24b_brute_force_bayes

- 43 Naïve Bayes: MLE/MAP with TV shows
- 66 Naïve Bayes: MAP with email classification

LIVE

LIVE

23a_intro

Intro: Machine Learning

Our path from here

Stanford University

Our path from here

Stanford University

Machine Learning (formally)

Many different forms of "Machine Learning"

• We focus on the problem of prediction based on observations.

Machine Learning uses a lot of data.

Supervised learning: A category of machine learning where you have labeled data on the problem you are solving.

Task: Identify what a chair is Data: All the chairs ever

Supervised learning

Supervised learning

Model and dataset

Many different forms of "Machine Learning"

We focus on the problem of prediction based on observations.

Goal

Based on observed X, predict unseen Y Vector **X** of *m* observed variables Features $\boldsymbol{X} = (X_1, X_2, \dots, X_m)$

Variable Y (also called class label if discrete) Output

 $\hat{Y} = q(X)$, a function of observations X Model

Training data

. . .

Patient *n* 0

 $\boldsymbol{X} = (X_1, X_2, X_3, \dots, X_{300})$

0

. . .

...

•

...

Feature 1 Feature 2 Feature 300 pinarguletor Patient 1 1 0 1

0

Patient 2 1 1 . . .

Output

1

0

2

1

 \leftarrow

¢

 \leq

Stanford University 12

Training data notation

$$(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), ..., (x^{(n)}, y^{(n)})$$

i-th datapoint $(x^{(i)}, y^{(i)})$:

- *m* features: $\mathbf{x}^{(i)} = \left(x_1^{(i)}, x_2^{(i)}, \dots, x_m^{(i)}\right)$ A single output $y^{(i)}$
- Independent of all other datapoints

Training Goal:

Use these *n* datapoints to learn a model $\hat{Y} = q(X)$ that predicts Y

Supervised learning

Testing data notation

$$(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), ..., (x^{(n)}, y^{(n)})$$

 n_{test} other datapoints, generated i.i.d.

i-th datapoint $(x^{(i)}, y^{(i)})$:

Has the same structure as your training data

Testing Goal:

Using the model $\hat{Y} = g(X)$ that you trained, see how well you can predict Y on known data

Two prediction tasks

Many different forms of "Machine Learning"

• We focus on the problem of **prediction** based on observations.

Goal

Based on observed X, predict unseen Y

• Features Vector X of m observed variables $X = (X_1, X_2, ..., X_m)$

• **Output** Variable *Y* (also called **class label** if discrete)

Model

- $\hat{Y} = g(X)$, a function of observations X
- **Regression** prediction when *Y* is continuous
- **Classification** prediction when *Y* is discrete

Regression: Predicting real numbers

Training data: $(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), ..., (x^{(n)}, y^{(n)})$

Classification: Predicting class labels

 $X = (X_1, X_2, X_3, \dots, X_{300})$

0

1

0

Feature 300

. . .

•

...

Feature 1 Feature 2

Patient 1 1 0 ...

Patient 2 1 1 ...

Patient n = 0

. . .

Classification: Harry Potter Sorting Hat

$X = (1, 1, 1, 0, 0, \dots, 1)$

Our focus today!

Lisa Yan, CS109, 2020

Classification: Example datasets

Heart

Netflix

23b_brute_force_bayes

"Brute Force Bayes"

Classification: Having a healthy heart

 $X = (X_1)$ "feature vector" = observation

Output

0

Feature 1

Patient 1 1

Patient 2 1

Patient n 0

Single feature: Region of Interest (ROI) is healthy (1) or unhealthy (0)

How can we predict the class label

heart is healthy (1) or unhealthy (0)?

The following strategy is **not used in practice** but helps us understand how we approach classification.

 $\hat{Y} = g(\boldsymbol{X})$

Our prediction for *Y* is a function of *X*

$$= \underset{y=\{0,1\}}{\operatorname{arg\,max}} P(Y \mid X)$$

Proposed model: Choose the *Y* that is most likely given *X*

$$= \underset{y=\{0,1\}}{\operatorname{arg\,max}} \frac{P(\boldsymbol{X}|Y)P(Y)}{P(\boldsymbol{X})}$$

 $= \underset{y=\{0,1\}}{\operatorname{arg\,max}} P(\boldsymbol{X}|Y)P(Y)$

(Bayes' Theorem)

(1/P(X) is constant w.r.t. y)

If we estimate P(X|Y) and P(Y), we can classify datapoints!

Y: Fact X: Evidweel Observation

Training: Estimate parameters

0	L				1
$X = (X_1)$			$\widehat{Y} = \arg \max_{y \in \{0,1\}} \widehat{P}(X Y) \widehat{P}(Y)$		
		Conditional probability tables $\hat{P}(X Y)$		$\widehat{P}(\boldsymbol{X} \boldsymbol{Y}=\boldsymbol{0})$	$\widehat{P}(\boldsymbol{X} Y=1)$
Feature 1	Output		$X_1 = 0$	θ_1	θ_3
			$X_1 = 1$	θ_2	$ heta_4$
Patient 1 1	0	Marginal		$\widehat{P}(Y)$	
Patient 2 1	1	Marginal probability	Y = 0	θ_5	
E	÷	table $\widehat{P}(Y)$	Y = 1	θ_6	
Patient $n 0$	1	Tı	raining Goal:	Use <i>n</i> datapoint $2 \cdot 2 + 2 = 6$	

Training: Estimate parameters $\hat{P}(X|Y)$

Training: MLE estimates, $\hat{P}(X|Y)$

Training: Laplace (MAP) estimates, $\hat{P}(X|Y)$

Training: Laplace (MAP) estimates, $\hat{P}(X|Y)$

Testing

Laplace e	strudes	$\widehat{Y} = \underset{y \in \{0,1\}}{\operatorname{arg max}}$		
(MAP)	$\widehat{P}(\boldsymbol{X} \boldsymbol{Y}=\boldsymbol{0})$	$\hat{P}(\boldsymbol{X} \boldsymbol{Y}=1)$	(MLE)	$\widehat{P}(Y)$
$X_1 = 0$	0.42	0.01	Y = 0	0.09 = 110
$X_1 = 1$	0.58	0.99	Y = 1	0.91 - 00

New patient has a healthy ROI ($X_1 = 1$). What is your prediction, \hat{Y} ?

 $\hat{P}(X_1 = 1 | Y = 0) \hat{P}(Y = 0) = 0.58 \cdot 0.09 \approx 0.052$ $\hat{P}(X_1 = 1 | Y = 1) \hat{P}(Y = 1) = 0.99 \cdot 0.91 \approx 0.901$ A. $0.052 < 0.5 \implies \hat{Y} = 1$ B. $0.901 > 0.5 \implies \hat{Y} = 1$ C. $0.052 < 0.901 \implies \hat{Y} = 1$ Sanity check: Why don't these sum to 1?

Lisa Yan, CS109, 2020

$\widehat{Y} = \arg \max \widehat{P}(X Y)\widehat{P}(Y)$ $y = \{0,1\}$							
(MAP)	$\widehat{P}(\boldsymbol{X} \boldsymbol{Y}=\boldsymbol{0})$	$\widehat{P}(\boldsymbol{X} Y=1)$	(MLE)	$\widehat{P}(Y)$			
$X_1 = 0$	0.42	0.01	Y = 0	0.09			
$X_1 = 1$	0.58	0.99	Y = 1	0.91			

New patient has a healthy ROI ($X_1 = 1$). What is your prediction, \hat{Y} ?

 $\hat{P}(X_1 = 1 | Y = 0) \hat{P}(Y = 0) = 0.58 \cdot 0.09 \approx 0.052 \quad \leftarrow \hat{P}(X_1 = 1, Y = 0) \hat{P}(Y = 1) = 0.99 \cdot 0.91 \approx 0.901 \quad \leftarrow \hat{P}(X_1 = 1, Y = 1) \hat{P}(Y = 1) = 0.99 \cdot 0.91 \approx 0.901 \quad \leftarrow \hat{P}(X_1 = 1, Y = 1) \hat{P}(X_1 = 1, Y =$

Lisa Yan, CS109, 2020

"Brute Force Bayes" classifier

$$\widehat{Y} = \underset{y = \{0,1\}}{\arg \max} \widehat{P}(\boldsymbol{X}|Y)\widehat{P}(Y)$$

 $(\hat{P}(Y) \text{ is an estimate of } P(Y),$ $\hat{P}(X|Y) \text{ is an estimate of } P(X|Y))$

Estimate these probabilities, i.e., "learn" these parameters using MLE or Laplace (MAP)

$$\hat{P}(X_1, X_2, ..., X_m | Y = 1) \hat{P}(X_1, X_2, ..., X_m | Y = 0) \hat{P}(Y = 1) \qquad \hat{P}(Y = 0)$$

Testing

Training

Given an observation $X = (X_1, X_2, ..., X_m)$, predict $\widehat{Y} = \underset{y=\{0,1\}}{\operatorname{arg\,max}} \left(\widehat{P}(X_1, X_2, ..., X_m | Y) \widehat{P}(Y) \right)$

23c_naive_bayes

Naïve Bayes Classifier

Brute Force Bayes: m = 300 (# features)

 $X = (X_1, X_2, X_3, \dots, X_{300})$

0

0

Feature 1 Feature 2

Patient 1 1

Patient 2 1

Patient *n* 0

. . .

Feature 300

1

1

1 0 •

...

- - -

Output

1

()

1

This won't be too bad, right?

Brute Force Bayes: m = 300 (# features)

This won't be too bad, right?

Brute Force Bayes

Review

$$\widehat{Y} = \arg \max_{y \in \{0,1\}} \widehat{P}(Y \mid X)$$

$$= \underset{y=\{0,1\}}{\operatorname{arg\,max}} \frac{\widehat{P}(\boldsymbol{X}|Y)\widehat{P}(Y)}{\widehat{P}(\boldsymbol{X})}$$

 $= \arg \max_{y=\{0,1\}} \widehat{P}(\boldsymbol{X}|Y) \widehat{P}(Y)$

Learn parameters through MLE or MAP Choose the *Y* that is most likely given *X*

(Bayes' Theorem)

(1/P(X) is constant w.r.t. y)

Brute Force Bayes: m = 300 (# features)

$$\widehat{Y} = \underset{y = \{0,1\}}{\operatorname{arg\,max}} \widehat{P}(Y \mid X)$$

 $= \arg \max_{y=\{0,1\}} \widehat{P}(\boldsymbol{X}|Y) \widehat{P}(Y)$

Learn parameters through MLE or MAP

- $\hat{P}(Y = 1 | x)$: estimated probability a heart is healthy given x
- $X = (X_1, X_2, ..., X_{300})$: whether 300 regions of interest (ROI) are healthy (1) or unhealthy (0)

How many parameters do we have to learn? $\hat{P}(X|Y) \quad \hat{P}(Y)$ A. $2 \cdot 2 \quad +2 = 6$ B. $2 \cdot 300 + 2 = 602$ C. $2 \cdot 2^{300} + 2 = a$ lot

Brute Force Bayes: m = 300 (# features)

$$\widehat{Y} = \underset{y = \{0,1\}}{\operatorname{arg\,max}} \widehat{P}(Y \mid X)$$

 $= \arg \max_{y=\{0,1\}} \widehat{P}(\boldsymbol{X}|Y) \widehat{P}(Y)$

Learn parameters through MLE or MAP

This approach requires you to learn $O(2^m)$ parameters.

- $\hat{P}(Y = 1 | x)$: estimated probability a heart is healthy given x
- $X = (X_1, X_2, ..., X_{300})$: whether 300 regions of interest (ROI) are healthy (1) or unhealthy (0)

How many parameters do we have to learn? $\hat{P}(X|Y) \quad \hat{P}(Y)$ A. $2 \cdot 2 \quad +2 = 6$ B. $2 \cdot 300 + 2 = 602$ C. $2 \cdot 2^{300} + 2 = a \log 2^{300}$ $\hat{P}(X_{1}=X_{1}, X_{2}=X_{2}, \dots, X_{2}=X_{3}00}) = 1 = 0$ $\hat{P}(Y_{1}=X_{1}, X_{2}=X_{2}, \dots, X_{2}=X_{3}00}) = 1 = 0$ $\hat{P}(Y_{1}=X_{1}, X_{2}=X_{2}, \dots, X_{3}00}) = 1 = 0$

Brute Force Bayes: m = 300 (# features)

This approach requires you to learn $O(2^m)$ parameters.

 $\hat{P}(Y = 1 \mid x)$: estimated probability a heart is healthy given x $X = (X_1, X_2, ..., X_{300})$: whether 300 regions of interest (ROI) are healthy (1) or unhealthy (0)

How many parameters do we have to learn?

$$\hat{P}(\boldsymbol{X}|\boldsymbol{Y}) \qquad \hat{P}(\boldsymbol{Y}) \\
2 \cdot 2 \qquad + 2 = 6$$

$$2 \cdot 300 + 2 = 602$$

$$2 \cdot 2^{300} + 2 = a \text{ lot}$$

The problem with our current classifier

$$\widehat{P} = \underset{y=\{0,1\}}{\operatorname{arg\,max}} \widehat{P}(Y \mid X)$$

$$= \underset{y=\{0,1\}}{\operatorname{arg\,max}} \frac{\widehat{P}(X|Y)\widehat{P}(Y)}{\widehat{P}(X)}$$

$$= \underset{y=\{0,1\}}{\operatorname{arg\,max}} \frac{\widehat{P}(X|Y)\widehat{P}(Y)}{\widehat{P}(Y)}$$

$$= \underset{y=\{0,1\}}{\operatorname{arg\,max}} \frac{\widehat{P}(X|Y)\widehat{P}(Y)}{\widehat{P}(Y)}$$

$$(1/P(X) \text{ is constant w.r.t. } y)$$

$$\underset{y=\{0,1\}}{\underset{y=\{0,1\}}{\overset{(1/P(X) \text{ is constant w.r.t. } y)}{\underset{y=\{0,1\}}{\overset{(1/P(X) \text{ is constant w.r.t. } y)}{\overset{(1/P(X) \text{ is constant w.r.t. } y)}{\underset{y=\{0,1\}}{\overset{(1/P(X) \text{ is constant w.r.t. } y)}}{\underset{y=\{0,1\}}{\overset{(1/P(X) \text{ is constant w.r.t. } y)}{\underset{y=\{0,1\}}{\overset{(1/P(X) \text{ is constant w.r.t. } y)}{\underset{y=\{0,1\}}{\overset{(1/P(X) \text{ is con$$

Estimating this joint conditional distribution is often intractable.

What if we could make a simplifying (but naïve) assumption to make estimation easier?

The Naïve Bayes assumption

$$\widehat{Y} = \underset{y = \{0,1\}}{\operatorname{arg\,max}} \widehat{P}(Y \mid X)$$

$$= \underset{y=\{0,1\}}{\operatorname{arg\,max}} \frac{\widehat{P}(\boldsymbol{X}|Y)\widehat{P}(Y)}{\widehat{P}(\boldsymbol{X})}$$

$$= \underset{y=\{0,1\}}{\operatorname{arg\,max}} \widehat{\widehat{P}(X|Y)} \widehat{P}(Y)$$

$$= \underset{y=\{0,1\}}{\operatorname{arg\,max}} \left(\prod_{i=1}^{m} \widehat{P}(X_i | Y) \right) \widehat{P}(Y)$$

Assumption:

 X_1, \ldots, X_m are conditionally independent given Y.

$$\widehat{P}(X|Y) = \widehat{P}(X, X_{2}, ..., X_{300}|Y)$$

$$= \prod_{i=1}^{m} \widehat{P}(X_{i}|Y)$$
Naïve Bayes
Assumption
$$X_{i} \text{ are often only middly}$$

$$Conditionally dep \cdot given i$$

$$Conditionally dep \cdot given i$$

$$\# of parames becomes$$

$$Frederble to compare$$

Naïve Bayes Classifier

$$\widehat{Y} = \underset{y \in \{0,1\}}{\operatorname{arg\,max}} \left(\prod_{i=1}^{m} \widehat{P}(X_i | Y) \right) \widehat{P}(Y)$$

Training

What is the Big-O of # of parameters we need to learn? A. O(m)B. $O(2^m)$ C. other

Naïve Bayes Classifier

$$\hat{Y} = \underset{y=\{0,1\}}{\operatorname{arg\,max}} \left(\prod_{i=1}^{m} \hat{P}(X_i | Y) \right) \hat{P}(Y)$$
Training
for $i = 1, ..., m$:
$$\hat{P}(X_i = 1 | Y = 0),$$

$$\hat{P}(X_i = 1 | Y = 1)$$
Use MLE or
$$\hat{P}(Y = 1) = i - \hat{P}(Y_{(20)}) - \hat{P}(X_i \circ 0 | Y_{(2)})$$
Laplace (MAP)
$$\hat{Y} = \underset{y=\{0,1\}}{\operatorname{arg\,max}} \left(\log \hat{P}(Y) + \sum_{i=1}^{m} \log \hat{P}(X_i | Y) \right) \text{ (for numeric stability)}$$

23: Naïve Bayes

Lisa Yan May 29, 2020

Classification terminology check

Training data: $(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), ..., (x^{(n)}, y^{(n)})$

1: like movie0: dislike movie

Classification terminology check

Training data: $(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), ..., (x^{(n)}, y^{(n)})$

 $\boldsymbol{x}^{(i)}$ B. $y^{(i)}$ $(\boldsymbol{x}^{(i)}, y^{(i)})$ C. D.

*i: i-*th user *j*: movie *j*

1: like movie 0: dislike movie 1. 2 2. 2 3. 2 4. 2 1: like movie example : 2: 2: 2 2: 2: 2 2

Lisa Yan, CS109, 2020

Model:

Observe:

Multinomial with m outcomes: p_i probability of outcome i

 $n_i = #$ of trials with outcome iTotal of $\sum_{i=1}^m n_i$ trials

> MAP with Laplace smoothing (Laplace estimate)

$$p_i = \frac{n_i + 1}{\sum_{i=1}^m n_i + m}$$

$$p_i = \frac{n_i}{\sum_{i=1}^m n_i}$$

"Brute Force Bayes" classifier

 $(\hat{P}(Y) \text{ is an estimate of } P(Y),$ $\hat{P}(X|Y) \text{ is an estimate of } P(X|Y))$

Estimate these $\widehat{P}(X)$ probabilities, i.e., $\widehat{P}(X)$ "learn" these parameters $\widehat{P}(X)$ using MLE or Laplace (MAP) $\widehat{P}(Y)$

 $\hat{P}(X_1, X_2, \dots, X_m | Y = 1)$ $\hat{P}(X_1, X_2, \dots, X_m | Y = 0)$ $\hat{P}(Y=1)$ $\hat{P}(Y=0)$

Testing

Training

Given an observation $\boldsymbol{X} = (X_1, X_2, \dots, X_m)$, predict $\hat{Y} = \underset{y=\{0,1\}}{\operatorname{arg\,max}} \left(\hat{P}(X_1, X_2, \dots, X_m | Y) \hat{P}(Y) \right)$

(strawman)

Review

and Learn

Will a user like the Pokémon TV series?

Observe indicator variables $X = (X_1, X_2)$:

 $X_1 = 1$: "likes Star Wars"

 $X_2 = 1$: "likes Harry Potter"

Output *Y* indicator:

Y = 1: "likes Pokémon"

(strawman)

Review

Lisa Yan, CS109, 2020

Brute Force Bayes for TV shows

1. What probabilities do (+ we need to estimate?

$$\widehat{Y} = \underset{y = \{0,1\}}{\arg \max} \widehat{P}(\boldsymbol{X}|Y)\widehat{P}(Y)$$

$$X = (X_1, X_2)$$
 binary vector
 $Y \in \{0, 1\}$

2. How would we estimate
$$\hat{P}(X_1 = 0, X_2 = 1 | Y = 0)$$
?

3. If
$$X = (X_1, X_2, ..., X_m)$$
 (binary vector of *m* features), how many probabilities do we need to estimate?

(strawman) Review

Brute Force Bayes for TV shows

3. If $X = (X_1, X_2, \dots, X_m)$ (binary vector of *m* features), how many probabilities do we need to estimate?

(strawman)

Review

$$= \underset{y=\{0,1\}}{\operatorname{arg\,max}} \frac{\widehat{P}(\boldsymbol{X}|Y)\widehat{P}(Y)}{\widehat{P}(\boldsymbol{X})}$$

$$= \arg \max_{y=\{0,1\}} \widehat{P}(\boldsymbol{X}|\boldsymbol{Y}) \widehat{P}(\boldsymbol{Y})$$

Assumption:

 X_1, \ldots, X_m are conditionally independent given Y.

$$= \underset{y=\{0,1\}}{\operatorname{arg\,max}} \left(\prod_{i=1}^{m} \widehat{P}(X_i | Y) \right) \widehat{P}(Y) \qquad \begin{array}{l} \text{Naïve Bayes} \\ \text{Assumption} \end{array} \right)$$

Naïve Bayes Model is a Bayesian Network

Which Bayesian Network encodes this conditional independence?

Lisa Yan, CS109, 2020

Naïve Bayes Model is a Bayesian Network

Naïve Bayes
Assumption
$$P(X|Y) = \prod_{i=1}^{m} P(X_i|Y) \implies P(X,Y) = P(Y) \prod_{i=1}^{m} P(X_i|Y)$$

Which Bayesian Network encodes this conditional independence?

 X_i are conditionally independent given parent Y

Stanford University 54

and Learn

Will a user like the Pokémon TV series?

Observe indicator variables $X = (X_1, X_2)$:

 $X_1 = 1$: "likes Star Wars"

 $X_2 = 1$: "likes Harry Potter"

Output *Y* indicator:

Y = 1: "likes Pokémon"

Lisa Yan, CS109, 2020

Naïve Bayes for TV shows
1. What probabilities do
we need to estimate?
2.
$$f(x=i), f(x=0)$$

 $f(x=i|x=0)$
 $f(x=i|x=0), f(x=0|x=0)$
 $f(x=i|x=0), f(x=0|x=0)$
 $f(x=0|x=0), f(x=0|x=0), f(x=0|x=0),$

Ex 1. Naïve Bayes Classifier (MLE)

$$\widehat{Y} = \underset{y=\{0,1\}}{\operatorname{arg\,max}} \left(\prod_{i=1}^{m} \widehat{P}(X_i | Y) \right) \widehat{P}(Y)$$

$$\forall i: \ \hat{P}(X_i = 1 | Y = 0), \ \hat{P}(X_i = 0 | Y = 0), \ \text{Use MLE or} \\ \hat{P}(X_i = 1 | Y = 1), \ \hat{P}(X_i = 0 | Y = 0), \ \text{Laplace (MAP)} \\ \hat{P}(Y = 1), \ \hat{P}(Y = 0)$$

Testing

Training

$$\widehat{Y} = \underset{y \in \{0,1\}}{\operatorname{arg\,max}} \left(\prod_{i=1}^{m} \widehat{P}(X_i | Y) \right) \widehat{P}(Y)$$

Training: Naïve Bayes for TV shows (MLE)

Observe indicator vars. $X = (X_1, X_2)$:

- X₁: "likes Star Wars"
- X₂: "likes Harry Potter"

Predict Y: "likes Pokémon"

Training data counts

- 1. How many datapoints (*n*) are in our train data?
- 2. Compute MLE estimates for $\hat{P}(X_1|Y)$:

$$\begin{array}{c|c} X_{1} & 0 & 1 \\ \hline 0 & \hat{P}(X_{1} = 0 | Y = 0) & \hat{P}(X_{1} = 1 | Y = 0) \\ \hline 1 & \hat{P}(X_{1} = 0 | Y = 1) & \hat{P}(X_{1} = 1 | Y = 1) \\ \hline \text{ity 59} \end{array}$$

Training: Naïve Bayes for TV shows (MLE)

(from last slide)

Training : Naïve Bayes for TV shows (MLE)

Now that we've trained and found parameters, It's time to classify new users!

Ex 1. Naïve Bayes Classifier (MLE)

$$\widehat{Y} = \underset{y=\{0,1\}}{\operatorname{arg\,max}} \left(\prod_{i=1}^{m} \widehat{P}(X_i | Y) \right) \widehat{P}(Y)$$

Training
$$\forall i: \hat{P}(X_i = 1 | Y = 0), \hat{P}(X_i = 0 | Y = 0), \text{ Use MLE or}$$

 $\hat{P}(X_i = 1 | Y = 1), \hat{P}(X_i = 0 | Y = 0), \text{ Laplace (MAP)}$
 $\hat{P}(Y = 1), \hat{P}(Y = 0)$

Testing

$$\widehat{Y} = \underset{y=\{0,1\}}{\operatorname{arg\,max}} \left(\prod_{i=1}^{m} \widehat{P}(X_i | Y) \right) \widehat{P}(Y)$$

Testing: Naïve Bayes for TV shows (MLE)

Suppose a new person "likes Star Wars" ($X_1 = 1$) but "dislikes Harry Potter" ($X_2 = 0$). Will they like Pokemon? Need to predict *Y*:

$$\hat{Y} = \arg \max_{y \in \{0,1\}} \hat{P}(X|Y)\hat{P}(Y) = \arg \max_{y \in \{0,1\}} \hat{P}(X_2|Y)\hat{P}(Y)$$

$$y = \{0,1\}$$

If Y = 0: $\hat{P}(X_1 = 1 | Y = 0) \hat{P}(X_2 = 0 | Y = 0) \hat{P}(Y = 0) = 0.77 \cdot 0.38 \cdot 0.43 = 0.126$

If Y = 1: $\hat{P}(X_1 = 1 | Y = 1)\hat{P}(X_2 = 0 | Y = 1)\hat{P}(Y = 1) = 0.76 \cdot 0.41 \cdot 0.57 = 0.178$

Since term is greatest when Y = 1, predict $\hat{Y} = 1$

Interlude for jokes/announcements

What topics do you want to see next week? <u>https://forms.gle/AZy7R7CNkNsLZKq2A</u>

Paradoxes of Probability & Statistical Strangeness

- Simpson's Paradox
- Base rate fallacy
- Will Rogers Paradox
- Berkson's Paradox
- Multiple comparisons fallacy

https://scitechdaily.com/paradoxes-of-probability-statisticalstrangeness/

Ex 2. Naïve Bayes Classifier (MAP)

$$\widehat{Y} = \underset{y=\{0,1\}}{\operatorname{arg\,max}} \left(\prod_{i=1}^{m} \widehat{P}(X_i | Y) \right) \widehat{P}(Y)$$

$$\forall i: \ \hat{P}(X_i = 1 | Y = 0), \ \hat{P}(X_i = 0 | Y = 0), \ \text{Use MLE or } \swarrow \\ \hat{P}(X_i = 1 | Y = 1), \ \hat{P}(X_i = 0 | Y = 0), \ \text{Laplace (MAP)} \\ \hat{P}(Y = 1), \ \hat{P}(Y = 0) \end{aligned}$$

Training

$$\widehat{Y} = \underset{y=\{0,1\}}{\operatorname{arg\,max}} \left(\prod_{i=1}^{m} \widehat{P}(X_i | Y) \right) \widehat{P}(Y)$$

(note the same as before)

1/

Training: Naïve Bayes for TV shows (MAP)

Observe indicator vars. $X = (X_1, X_2)$ • X_1 : "likes Star Wars"	2):	X_1 Y	0	1	X_2 Y	0	1
• X_2 : "likes Harry Potter"		0	3	10	0	5	8
Predict Y: "likes Pokémon"		1	4	13	1	7	10
What are our MAP estimates using Laplace smoothing for $\hat{P}(X_i Y)$?	$ \hat{P}(X_{i} = x Y = X) = \frac{\hat{P}(X_{i} = x, Y)}{\hat{P}(X_{i} = x, Y)} = \frac{\hat{P}(X_{i} = x, Y)}{\hat{P}(Y = y)} $ B. $ \frac{\hat{P}(X_{i} = x, Y)}{\hat{P}(Y = y)} = \frac{\hat{P}(X_{i} = x, Y)}{\hat{P}(Y = y)} $ C. $ \frac{\hat{P}(X_{i} = x, Y)}{\hat{P}(Y = y)} = \frac{\hat{P}(X_{i} = x, Y)}{\hat{P}(Y = y)} $ D. other Lisa Yan, CS109, 2020	(x = y) (x = y) + 1 (x = y) + 1		$X_{i} = $ $X_{i} = $ $X_{i} = $ $X_{i} = $	Blens	y = y {~y	J $\frac{1}{2}=1,,m$ iversity 69

Training: Naïve Bayes for TV shows (MAP)

Observe indicator vars. $X = (X_1, X_2)$:

- X₁: "likes Star Wars"
- X₂: "likes Harry Potter"

Predict Y: "likes Pokémon"

Y	0	1	Y	0	1
0	3	10	0	5	8
1	4	13	1	7	10

Training data counts

What are our MAP estimates using Laplace smoothing for $\hat{P}(X_i|Y)$?

$$\hat{P}(X_{i} = x | Y = y):$$
A.
$$\frac{\#(X_{i} = x, Y = y)}{\#(Y = y)}$$
B.
$$\frac{\#(X_{i} = x, Y = y) + 1}{\#(Y = y) + 2}$$
C.
$$\frac{\#(X_{i} = x, Y = y) + 1}{\#(Y = y) + 4}$$

D. other

Lisa Yan, CS109, 2020

Lisa Yan, CS109, 2020

Stanford University 71

Ex 3. Naïve Bayes Classifier (m, n Targe)

$$\hat{Y} = \underset{y=\{0,1\}}{\operatorname{arg\,max}} \left(\prod_{i=1}^{m} \hat{P}(X_i | Y) \right) \hat{P}(Y)$$
Training
$$\forall i: \ \hat{P}(X \cdot \operatorname{changes}_{Y}) = 0, \text{ Use MLE or}$$

$$\downarrow \quad What \operatorname{classal}_{Y} = 0|_{Y} = 0, \text{ Laplace (MAP)}$$

$$\hat{Y} = \underset{y=\{0,1\}}{\operatorname{arg\,max}} \left(\prod_{i=1}^{m} \hat{P}(X_i | Y) \right) \hat{P}(Y)$$

What is Bayes doing in my mail server?

From: To:	Abey Chavez [tristramu@delet sahami@nobotics.stanford.edu		Sent: Sat 5/22/9630 4:08 /	Let's get Bayesian on your spam:				
Subject	ict For excellent metabolism			Content analysis details:	(49.5 hits, 7.0 required)			
	Canadian *** Pharmacy #1 Internet Index Dropotoer			0.9 RCVD_IN_PBL	RBL: Received via a relay in Spamhaus PBL			
				n	[93.40.189.29 listed in zen.spamhaus.org]			
_	Viagra Our price \$1.15	Cialis Our price \$1.99	Viagra Professional Our price \$3.73	1.5 URIBL_WS_SURBL	Contains an URL listed in the WS SURBL blocklist [URIs: recragas.cn]			
	Cialis Professionsl	Viagra Super Active	Cialis Super Active	5.0 URIBL_JP_SURBL	Contains an URL listed in the JP SURBL blocklist [URIs: recragas.cn]			
	Our price \$4 17	4.17 Our price \$2.82	Our price \$3.66	5.0 URIBL_OB_SURBL	Contains an URL listed in the OB SURBL blocklist [URIs: recragas.cn]			
	Levitra Our price \$2.93	Viagra Soft Tabs Our price \$1.64	Cialis Soft Tabs Our price \$3.51	5.0 URIBL_SC_SURBL	Contains an URL listed in the SC SURBL blocklist [URIs: recragas.cn]			
		And more		2.0 URIBL_BLACK	Contains an URL listed in the URIBL blacklist			
		Click here		8.0 BAYES_99	[URIs: recragas.cn] BODY: Bayesian spam probability is 99 to 100% [score: 1.0000]			

Lisa Yan, CS109, 2020

Goal Based on email content *X*, predict if email is spam or not.

FeaturesConsider a lexicon m words (for English: $m \approx 100,000$). $X = (X_1, X_2, \dots, X_m), m$ indicator variables $X_i = 1$ if word i appeared in documentOutputY = 1 if email is spam

Note: *m* is huge. Make Naïve Bayes assumption: $P(X|\text{spam}) = \prod_{i=1}^{m} P(X_i|\text{spam})$

Appearances of words in email are conditionally independent given the email is spam or not

Training: Naïve Bayes Email classification

Train set

$$n$$
 previous emails $(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), ..., (x^{(n)}, y^{(n)})$

 $\begin{aligned} \boldsymbol{x}^{(i)} &= \left(x_1^{(i)}, x_2^{(i)}, \dots, x_m^{(i)} \right) & \text{for each word, whether it} \\ \text{appears in email } i \\ v^{(i)} &= 1 \text{ if spam, 0 if not spam} \end{aligned}$

Note: *m* is huge.

Which estimator should we use for $\hat{P}(X_i|Y)$?

- A. MLE
- B. Laplace estimate (MAP)
- C. Other MAP estimate
- D. Both A and B

Training: Naïve Bayes Email classification

Train set

$$n$$
 previous emails $(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), ..., (x^{(n)}, y^{(n)})$

 $\begin{aligned} \boldsymbol{x}^{(i)} &= \left(x_1^{(i)}, x_2^{(i)}, \dots, x_m^{(i)} \right) & \text{for each word, whether it} \\ \text{appears in email } i \\ v^{(i)} &= 1 \text{ if spam, 0 if not spam} \end{aligned}$

Note: *m* is huge.

Which estimator should we use for $\hat{P}(X_i|Y)$?

A. MLE
B. Laplace estimate (MAP)
C. Other MAP estimate
D. Both A and B

Many words are likely to not appear at all in the training set!

Ex 3. Naïve Bayes Classifier (*m*, *n* large)

$$\widehat{Y} = \underset{y=\{0,1\}}{\operatorname{arg\,max}} \left(\prod_{i=1}^{m} \widehat{P}(X_i | Y) \right) \widehat{P}(Y)$$

 \widehat{Y}

Training
$$\forall i: \hat{P}(X_i = 1 | Y = 0), \hat{P}(X_i = 0 | Y = 0), \forall i: \hat{P}(X_i = 1 | Y = 1), \hat{P}(X_i = 0 | Y = 0), \forall i: \hat{P}(X_i = 1 | Y = 1), \hat{P}(X_i = 0 | Y = 0), \forall i: \hat{P}(X_i = 1 | Y = 1), \hat{P}(X_i = 0 | Y = 0), \forall i: \hat{P}(X_i = 1 | Y = 1), \hat{P}(X_i = 0 | Y = 0), \forall i: \hat{P}(X_i = 1 | Y = 1), \hat{P}(X_i = 0 | Y = 0), \forall i: \hat{P}(X_i = 1 | Y = 1), \hat{P}(X_i = 0 | Y = 0), \forall i: \hat{P}(X_i = 1 | Y = 1), \hat{P}(X_i = 0 | Y = 0), \forall i: \hat{P}(X_i = 1 | Y = 1), \hat{P}(X_i = 0 | Y = 0), \forall i: \hat{P}(X_i = 1 | Y = 1), \hat{P}(X_i = 0 | Y = 0), \forall i: \hat{P}(X_i = 1 | Y = 1), \hat{P}(X_i = 0 | Y = 0), \forall i: \hat{P}(X_i = 1 | Y = 1), \hat{P}(X_i = 0 | Y = 0), \forall i: \hat{P}(X_i = 0 | Y = 0), \forall i: \hat{P}(X_i = 1 | Y = 1), \hat{P}(X_i = 0 | Y = 0), \forall i: \hat{P}(X_i = 0), \forall i: \hat{P$$

Testing

$$= \underset{y=\{0,1\}}{\operatorname{arg\,max}} \left(\prod_{i=1}^{r} \operatorname{Laplace} (MAP) \text{ estimates avoid estimating} \right)$$

/ m

Testing: Naïve Bayes Email classification

For a new email:

- Generate $X = (X_1, X_2, ..., X_m)$
- Classify as spam or not using Naïve Bayes assumption

Note: m is huge.

Suppose train set size n also huge (many labeled emails).

Can we still use the below prediction?

$$\widehat{Y} = \underset{y \in \{0,1\}}{\operatorname{arg\,max}} \left(\prod_{i=1}^{m} \widehat{P}(X_i | Y) \right) \widehat{P}(Y)$$

Testing: Naïve Bayes Email classification

For a new email:

- Generate $X = (X_1, X_2, ..., X_m)$
- Classify as spam or not using Naïve Bayes assumption

Note: *m* is huge.

Suppose train set size *n* also huge (many labeled emails).

Can we still use the below prediction?

$$\widehat{Y} = \underset{y=\{0,1\}}{\operatorname{arg\,max}} \left(\prod_{i=1}^{m} \widehat{P}(X_i | Y) \right) \widehat{P}(Y)$$

Will probably lead to underflow!

Ex 3. Naïve Bayes Classifier (*m*, *n* large)

$$\widehat{Y} = \underset{y \in \{0,1\}}{\operatorname{arg\,max}} \left(\prod_{i=1}^{m} \widehat{P}(X_i | Y) \right) \widehat{P}(Y)$$

Training
$$\forall i: \hat{P}(X_i = 1 | Y = 0), \hat{P}(X_i = 0 | Y = 1), \hat{P}(X_i = 1 | Y = 1), \hat{P}(X_i = 0 | Y = 1), \hat{P}(Y = 1), \hat{P}(Y = 0)$$
Use sums of log-probabilities for
numerical stability. $\hat{P}(Y = 1), \hat{P}(Y = 0)$ $\prod_{i=1}^{m} \hat{P}(X_i | Y)$ $\prod_{i=1}^{m} \hat{P}(X_i | Y)$ Testing $\hat{Y} = \underset{y=\{0,1\}}{\operatorname{arg max}} \left(\log \hat{P}(Y) + \sum_{i=1}^{m} \log \hat{P}(X_i | Y) \right)$

How well does Naïve Bayes perform?

After training, you can test with another set of data, called the test set.

• Test set also has known values for Y so we can see how often we were right/wrong in our predictions \hat{Y} .

Typical workflow:

- Have a dataset of 1789 emails (1578 spam, 211 ham)
- Train set: First 1538 emails (by time)
- Test set: Next 251 messages

Evaluation criteria on test set:			am	Non-spam	
precision = $\frac{(\# \text{ correctly predicted class } Y)}{(\# \text{ correctly predicted class } Y)}$		Prec.		Prec.	•
(# predicted class Y)	Words only	97.1%	94.3%	87.7%	93.4%
recall = $\frac{(\# \text{ correctly predicted class } Y)}{(\# \text{ correctly predicted class } Y)}$	Words +				
(# real class Y messages)	addtl features	100%		96.2%	

with: precision & recall classifier: $\hat{\gamma} = 1$, $\hat{\gamma} = 0$ "true labels": Y = 1, Y = 0precision. <u>TP</u> TP+FP recall: TP+FN

Lisa Yan, CS109, 2020