23: Naïve Bayes

Lisa Yan May 29, 2020

Quick slide reference

- 3 Intro: Machine Learning 23a_intro
	-
- 21 "Brute Force Bayes" 24b_brute_force_bayes
- 32 Naïve Bayes Classifier 24c_naive_bayes
- 43 Naïve Bayes: MLE/MAP with TV shows LIVE
- 66 Naïve Bayes: MAP with email classification LIVE

23a_intro

Intro: Machine Learning

Our path from here

Stanford University

Our path from here

Stanford University

Machine Learning (formally)

Many different forms of "Machine Learning"

• We focus on the problem of **prediction** based on observations.

Machine Learning uses a lot of data.

Supervised learning: A category of machine learning where you have labeled data on the problem you are solving.

Task: Identify what a chair is Data: All the chairs ever

Supervised learning

Supervised learning

Model and dataset

Many different forms of "Machine Learning"

We focus on the problem of **prediction** based on observations.

Goal Based on observed X , predict unseen Y • Features Vector X of m observed variables $X = (X_1, X_2, ..., X_m)$

Output Variable Y (also called class label if discrete)

Model $\hat{Y} = g(X)$, a function of observations X

Training data

 $X = (X_1, X_2, X_3, ..., X_{300})$

 Ω

1

 ~ 10

Output

Feature 1 Feature 2 Feature 300 binarjuctor Patient 1 $\mathbf{1}$ $\overline{0}$ 1 ~ 10

 $\overline{0}$

 $\mathbf{1}$ Patient 2 1 ~ 100

Patient $n \quad 0$

 \mathbf{u} , \mathbf{u} , \mathbf{u}

 $\mathbf 1$ \leftarrow \leftarrow Ω

 $\mathbf 1$

 \leftarrow

Training data notation

$$
(x^{(1)},y^{(1)}),(x^{(2)},y^{(2)}),..., (x^{(n)},y^{(n)})
$$

 i -th datapoint $\overbrace{(x^{(i)}, y^{(i)})}^{\text{in-dimensional}}$ n datapoints, generated i.i.d.

- *m* features: $x^{(i)} = (x_1^{(i)}, x_2^{(i)}, ..., x_m^{(i)})$
• A single output $y^{(i)}$
-
- Independent of all other datapoints

Training Goal:

Use these n datapoints to learn a model $\hat{Y} = g(X)$ that predicts Y

Supervised learning

Testing data notation

$$
\bigl(\pmb{x}^{(1)},y^{(1)}\bigr), \bigl(\pmb{x}^{(2)},y^{(2)}\bigr),\,...,\bigl(\pmb{x}^{(n)},y^{(n)}\bigr)
$$

 n_{test} other datapoints, generated i.i.d.

i-th datapoint $(x^{(i)}, y^{(i)})$:

Has the same structure as your training data

Testing Goal:

Using the model $\hat{Y} = g(X)$ that you trained, see how well you can predict Y on known data

Two prediction tasks

Many different forms of "Machine Learning"

• We focus on the problem of prediction based on observations.

Goal Based on observed X , predict unseen Y

• Features Vector *of* $*m*$ *observed variables* $X = (X_1, X_2, ..., X_m)$

Output Variable Y (also called class label if discrete)

- Model $\dot{Y} = g(X)$, a function of observations X
- **Regression** prediction when Y is continuous
- **Classification** prediction when Y is discrete

Regression: Predicting real numbers

Training data: $(x^{(1)},y^{(1)}),(x^{(2)},y^{(2)}),...,(x^{(n)},y^{(n)})$

Classification: Predicting class labels

 $X = (X_1, X_2, X_3, ..., X_{300})$

—
—
—

Feature 1 Feature 2 Feature 300 | Output

Patient 1 1 0 … 1

Patient 2 1 1 … 0 0

Patient $n \quad 0 \quad 0 \quad \dots \quad 1 \quad 1$

…

Classification: Harry Potter Sorting Hat

$X = (1, 1, 1, 0, 0, \dots, 1)$

Our focus today!

Classification: Example datasets

23b_brute_force_bayes

"Brute Force Bayes"

Classification: Having a healthy heart
 $\mathbf{x} = (x_1)^{\top}$ feature vector is absentation

 $X = (X_1)$

…

Feature 1 | Output

…

 \blacksquare

Patient 1 1 0

Patient 2 1

Patient $n \neq 0$

Single feature: Region of Interest (ROI) is healthy (1) or unhealthy (0)

How can we predict the class label

heart is healthy (1) or unhealthy (0) ?

The following strategy is not used in practice but helps us understand how we approach classification.

 $\widehat{Y} = g(X)$ Our prediction for Y is a function of X

$$
= \arg\max_{y=\{0,1\}} P(Y | \mathbf{X})
$$

Proposed model: Choose the Y that is most likely given X

$$
= \arg \max_{y=\{0,1\}} \frac{P(X|Y)P(Y)}{P(X)}
$$

 $=$ arg max $P(X|Y)P(Y)$ $y = \{0,1\}$

(Bayes' Theorem)

 $(1/P(X)$ is constant w.r.t. $y)$

If we estimate $P(X|Y)$ and $P(Y)$, we can classify datapoints!

Y: Fact
X: Evidwel

Training: Estimate parameters

Training: Estimate parameters \widehat{P} $X|Y$

Training: MLE estimates, \widehat{P} $X|Y$

Training: Laplace (MAP) estimates, \widehat{P} $X|Y$

Training: Laplace (MAP) estimates, \widehat{P} $X|Y$

Testing

New patient has a healthy ROI ($X_1 = 1$). What is your prediction, \hat{Y} ?

 $\hat{P}(X_1 = 1|Y = 0)\hat{P}(Y = 0) = 0.58 \cdot 0.09 \approx 0.052$ $\hat{P}(X_1 = 1 | Y = 1) \hat{P}(Y = 1) = 0.99 \cdot 0.91 \approx 0.901$ A. $0.052 < 0.5$ \Rightarrow $\hat{Y} = 1$ B. $0.901 > 0.5$ \Rightarrow $\hat{Y} = 1$ C. $0.052 < 0.901 \Rightarrow \hat{Y} = 1$ Sanity check: Why don't these sum to 1?

Lisa Yan, CS109, 2020

New patient has a healthy ROI ($X_1 = 1$). What is your prediction, \hat{Y} ?

$$
\hat{P}(X_1 = 1 | Y = 0)\hat{P}(Y = 0) = 0.58 \cdot 0.09 \approx 0.052 \in \hat{\mathcal{P}}(X_{1} = 1, \mathcal{F} = 1)
$$
\n
$$
\hat{P}(X_1 = 1 | Y = 1)\hat{P}(Y = 1) = 0.99 \cdot 0.91 \approx 0.901 \in \hat{\mathcal{P}}(X_{1} = 1, \mathcal{F} = 1)
$$
\n**A.** 0.052 < 0.5 $\Rightarrow \hat{Y} = 1$

\n**B.** 0.901 > 0.5 $\Rightarrow \hat{Y} = 1$

\n**C.** 0.052 < 0.901 $\Rightarrow \hat{Y} = 1$

\nSanity check: Why don't these sum to 1?

"Brute Force Bayes" classifier

$$
\widehat{Y} = \arg\max_{y=\{0,1\}} \widehat{P}(X|Y)\widehat{P}(Y)
$$

 $(\widehat{P}(Y))$ is an estimate of $P(Y)$, $\hat{P}(X|Y)$ is an estimate of $P(X|Y)$)

Estimate these probabilities, i.e., "learn" these parameters using MLE or Laplace (MAP)

$$
\begin{aligned}\n\hat{P}(X_1, X_2, \dots, X_m | Y = 1) \\
\hat{P}(X_1, X_2, \dots, X_m | Y = 0) \\
\hat{P}(Y = 1) \qquad \hat{P}(Y = 0)\n\end{aligned}
$$

Testing

Training

 \hat{Y} = arg max $y = \{0,1$ $\hat{P}(X_1, X_2, ..., X_m|Y)\hat{P}(Y)$ Given an observation $X = (X_1, X_2, ..., X_m)$, predict

Lisa Yan, CS109, 2020

23c_naive_bayes

Naïve Bayes Classifier

Brute Force Bayes: $m = 300$ (# features)

…

—
—
—

 $X = (X_1, X_2, X_3, ..., X_{300})$

Feature 1 Feature 2 Feature 300 | Output

Patient 1 1 0 … 1 1 1

Patient 2 1 1 … 0 0

Patient $n \quad 0 \qquad 0 \qquad ... \qquad 1 \qquad 1$

…

…

This won't be too bad, right?

Brute Force Bayes: $m = 300$ (# features)

This won't be too bad, right?

Brute Force Bayes

Review

$$
\widehat{Y} = \arg\max_{y=\{0,1\}} \widehat{P}(Y \mid \boldsymbol{X})
$$

$$
= \arg \max_{y=\{0,1\}} \frac{\widehat{P}(X|Y)\widehat{P}(Y)}{\widehat{P}(X)}
$$

 $=$ arg max $y = \{0,1$ $\hat{P}(X|Y)\hat{P}(Y)$

> Learn parameters through MLE or MAP

Choose the Y that is most likely given X

(Bayes' Theorem)

 $(1/P(X)$ is constant w.r.t. y)

Brute Force Bayes: $m = 300$ (# features)

$$
\widehat{Y} = \arg\max_{y=\{0,1\}} \widehat{P}(Y \mid X)
$$

 $=$ arg max $\widehat{P}(X|Y)\widehat{P}(Y)$ $y = \{0,1\}$

> Learn parameters through MLE or MAP

- $\hat{P}(Y = 1 | x)$: estimated probability a heart is healthy given x
- $X = (X_1, X_2, ..., X_{300})$: whether 300 regions of interest (ROI) are healthy (1) or unhealthy (0)

How many parameters do we have to learn? A. $2 \cdot 2 + 2 = 6$ B. $2 \cdot 300 + 2 = 602$ C. $2 \cdot 2^{300} + 2 = a$ lot $\widehat{P}(X|Y)$ $\widehat{P}(Y)$

Brute Force Bayes: $m = 300$ (# features)

$$
\widehat{Y} = \arg\max_{y=\{0,1\}} \widehat{P}(Y \mid X)
$$

 $=$ arg max $\widehat{P}(X|Y)\widehat{P}(Y)$ $y = \{0,1\}$

> Learn parameters through MLE or MAP

This approach requires you to learn $O(2^m)$ parameters.

- $\hat{P}(Y = 1 | x)$: estimated probability a heart is healthy given x
- $X = (X_1, X_2, ..., X_{300})$: whether 300 regions of interest (ROI) are healthy (1) or unhealthy (0)

How many parameters do we have to learn? A. $2 \cdot 2 + 2 = 6$ B. $2 \cdot 300 + 2 = 602$ $\hat{P}(\overbrace{\chi_{1}=\chi_{1}},\chi_{2}=\chi_{2},...,\chi_{100}=\chi_{300}\mid \gamma_{50})$ $\hat{P}(\gamma_{51})$
 $\hat{P}(\overbrace{\chi_{1}=\chi_{1}},\chi_{2}=\chi_{2},...,\chi_{100}=\chi_{300}\mid \gamma_{50})$ $\hat{P}(\gamma_{50})$ $\hat{P}(X|Y)$ $\hat{P}(Y)$

Stanford University 37

Brute Force Bayes: $m = 300$ (# features)

This approach requires you to learn $O(2^m)$ parameters.

 $\hat{P}(Y = 1 | x)$: estimated probability a heart is healthy given x $X = (X_1, X_2, ..., X_{300})$: whether 300 regions of interest (ROI) are healthy (1) or unhealthy (0)

How many parameters do we have to learn?

$$
\begin{array}{ccc}\n\hat{P}(X|Y) & \hat{P}(Y) \\
1. & 2 \cdot 2 & +2 = 6\n\end{array}
$$

$$
2 \cdot 300 + 2 = 602
$$

C.
$$
2 \cdot 2^{300} + 2 = a \text{ lot}
$$

The problem with our current classifier

$$
\hat{Y} = \underset{y=\{0,1\}}{\arg \max} \frac{\hat{P}(Y \mid X)}{\hat{P}(X)}
$$
\nChoose the *Y* that is
most likely given *X*

\n
$$
= \underset{y=\{0,1\}}{\arg \max} \frac{\hat{P}(X \mid Y)\hat{P}(Y)}{\hat{P}(X)}
$$
\n(Bayes' Theorem)

\n
$$
= \underset{y=\{0,1\}}{\arg \max} \frac{\hat{P}(X \mid Y)\hat{P}(Y)}{\hat{P}(X)}
$$
\n(1/*P*(*X*) is constant w.r.t. *y*)
is constant w.r.t. *y*)
**Estimating this joint conditional
distribution is often intractable.**

What if we could make a simplifying (but naïve) assumption to make estimation easier?

The Naïve Bayes assumption

$$
\widehat{Y} = \arg\max_{y=\{0,1\}} \widehat{P}(Y \mid X)
$$

$$
= \arg \max_{y=\{0,1\}} \frac{\hat{P}(X|Y)\hat{P}(Y)}{\hat{P}(X)}
$$

$$
= \arg\max_{y=\{0,1\}} \widehat{P(X|Y)} \widehat{P}(Y)
$$

$$
= \arg \max_{y=\{0,1\}} \left(\prod_{i=1}^{m} \widehat{P}(X_i|Y) \right) \widehat{P}(Y) \qquad \text{Naïve Bayes} \text{Assumption}
$$

Assumption:

 X_1, \ldots, X_m are conditionally independent given Y.

$$
\hat{p}(X|Y)=\hat{P}(X, X_{2, -}, X_{300}|Y)
$$

\n $\frac{1}{2}\prod_{i=1}^{m}\hat{P}(X_{i}|Y)$
\nNaïve Bayes
\nAssumption
\n Asumption
\n $\text{the probability degree } Y_{1} \text{ and } Y_{2} \text{ and } Y_{3} \text{ and } Y_{4} \text{ and } Y_{5} \text{ are the probability of the number of numbers.}$

Naïve Bayes Classifier

$$
\widehat{Y} = \underset{y=\{0,1\}}{\arg \max} \left(\prod_{i=1}^{m} \widehat{P}(X_i|Y) \right) \widehat{P}(Y)
$$

Training

What is the Big-O of # of parameters we need to learn? $O(m)$ $O(2^m)$ C. other

Naïve Bayes Classifier

$$
\hat{Y} = \arg \max_{y = \{0,1\}} \left(\prod_{i=1}^{m} \hat{P}(X_i|Y) \right) \hat{P}(Y)
$$
\n
$$
\text{for } i = 1, ..., m: \qquad \hat{P}(X_i = 1|Y = 0),
$$
\n
$$
\hat{P}(X_i = 1|Y = 1) \qquad \text{Use MLE or} \qquad \hat{P}(Y = 1) = (-\hat{P}(\text{Area})^{-1-\hat{P}(\text{Area})}(\text{Area})^{-1-\hat{P}(\text{Area})}(\text{Area}) - \text{Laplace (MAP)})
$$
\n
$$
\hat{P}(Y = 1) = (-\hat{P}(\text{Area})^{-1-\hat{P}(\text{Area})}(\text{Area})^{-1-\hat{P}(\text{Area})}(\text{Area}) - \text{Laplace (MAP)})
$$
\n
$$
\hat{Y} = \arg \max_{y = \{0,1\}} \left(\log \hat{P}(Y) + \sum_{i=1}^{m} \log \hat{P}(X_i|Y) \right) \text{ (for numeric stability)}
$$

23: Naïve Bayes

Lisa Yan May 29, 2020

Classification terminology check

Training data: $(x^{(1)},y^{(1)}),(x^{(2)},y^{(2)}),...,(x^{(n)},y^{(n)})$

A. $\bm{x}^{(i)}$ B. $y^{(i)}$ C. $(x^{(i)}, y^{(i)})$ D. $x_j^{(i)}$

1: like movie 0: dislike movie

Classification terminology check

Training data: $(x^{(1)},y^{(1)}),(x^{(2)},y^{(2)}),...,(x^{(n)},y^{(n)})$

 $\boldsymbol{x}^{(i)}$ B. $y^{(i)}$ C. $(x^{(i)}, y^{(i)})$ D_{\cdot} i

> i : i -th user i : movie i

1: like movie 0: dislike movie
1. χ ⁽¹⁾ $i:$ $\begin{pmatrix} 1 & 1 & 1 \ 2 & 3 & 4 \end{pmatrix}$ $\begin{pmatrix} 1 & 1 & 1 \ 1 & 1 & 1 \ 1 & 1 & 1 \end{pmatrix}$
3. $\begin{pmatrix} 2 & 1 \ 2 & 3 \end{pmatrix}$

Lisa Yan, CS109, 2020

Model: M ultinomial with m outcomes: p_i probability of outcome i

Observe: $n_i = #$ of trials with outcome i Total of $\sum_{i=1}^m n_i$ trials

> MAP with Laplace smoothing (Laplace estimate)

$$
p_i = \frac{n_i + 1}{\sum_{i=1}^m n_i + m}
$$

$$
\underline{\mathsf{MLE}}
$$

$$
p_i = \frac{n_i}{\sum_{i=1}^m n_i}
$$

"Brute Force Bayes" classifier

 $(\widehat{P}(Y))$ is an estimate of $P(Y)$, $\widehat{P}(X|Y)$ is an estimate of $P(X|Y)$)

 L

Estimate these probabilities, i.e., "learn" these parameters using MLE or Laplace (MAP)

 $\hat{P}(X_1, X_2, ..., X_m | Y = 1)$ $\widehat{P}(Y=1)$ $\widehat{P}(Y=0)$ $\hat{P}(X_1, X_2, ..., X_m | Y = 0)$

 Λ

Testing

Training

Given an observation
$$
X = (X_1, X_2, ..., X_m)
$$
, predict
\n
$$
\hat{Y} = \arg \max_{y = \{0,1\}} (\hat{P}(X_1, X_2, ..., X_m | Y) \hat{P}(Y))
$$

Lisa Yan, CS109, 2020

Review

(strawman)

and Learn

Will a user like the Pokémon TV series?

Observe indicator variables $X = (X_1, X_2)$:

 $X_1 = 1$: "likes Star Wars"

 $X_2 = 1$: "likes Harry Potter"

Output Y indicator:

 $Y = 1$: "likes Pokémon"

Review

(strawman)

Lisa Yan, CS109, 2020

Brute Force Bayes for TV shows

1. What probabilities do we need to estimate?

$$
(\mathcal{C}^{\text{univ}})
$$

$$
\widehat{Y} = \arg_{y=\{0,1\}} \widehat{P}(X|Y)\widehat{P}(Y)
$$

$$
X = (X_1, X_2)
$$
 binary vector

$$
Y \in \{0, 1\}
$$

2. How would we estimate
$$
\hat{P}(X_1 = 0, X_2 = 1 | Y = 0)
$$
?

3. If
$$
X = (X_1, X_2, ..., X_m)
$$
 (binary vector of *m* features), how many probabilities do we need to estimate?

Review

(strawman)

Brute Force Bayes for TV shows

1. What probabilities do
\nwe need to estimate?
\n2. How would we estimate
$$
\hat{P}(X; \vec{v})
$$
 and $\hat{P}(X; \vec{v})$
\n $\hat{P}(X; \vec{v})$ and $\hat{P}(X; \vec{v})$
\n2. How would we estimate $\hat{P}(X_1 = 0, X_2 = 1 | Y = 0)$?
\n $\hat{P}(X; \vec{v})$ and $\hat{P}(X_1 = 0, X_2 = 1 | Y = 0)$?
\n $\hat{P}(X; \vec{v})$ and $\hat{P}(X_1 = 0, X_2 = 1 | Y = 0)$?
\n $\hat{P}(X; \vec{v})$ and $\hat{P}(X_1 = 0, X_2 = 1 | Y = 0)$?
\n $\hat{P}(X; \vec{v})$ and $\hat{P}(X_1 = 0, X_2 = 1 | Y = 0)$?
\n $\hat{P}(X; \vec{v})$ and $\hat{P}(X_1 = 0, X_2 = 1 | Y = 0)$?
\n $\hat{P}(X; \vec{v})$ and $\hat{P}(X_1 = 0, X_2 = 1 | Y = 0)$?
\n $\hat{P}(X; \vec{v})$ and $\hat{P}(X_1 = 0, X_2 = 1 | Y = 0)$?
\n $\hat{P}(X; \vec{v})$ and $\hat{P}(X_1 = 0, X_2 = 1 | Y = 0)$?
\n<

3. If $X = (X_1, X_2, ..., X_m)$ (binary vector of m features), how many probabilities do we need to estimate?

Review

(strawman)

$$
= \arg \max_{y=\{0,1\}} \frac{\widehat{P}(X|Y)\widehat{P}(Y)}{\widehat{P}(X)}
$$

$$
= \arg\max_{y=\{0,1\}} \widehat{P}(X|Y)\widehat{P}(Y)
$$

Assumption:

 X_1, \ldots, X_m are conditionally independent given Y.

$$
= \arg \max_{y=\{0,1\}} \left(\prod_{i=1}^{m} \widehat{P}(X_i|Y) \right) \widehat{P}(Y)
$$

Naïve Bayes **Assumption**

Naïve Bayes Model is a Bayesian Network

Which Bayesian Network encodes this conditional independence?

Lisa Yan, CS109, 2020

Naïve Bayes Model is a Bayesian Network

$$
\begin{array}{ll}\text{Na\"ive Bayes} \\ \text{Assumption} \end{array} \quad P(X|Y) = \prod_{i=1}^{m} P(X_i|Y) \quad \Rightarrow \quad P(X,Y) = P(Y) \prod_{i=1}^{m} P(X_i|Y)
$$

Which Bayesian Network encodes this conditional independence?

 $X_{\boldsymbol i}$ are conditionally independent given parent Y

and Learn

Will a user like the Pokémon TV series?

Observe indicator variables $X = (X_1, X_2)$:

 $X_1 = 1$: "likes Star Wars"

 $X_2 = 1$: "likes Harry Potter"

Output Y indicator:

 $Y = 1$: "likes Pokémon"

Lisa Yan, CS109, 2020

S**tanford University** 57

Ex 1. Naïve Bayes Classifier (**MLE**)

$$
\hat{Y} = \underset{y=\{0,1\}}{\arg \max} \left(\prod_{i=1}^{m} \hat{P}(X_i|Y) \right) \hat{P}(Y)
$$

Training	$\forall i: \ \hat{P}(X_i = 1 Y = 0), \ \hat{P}(X_i = 0 Y = 0),$	Use MLE or
$\hat{P}(X_i = 1 Y = 1), \ \hat{P}(X_i = 0 Y = 0),$	Laplace (MAP)	
$\hat{P}(Y = 1), \ \hat{P}(Y = 0)$		

Testing
$$
\hat{Y} = \arg \max_{y=\{0,1\}} \left(\prod_{i=1}^{m} \hat{P}(X_i|Y) \right) \hat{P}(Y)
$$

Training: Naïve Bayes for TV shows (**MLE**)

Observe indicator vars. $X = (X_1, X_2)$:

- X_1 : "likes Star Wars"
- X_2 : "likes Harry Potter"

Predict Y: "likes Pokémon"

Training data counts

- 1. How many datapoints (n) are in our train data?
- 2. Compute MLE estimates for $\widehat{P}(X_1|Y)$:

X_1	0	1
0	$\hat{P}(X_1 = 0 Y = 0)$	$\hat{P}(X_1 = 1 Y = 0)$
1	$\hat{P}(X_1 = 0 Y = 1)$	$\hat{P}(X_1 = 1 Y = 1)$

 \sim \sim 1099, 2020, 2

Training: Naïve Bayes for TV shows (**MLE**)

(from last slide)

Training : Naïve Bayes for TV shows (**MLE**)

Now that we've trained and found parameters, It's time to classify new users!

Ex 1. Naïve Bayes Classifier (**MLE**)

$$
\hat{Y} = \underset{y=\{0,1\}}{\arg \max} \left(\prod_{i=1}^{m} \hat{P}(X_i|Y) \right) \hat{P}(Y)
$$

Training

\nTraining

\n
$$
\begin{aligned}\n\forall i: \ \hat{P}(X_i = 1 | Y = 0), \ \hat{P}(X_i = 0 | Y = 0), \quad \text{Use MLE or} \\
\hat{P}(X_i = 1 | Y = 1), \ \hat{P}(X_i = 0 | Y = 0), \quad \text{Laplace (MAP)} \\
\hat{P}(Y = 1), \ \hat{P}(Y = 0)\n\end{aligned}
$$

Testing
$$
\hat{Y} = \arg \max_{y=\{0,1\}} \left(\prod_{i=1}^{m} \hat{P}(X_i|Y) \right) \hat{P}(Y)
$$

Testing: Naïve Bayes for TV shows (**MLE**)

Suppose a new person "likes Star Wars" $(X_1 = 1)$ but "dislikes Harry Potter" $(X_2 = 0)$. Will they like Pokemon? Need to predict Y :

$$
\hat{Y} = \arg \max_{y = \{0, 1\}} \hat{P}(X|Y)\hat{P}(Y) = \arg \max_{y = \{0, 1\}} \hat{P}(X_1|Y)\hat{P}(X_2|Y)\hat{P}(Y)
$$

If $Y = 0$: $\hat{P}(X_1 = 1 | Y = 0)\hat{P}(X_2 = 0 | Y = 0)\hat{P}(Y = 0) = 0.77 \cdot 0.38 \cdot 0.43 = 0.126$ If $Y = 1$: $\hat{P}(X_1 = 1 | Y = 1) \hat{P}(X_2 = 0 | Y = 1) \hat{P}(Y = 1) = 0.76 \cdot 0.41 \cdot 0.57 = 0.178$

Since term is greatest when $Y = 1$, predict $\hat{Y} = 1$

Interlude for jokes/announcements

What topics do you want to see next week? <https://forms.gle/AZy7R7CNkNsLZKq2A>

Paradoxes of Probability & Statistical Strangeness

- Simpson's Paradox
- Base rate fallacy
- Will Rogers Paradox
- Berkson's Paradox
- Multiple comparisons fallacy

[https://scitechdaily.com/paradoxes-of-probability-statistical](https://scitechdaily.com/paradoxes-of-probability-statistical-strangeness/)strangeness/

[CS109 Current Events Spreadsheet](https://docs.google.com/spreadsheets/d/1ijvvCoCKG86gITqSxYEPL_77U7VK__mn-ChvyDkhXX4/)

Ex 2. Naïve Bayes Classifier (**MAP**)

$$
\hat{Y} = \underset{y=\{0,1\}}{\arg \max} \left(\prod_{i=1}^{m} \hat{P}(X_i|Y) \right) \hat{P}(Y)
$$

$$
\forall i: \ \hat{P}(X_i = 1 | Y = 0), \ \hat{P}(X_i = 0 | Y = 0), \ \text{Use MLE or } \hat{P}(X_i = 1 | Y = 1), \ \hat{P}(X_i = 0 | Y = 0), \ \text{Laplace (MAP)}
$$
\n
$$
\hat{P}(Y = 1), \ \hat{P}(Y = 0)
$$

Training

Testing
$$
\hat{Y} = \arg \max_{y=\{0,1\}} \left(\prod_{i=1}^{m} \hat{P}(X_i | Y)\right)
$$

 $\mathcal{P}(Y)$ (note the same as before)

 $\sqrt{2}$

Training: Naïve Bayes for TV shows (**MAP**)

Observe indicator vars. $X = (X_1, X_2)$: $X_{\mathbf{1}}$ X_{2} $\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$ $\begin{vmatrix} 1 \\ Y \end{vmatrix}$ 0 1 X_1 : "likes Star Wars" X_2 : "likes Harry Potter" $0 \mid 3 \mid 10$ $0 \mid 5 \mid 8$ 1 4 13 Predict Y: "likes Pokémon" 1 7 10 Training data counts $\left| \widehat{P}(X_i = x | Y = y) \right|$ A. $\frac{\#(X_i = x, Y = y)}{}$ $X = 0, Y = 4$ $#(Y=v)$ What are our MAP estimates Note P(Xi=x IY=5), Vi=1, 1 $X - 1, Y = 4$ $\widehat{B_n}$ $\frac{\#(X_i=x, Y=y)+1}{\#(X_i=x, Y=y)}$ using Laplace smoothing for $\widehat{P}(X_i|Y)$? $#(Y = y) + 2$ $\frac{\#(X_i = x, Y = y) + 1}{\#(X_i = x, Y = y)}$ $#(Y = y) + 4$ D. otherStanford University 69

Lisa Yan, CS109, 2020

Training: Naïve Bayes for TV shows (**MAP**)

Observe indicator vars. $X = (X_1, X_2)$:

- X_1 : "likes Star Wars"
- X_2 : "likes Harry Potter"

Predict Y: "likes Pokémon"

Training data counts

What are our MAP estimates using Laplace smoothing for $\widehat{P}(X_i|Y)$?

$$
\hat{P}(X_i = x | Y = y):
$$
\nA.
$$
\frac{\#(X_i = x, Y = y)}{\#(Y = y)}
$$
\nB.
$$
\frac{\#(X_i = x, Y = y) + 1}{\#(Y = y) + 2}
$$
\nC.
$$
\frac{\#(X_i = x, Y = y) + 1}{\#(Y = y) + 4}
$$

D. other

Lisa Yan, CS109, 2020

Stanford University 71

Ex 3. Naïve Bayes Classifier (m, n Targe)

$$
\hat{Y} = \underset{y=\{0,1\}}{\arg \max} \left(\prod_{i=1}^{m} \hat{P}(X_i|Y) \right) \hat{P}(Y)
$$
\nTraining

\n
$$
\hat{Y} \text{ if } \hat{P}(X) \text{ and } \hat{P}(Y) \text{ and } \hat{P}(Y)
$$
What is Bayes doing in my mail server?

Lisa Yan, CS109, 2020

Goal Based on email content X , predict if email is spam or not.

Features Consider a lexicon m words (for English: $m \approx 100,000$). $X = (X_1, X_2, ..., X_m)$, m indicator variables $X_i = 1$ if word i appeared in document Output $Y = 1$ if email is spam

Note: *m* is huge. Make Naïve Bayes assumption: $P(X|spam) = \int P(X_i|spam)$ \overline{i} =1 \boldsymbol{m}

> Appearances of words in email are conditionally independent given the email is spam or not

Training: Naïve Bayes Email classification

Train set

n previous emails
$$
(x^{(1)}, y^{(1)})
$$
, $(x^{(2)}, y^{(2)})$, ..., $(x^{(n)}, y^{(n)})$

 $\boldsymbol{x}^{(i)} = \left(x_1^{(i)}, x_2^{(i)}, ..., x_m^{(i)}\right)$ for each word, whether it $v^{(i)} = 1$ if spam, 0 if not spam appears in email i

Note: m is huge.

Which estimator should we use for $\widehat{P}(X_i|Y)$?

- A. MLE
- B. Laplace estimate (MAP)
- C. Other MAP estimate
- Both A and B

Training: Naïve Bayes Email classification

Train set

n previous emails
$$
(x^{(1)}, y^{(1)})
$$
, $(x^{(2)}, y^{(2)})$, ..., $(x^{(n)}, y^{(n)})$

 $\boldsymbol{x}^{(i)} = \left(x_1^{(i)}, x_2^{(i)}, ..., x_m^{(i)}\right)$ for each word, whether it $v^{(i)} = 1$ if spam, 0 if not spam appears in email i

Note: m is huge.

Which estimator should we use for $\widehat{P}(X_i|Y)$?

A. MLE B. Laplace estimate (MAP) **Other MAP estimate** Both A and B

Many words are likely to not appear at all in the training set!

Ex 3. Naïve Bayes Classifier $(m, n \text{ large})$

$$
\widehat{Y} = \underset{y=\{0,1\}}{\arg \max} \left(\prod_{i=1}^{m} \widehat{P}(X_i|Y) \right) \widehat{P}(Y)
$$

$$
\forall i: \ \hat{P}(X_i = 1 | Y = 0), \ \hat{P}(X_i = 0 | Y = 0), \text{ | Use MLE or } \ \hat{P}(X_i = 1 | Y = 1), \ \hat{P}(X_i = 0 | Y = 0), \text{ | Laplace (MAP) } \ \hat{P}(Y = 1), \ \hat{P}(Y = 0)
$$

Testing

$$
\hat{Y} = \underset{y=\{0,1\}}{\arg \max} \left(\prod_{i=1}^{m} \text{Laplace (MAP) estimates avoid estimating} \right)
$$
\n1.6.1.1

\n2.1.1.2

\n3.1.3

\n4.1.4

\n5.1.4

\n6.1.5

\n7.1.5

\n8.1.6

\n9.1.6

\n10.1.7

\n11.1.7

\n12.1.7

\n13.1.7

\n14.1.7

\n15.1.7

\n16.1.7

\n17.1.7

\n18.1.7

\n19.1.7

\n10.1.7

\n11.1.7

\n12.1.7

\n13.1.7

\n14.1.7

\n15.1.7

\n16.1.7

\n17.1.7

\n18.1.7

\n19.1.7

\n10.1.7

\n11.1.7

\n12.1.7

\n13.1.7

\n14.1.7

\n15.1.7

\n16.1.7

\n17.1.7

\n18.1.7

\n19.1.7

\n10.1.7

\n11.1.7

\n12.1.7

\n13.1.7

\n14.1.7

\n15.1.7

\n16.1.7

\n17.1.7

\n18.1.7

\n19.1.7

\n10.1.7

\n11.1.7

\n12.1.7

\n13.1.7

\n14.1.7

\n15.1.7

\n16.1.7

\n17.1.7

\n18.1.7

\n19.1.7

\n

 \sqrt{m}

Testing: Naïve Bayes Email classification

For a new email:

- Generate $X = (X_1, X_2, ..., X_m)$
- Classify as spam or not using Naïve Bayes assumption

Note: m is huge.

Suppose train set size n also huge (many labeled emails).

Can we still use the below prediction?

$$
\hat{Y} = \underset{y=\{0,1\}}{\arg \max} \left(\prod_{i=1}^{m} \hat{P}(X_i|Y) \right) \hat{P}(Y)
$$

Testing: Naïve Bayes Email classification

For a new email:

- Generate $X = (X_1, X_2, ..., X_m)$
- Classify as spam or not using Naïve Bayes assumption

Note: m is huge.

Suppose train set size n also huge (many labeled emails).

Can we still use the below prediction?

$$
\hat{Y} = \underset{y=\{0,1\}}{\arg \max} \left(\prod_{i=1}^{m} \hat{P}(X_i|Y) \right) \hat{P}(Y)
$$

Will probably lead to underflow!

Ex 3. Naïve Bayes Classifier $(m, n \text{ large})$

$$
\widehat{Y} = \underset{y=\{0,1\}}{\arg \max} \left(\prod_{i=1}^{m} \widehat{P}(X_i|Y) \right) \widehat{P}(Y)
$$

$$
\forall i: \ \hat{P}(X_i = 1 | Y = 0), \ \hat{P}(X_i = 0 | Y = \text{Use sums of log-} \hat{P}(X_i = 1 | Y = 1), \hat{P}(X_i = 0 | Y = \text{Subabilities for } \hat{P}(Y = 1), \hat{P}(Y = 0) \text{ by } \hat{P}(Y = 1) \text{ by } \hat{P}(Y = 0) \text{ by } \hat{P}(Y \cup Y) \text{ by } \hat{P}(Y) \text{ by } \
$$

How well does Naïve Bayes perform?

After training, you can test with another set of data, called the test set.

Test set also has known values for Y so we can see how often we were right/wrong in our predictions \hat{Y} .

Typical workflow:

- Have a dataset of 1789 emails (1578 spam, 211 ham)
- Train set: First 1538 emails (by time)
- Test set: Next 251 messages

81

Willi: precision à recall
Classibili: 7 = 1, 7 = 0
"frue labels": Y = 1, Y = 0 PRECISION: TP+FP recall: TP

