24: Linear Regression and Gradient Ascent

Lisa Yan June 1, 2020

Quick slide reference

- 3 Linear Regression
- 7 Linear Regression: MSE
- 12 Linear Regression: MLE
- 19 Gradient Ascent
- Linear Regression with Gradient Ascent
- Extra: Derivations

24c linreg mle

24b_linreg_mse

24d_gradient_ascent

LIVE

24f_extra_derivations

24a_linreg

Linear Regression

Today's goals

We are going to learn linear regression.

Also known as "fit a straight line to data"

- However, linear models are too simple for more complex datasets.
- Furthermore, many tasks in CS deal with classification (categorical data), not regression.

The reason we cover this topic is to teach us <u>important skills</u> that will help us design and understand more complicated ML algorithms:

- 1. How to model likelihood of training data $(x^{(i)}, y^{(i)})$
- 2. What rules of argmax/calculus are important to remember
- 3. What gradient ascent is and why it is useful

Regression: Predicting real numbers

Review

Linear Regression

Assume linear model (and X is 1-D): $X = \langle X_1 \rangle = X$ $\hat{Y} = g(X) = aX + b$

Training

Training data:
$$(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), ..., (x^{(n)}, y^{(n)})$$

Learn parameters $\theta = (a, b)$

Two approaches:

- <u>Analytical</u> solution via mean squared error
- <u>Iterative</u> solution via MLE and gradient ascent

24b_linreg_mse

Linear Regression: MSE

Mean Squared Error (MSE)

For regression tasks, we usually want a g(X) that minimizes MSE:

$$\theta_{MSE} = \underset{\theta}{\operatorname{arg\,min}} E\left[\left(Y - \widehat{Y}\right)^{2}\right] = \underset{\theta}{\operatorname{arg\,min}} E\left[\left(Y - g(X)\right)^{2}\right]$$

- Y and $\hat{Y} = g(X)$ are both random variables
- Intuitively: Choose parameter θ that minimizes the expected squared deviation ("error") of your prediction \hat{Y} from the true Y

For linear regression, where $\theta = (a, b)$ and $\hat{Y} = aX + b$: $E[(Y - aX - b)^2]$

Don't make me get non-linear!

$$\theta_{MSE} = \underset{\theta=(a,b)}{\arg\min} E[(Y - aX - b)^2]$$

$$a_{MSE} = \rho(X, Y) \frac{\sigma_Y}{\sigma_X}, \qquad b_{MSE} = \mu_Y - a_{MSE} \mu_X$$

(Derivation included at the end of this lecture)

Can we find these statistics on X and Y from our training data? Training data: $(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), ..., (x^{(n)}, y^{(n)})$

Not exactly, but we can estimate them!

Lisa Yan, CS109, 2020

Don't make me get non-linear!

$$\theta_{MSE} = \underset{\theta=(a,b)}{\arg\min} E[(Y - aX - b)^2]$$

$$a_{MSE} = \rho(X, Y) \frac{\sigma_Y}{\sigma_X}, \qquad b_{MSE} = \mu_Y - a_{MSE} \mu_X \qquad \overset{(i)}{=}$$

(Derivation included at the end of this lecture)

Can we find these statistics on X and Y from our training data? Training data: $(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), ..., (x^{(n)}, y^{(n)})$

Estimate parameters based on observed training data:

$$\hat{a}_{MSE} = \hat{\rho}(X,Y) \frac{S_Y}{S_X}, \qquad \hat{b}_{MSE} = \overline{Y} - \hat{a}_{MSE} \overline{X}$$

 $\hat{V}_{N,Y}$

Sample correlation (Wikipedia)

Stanford University 10

 $\hat{\alpha}(X | V)$

Linear Regression

Assume linear model (and *X* is 1-D):

$$\widehat{Y} = g(X) = aX + b$$

TrainingTraining data:
$$(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), ..., (x^{(n)}, y^{(n)})$$
Learn parameters $\theta = (a, b)$

If we want to minimize the mean squared error of our prediction,

$$\hat{a}_{MSE} = \hat{\rho}(X, Y) \frac{S_Y}{S_X}, \qquad \hat{b}_{MSE} = \overline{Y} - \hat{a}_{MSE} \overline{X}$$

Review

24c_linreg_mle

Linear Regression: MLE

Linear Regression

Assume linear model (and *X* is 1-D):

predictor
$$\widehat{Y} = g(X) = aX + b$$

Training

Learn parameters
$$\theta = (a, b)$$

Training data: $(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), ..., (x^{(n)}, y^{(n)})$

We've seen which parameters minimize mean squared error. $\mathbb{E}\left[(\gamma - \hat{\gamma})^2\right]$

What if we want parameters that maximize the **likelihood of the training data**?

Note: Maximizing likelihood is typically an objective for classification models.

Review

Likelihood, it's been a minute

Review

 $\chi_i \sim Poi(\lambda)$

Consider a sample of *n* i.i.d. random variables X_1, X_2, \dots, X_n .

- X_i was drawn from a distribution with density function $f(X_i|\theta)$.
- Observed data: (X_1, X_2, \dots, X_n)

Likelihood question:

How likely is the observed data $(X_1, X_2, ..., X_n)$ given parameter θ ?

Likelihood function, $L(\theta)$:

$$L(\theta) = f(X_1, X_2, \dots, X_n | \theta) = \prod_{i=1}^n f(X_i | \theta)$$

This is just a product, since X_i are i.i.d.

Likelihood of the training data

Training data (*n* datapoints):

- (shorthand)
- $(x^{(i)}, y^{(i)})$ drawn i.i.d. from a distribution $f(X = x^{(i)}, Y = y^{(i)}|\theta) = f(x^{(i)}, y^{(i)}|\theta)$
- $\hat{Y} = g(X)$, where $g(\cdot)$ is a function with parameter θ

We can show that θ_{MLE} maximizes the log conditional likelihood function:

$$\Theta_{mle} = avguax \prod_{i=1}^{n} f(x^{(i)}, y^{(i)}|\theta)$$

$$\theta_{MLE} = \arg \max_{\theta} \sum_{i=1}^{n} \log f(y^{(i)} | x^{(i)}, \theta)$$

(This derivation is included at the end of this video)

Linear Regression, MLE

- 1. Assume linear model (and X is 1-D): $\widehat{Y} = g(X) = aX + b$
- 2. Define maximum likelihood estimator:

$$\theta_{MLE} = \arg \max_{\theta} \sum_{i=1}^{n} \log f(y^{(i)} | x^{(i)}, \theta)$$

- **!** Issue: We have a model of the <u>prediction</u> \hat{Y} (and not Y)
- Remember MSE approach, where we minimize the squared error between \hat{Y} and Y? $\mathbb{E}\left[\left(Y \hat{Y}\right)^2\right]$
- Now, we model this error directly!

$$Y = \hat{Y} + Z$$
 error/noise
= $aX + b + Z$ (also random)

9×1×,0?

$$\widehat{Y} = g(X) = aX + b$$

Minimum Mean Squared Error $\theta_{MSE} = \arg\min_{\theta} E\left[\left(Y - g(X)\right)^2\right]$

- Do not directly model *Y* (nor error)
- Parameters are estimates of statistics from training data:

$$\hat{a}_{MSE} = \hat{\rho}(X, Y) \frac{S_Y}{S_X}$$
$$\hat{b}_{MSE} = \overline{Y} - \hat{a}_{MSE} \overline{X}$$

Maximum Likelihood Estimation $\theta_{MLE} = \arg \max_{\theta} \sum_{i=1}^{n} \log f(y^{(i)} | x^{(i)}, \theta)$

• Directly model error between predicted \hat{Y} and Y $Y = \hat{Y} + Z = aX + b + Z$

If we assume error $Z \sim \mathcal{N}(0, \sigma^2)$, then these two estimators are **equivalent**.

 $\theta_{MSE} = \theta_{MLE}!$

Linear Regression, MLE (next steps)

1. Assume linear model (and *X* is 1-D):

$$\widehat{Y} = g(X) = aX + b$$

2. Define maximum likelihood estimator:

$$\theta_{MLE} = \arg \max_{\theta} \sum_{i=1}^{n} \log f(y^{(i)} | x^{(i)}, \theta)$$

3. Model error, *Z*:

Y = aX + b + Z, where $Z \sim \mathcal{N}(0, \sigma^2)$

4. Pick $\theta = (a, b)$ that maximizes likelihood of training data

We will not analytically find a solution. Instead, we are going to use **gradient ascent**, an **iterative optimization algorithm**.

24d_gradient_ascent

Gradient Ascent

Multiple ways to calculate argmax

Let
$$f(x) = -x^2 + 4$$
,
where $-2 < x < 2$.

What is arg max
$$f(x)$$
?
objective function

A. Graph and guess

B. Differentiate,
 set to 0, and
 solve

$$\frac{df}{dx} = -2x = 0$$

x = 0

C. Gradient ascent:

educated guess & check

Stanford University 20

Gradient ascent

Walk uphill and you will find a local maxima (if your step is small enough).

If your function is concave, Local maxima = global maxima

CS 109

Gradient ascent algorithm

Walk uphill and you will find a local maxima (if your step is small enough).

1.

Let
$$f(x) = -x^2 + 4$$
,
where $-2 < x < 2$.

$$\frac{df}{dx} = -2x \qquad \text{Gradient at } x$$

2. Gradient ascent algorithm: initialize x repeat many times: compute gradient x += n * gradient

Computing the MLE

Review

(live) 24: Linear Regression and Gradient Ascent

Lisa Yan June 1, 2020

Three goals today

1. How to model likelihood of training data $(x^{(i)}, y^{(i)})$

$$\theta_{MLE} = \arg \max_{\theta} \sum_{i=1}^{n} \log f(y^{(i)} | x^{(i)}, \theta)$$

(θ_{MLE} maximizes log conditional likelihood)

2. What rules of argmax/calculus are important to remember

 What gradient ascent is, why it is useful, and how to use it

Linear Regression, MLE (so far)

1. Assume linear model (and *X* is 1-D):

$$\widehat{Y} = g(X) = aX + b$$

2. Define maximum likelihood estimator:

$$\theta_{MLE} = \arg \max_{\theta} \sum_{i=1}^{n} \log f(y^{(i)} | x^{(i)}, \theta)$$
$$= aX + b + Z, \text{ where } Z \sim \mathcal{N}(0, \sigma^2)$$

- 3. Model error, *Z*:
- 4. Pick $\theta = (a, b)$ that maximize likelihood of training data

Let's get started!

Review

Y

Computing the MLE with gradient ascent

General approach for finding θ_{MLE} , the MLE of θ :

1. Determine formula for $LL(\theta)$ $LL(\theta) = \sum_{i=1}^{n} \log f(X_i|\theta)$ $\sum_{i=1} \log f(y^{(i)} | x^{(i)}, \theta)$ Now: optimize log conditional likelihood

2. Differentiate $\frac{LL(\theta)}{d\theta}$ 3. Solve resulting w.r.t. (each) θ (simultaneous) equations To maximize: $\partial LL(\theta)$ (algebra or $\frac{\partial LL(\theta)}{\partial \theta} = 0$ computer) $\frac{\partial}{\partial \theta_j} \sum_{i=1}^{\infty} \log f(y^{(i)} | x^{(i)}, \theta)$ (i) = (a, b)(computer) **Gradient Ascent**

- Model: $\theta = (a, b)$ Optimization Y = aX + b + Z problem: $\arg \max_{\theta} \sum_{i=1}^{n} \log f(y^{(i)} | x^{(i)}, \theta) = \theta$ and π
- **1.** What is the conditional distribution, $Y|X, \theta$?
- 2. Rewrite the objective: $\arg \max_{\theta} \sum_{i=1}^{n} \log f(y^{(i)} | x^{(i)}, \theta)$

- Model: $\theta = (a, b)$ Y = aX + b + Z $Z \sim \mathcal{N}(0, \sigma^2)$ Optimization problem: $\arg \max_{\theta} \sum_{i=1}^{n} \log f(y^{(i)} | x^{(i)}, \theta)$
- **1.** What is the conditional distribution, $Y|X, \theta$? $Y|X, \theta \sim \mathcal{N}(aX + b, \sigma^{2}) \qquad \begin{array}{l} Y|X = \chi_{0} \theta = (a,b) \\ Y|X, \theta \sim \mathcal{N}(aX + b, \sigma^{2}) \qquad \begin{array}{l} Y|X = \chi_{0} \theta = (a,b) \\ Y|X, \theta \sim \mathcal{N}(aX + b, \sigma^{2}) \qquad \begin{array}{l} Y|X = \chi_{0} \theta = (a,b) \\ Y|X = (a$

- imization problem: $\underset{\theta}{\arg \max} \sum_{i=1} \log f(y^{(i)} | x^{(i)}, \theta)$ Model: $\theta = (a, b)$ Optimization Y = aX + b + Z $Z \sim \mathcal{N}(0, \sigma^2)$
- 3. Use argmax properties to get rid of constants

$$\arg \max_{\theta} \left[\sum_{i=1}^{n} -\log \sqrt{2\pi}\sigma - \frac{1}{2\sigma^{2}} \sum_{i=1}^{n} (y^{(i)} - ax^{(i)} - b)^{2} \right] \quad \text{(from previous slide)}$$

$$= \arg \max_{\theta} \left[-\frac{1}{2\sigma^{2}} \sum_{i=1}^{n} (y^{(i)} - ax^{(i)} - b)^{2} \right] \quad \text{Argmax refresher #1:} \\ \text{Invariant to additive constants} \right]$$

$$= \arg \max_{\theta} \left[-\sum_{i=1}^{n} (y^{(i)} - ax^{(i)} - b)^{2} \right] \quad \text{Argmax refresher #2:} \quad \frac{1}{2\sigma^{2}} > \infty \\ \text{Invariant to positive constant scalars} \\ \text{Stanford University} \right]$$

1/2012 >0

nstants

Model: $\theta = (a, b)$ Y = aX + b + Z $Z \sim \mathcal{N}(0, \sigma^2)$ Optimization problem: $\arg \max_{\theta} \sum_{i=1}^{n} \log f(y^{(i)} | x^{(i)}, \theta)$

4. Celebrate!

$$\arg\max_{\theta} \left[-\sum_{i=1}^{n} (y^{(i)} - ax^{(i)} - b)^2 \right]$$

- Model: $\theta = (a, b)$ Y = aX + b + Z $Z \sim \mathcal{N}(0, \sigma^2)$ Optimization problem: $\arg \max_{\theta} \sum_{i=1}^{n} \log f(y^{(i)} | x^{(i)}, \theta)$ $\Im = \arg \max_{\theta} \left[-\sum_{i=1}^{n} (y^{(i)} - ax^{(i)} - b)^2 \right]$
- 1. What is the derivative of the (w.r.t. "with respect to") objective function w.r.t. *a*?

$$\frac{\partial}{\partial a} \left[-\sum_{i=1}^{n} (y^{(i)} - ax^{(i)} - b)^{2} \right] = -\sum_{i=1}^{n} \frac{\partial}{\partial a} (y^{(i)} - ax^{(i)} - b)^{2}$$

$$= -\sum_{i=1}^{n} 2(y^{(i)} - ax^{(i)} - b)(-x^{(i)})$$

$$= \sum_{i=1}^{n} 2(y^{(i)} - ax^{(i)} - b)(x^{(i)})$$

$$= \sum_{i=1}^{n} 2(y^{(i)} - ax^{(i)} - b)(x^{(i)})$$
(rewrite)

Lisa Yan, CS109, 2020

aulus refresher #4

- Model: $\theta = (a, b)$ Y = aX + b + Z $Z \sim \mathcal{N}(0, \sigma^2)$ Optimization y = aX + b + Z $Z \sim \mathcal{N}(0, \sigma^2)$ Optimization y = ax + b + Z y = ax + b + Zy = ax + b +
- 1. What is the derivative of the objective function w.r.t. *a*?

$$\sum_{i=1}^{n} 2(y^{(i)} - ax^{(i)} - b)(x^{(i)})$$

2. What is the derivative of the objective function w.r.t. *b*?

- $\arg \max_{\theta} \sum_{i=1}^{n} \log f(y^{(i)} | x^{(i)}, \theta)$ $= \arg \max_{\theta} \left[-\sum_{i=1}^{n} (y^{(i)} ax^{(i)} b)^2 \right]$ Model: $\theta = (a, b)$ Optimization problem: Y = aX + b + Z $Z \sim \mathcal{N}(0, \sigma^2)$
- 1. What is the derivative of the objective function w.r.t. a?
- What is the derivative of the 2. objective function w.r.t. b?

$$\sum_{i=1}^{n} 2(y^{(i)} - ax^{(i)} - b)(x^{(i)})$$

$$= \sum_{i=1}^{n} 2(y^{(i)} - ax^{(i)} - b)(x^{(i)})$$

$$= \sum_{i=1}^{n} (y^{(i)} - ax^{(i)} - b)^{2}$$

$$= \sum_{i=1}^{n} 2(y^{(i)} - ax^{(i)} - b) \cdot \frac{1}{2} b(y^{(i)} - ax^{(i)} - b)$$

$$= -\sum_{i=1}^{n} 2(y^{(i)} - ax^{(i)} - b) \cdot \frac{1}{2} b(y^{(i)} - ax^{(i)} - b)$$

$$= -\sum_{i=1}^{n} 2(y^{(i)} - ax^{(i)} - b)(-i)$$

$$= -\sum_{i=1}^{n} 2(y^{(i)} - ax^{(i)} - b)(-i)$$
Stanford University 34

- Model: $\theta = (a, b)$ Y = aX + b + Z $Z \sim \mathcal{N}(0, \sigma^2)$ Optimization y = aX + b + Z $Z \sim \mathcal{N}(0, \sigma^2)$ Optimization y = ax + b + Z y = ax + b + Zy = ax + b +
- 1. What is the derivative of the objective function w.r.t. *a*?
- 2. What is the derivative of the objective function w.r.t. *b*?

$$\sum_{i=1}^{n} 2(y^{(i)} - ax^{(i)} - b)(x^{(i)})$$

$$\sum_{i=1}^{n} 2(y^{(i)} - ax^{(i)} - b)$$

If we set to 0 and solve, we will get an **analytical** solution for a_{MLE} , b_{MLE} . We will reach the same solution with gradient ascent.

Interlude for jokes/announcements

What topics do you want to see this week? https://forms.gle/AZy7R7CNkNsLZKq2A

End of Quarter

https://us.edstem.org/cours es/109/discussion/74470 Astronomer Uses **Bayesian Statistics to** Weigh Likelihood of Complex Life and Intelligence beyond Earth

"In Bayesian inference, prior probability distributions always need to be selected," [the astronomer] said.

"But a key result here is that when one compares the rare-life versus common-life scenarios, the commonlife scenario is always at least nine times more likely than the rare one."

http://www.sci-news.com/astronomy/bayesian-statistics-likelihood-

extraterrestrial-life-intelligence-08443.html

CS109 Current Events Spreadsheet

3. Gradient ascent with multiple parameters

Optimization
problem:
$$\underset{\theta}{\operatorname{arg\,max}} \left[-\sum_{i=1}^{n} (y^{(i)} - ax^{(i)} - b)^{2} \right]$$
Gradient:
$$\frac{\partial h(\theta)}{\partial a} = \sum_{i=1}^{n} 2(y^{(i)} - ax^{(i)} - b)(x^{(i)})$$
$$= \underset{\theta}{\operatorname{arg\,max}} h(\theta)$$
$$\frac{\partial h(\theta)}{\partial b} = \sum_{i=1}^{n} 2(y^{(i)} - ax^{(i)} - b)$$

initialize $\theta = (a,b)$ repeat many times: compute gradient θ += η * gradient

How does this work for multiple parameters?

3. Gradient ascent with multiple parameters
Optimization problem:
$$arg \max_{\theta} \left[-\sum_{i=1}^{n} (y^{(i)} - ax^{(i)} - b)^{2} \right]$$

$$= arg \max_{\theta} h(\theta)$$

$$gradient: \begin{bmatrix} \partial h(\theta) \\ \partial a \end{bmatrix} = \sum_{i=1}^{n} 2(y^{(i)} - ax^{(i)} - b)(x^{(i)}) \\ \hline \frac{\partial h(\theta)}{\partial b} \end{bmatrix} = \sum_{i=1}^{n} 2(y^{(i)} - ax^{(i)} - b)$$

a, b = 0, 0# initialize θ repeat many times: gradient_a, gradient_b = 0, 0 # TODO: fill in # θ += η * gradient $a += \eta * gradient_a$ b += η * gradient_b

How do we pseudocode the gradient computation?

1=10

Stanford University 40

3. Gradient ascent with multiple parameters

a, b = 0, 0 # initialize θ repeat many times:

gradient_a, gradient_b = 0, 0
for each training example (x, y):
 diff = y - (a * x + b)
 gradient_a += 2 * diff * x ^C
 gradient_b += 2 * diff

a += $\eta * \text{gradient}_a$ # θ += $\eta * \text{gradient}_b$ b += $\eta * \text{gradient}_b$ Finish computing gradient before updating any part of θ .

Global land-ocean temperature prediction

Global land-ocean temperature prediction

Let's try it out

(demo)

Optimization
problem:
$$\underset{\theta}{\operatorname{arg\,max}} \left[-\sum_{i=1}^{n} (y^{(i)} - ax^{(i)} - b)^{2} \right]$$
Gradient:
$$\frac{\partial h(\theta)}{\partial a} = \sum_{i=1}^{n} 2(y^{(i)} - ax^{(i)} - b)(x^{(i)})$$
$$= \underset{\theta}{\operatorname{arg\,max}} h(\theta)$$
$$\frac{\partial h(\theta)}{\partial b} = \sum_{i=1}^{n} 2(y^{(i)} - ax^{(i)} - b)$$

a, b = 0, 0# initialize θ repeat many times: gradient a, gradient b = 0, 0 for each training example (x, y): diff = y - (a * x + b)gradient_a += 2 * diff * x gradient b += 2 * diff a += η * gradient_a # θ += η * gradient $b += \eta * \text{gradient } b$

Updates to *a* and *b* should include information from all *n* training datapoints

Optimization
problem:
$$\underset{\theta}{\operatorname{arg\,max}} \left[-\sum_{i=1}^{n} (y^{(i)} - ax^{(i)} - b)^{2} \right]$$
Gradient:
$$\frac{\partial h(\theta)}{\partial a} = \sum_{i=1}^{n} 2(y^{(i)} - ax^{(i)} - b)(x^{(i)})$$
$$= \underset{\theta}{\operatorname{arg\,max}} h(\theta)$$
$$\frac{\partial h(\theta)}{\partial b} = \sum_{i=1}^{n} 2(y^{(i)} - ax^{(i)} - b)$$

a, b = 0, 0 # initialize
$$\theta$$

repeat many times:

gradient_a, gradient_b = 0, 0
for each training example (x, y):
diff = y - (a * x + b)
gradient_a += 2 * diff * x
gradient_b += 2 * diff

a += η * gradient_a # θ += η * gradient
b += η * gradient_b

How do we interpret the contribution of the i-th training datapoint?

Optimization $\underset{\theta}{\operatorname{arg\,max}} \left[-\sum_{i=1}^{n} (y^{(i)} - ax^{(i)} - b)^{2} \right]$ $= \underset{\theta}{\operatorname{arg\,max}} h(\theta)$ $= \underset{\theta}{\operatorname{arg\,max}} h(\theta)$ a, b = 0, 0 $\operatorname{repeat\,many\,times:}$ Gradient: $\frac{\partial h(\theta)}{\partial a} = \sum_{i=1}^{n} 2(y^{(i)} - ax^{(i)} - b)$ $\frac{\partial h(\theta)}{\partial b} = \sum_{i=1}^{n} 2(y^{(i)} - ax^{(i)} - b)$

gradient_a, gradient_b = 0, 0
for each training example (x, y):
 diff = y - (a * x + b)
 gradient_a += 2 * diff * x
 gradient_b += 2 * diff

a += $\eta * \text{gradient}_a$ # θ += $\eta * \text{gradient}_b$ b += $\eta * \text{gradient}_b$ Prediction error! $y^{(i)} - \hat{y}^{(i)}$

3b. Interpret

Optimization
problem:
$$\underset{\theta}{\operatorname{arg\,max}} \left[-\sum_{i=1}^{n} (y^{(i)} - ax^{(i)} - b)^{2} \right]$$
Gradient:
$$\frac{\partial h(\theta)}{\partial a} = \sum_{i=1}^{n} 2(y^{(i)} - ax^{(i)} - b)(x^{(i)})$$
$$= \underset{\theta}{\operatorname{arg\,max}} h(\theta)$$
$$\frac{\partial h(\theta)}{\partial b} = \sum_{i=1}^{n} 2(y^{(i)} - ax^{(i)} - b)$$

a, b = 0, 0 # initialize θ repeat many times:

gradient_a, gradient_b = 0, 0
for each training example (x, y):
 prediction_error = y - (a * x + b)
 gradient_a += 2 * prediction_error * x
 gradient_b += 2 * prediction_error

a += $\eta * \text{gradient}_a$ # θ += $\eta * \text{gradient}_b$ b += $\eta * \text{gradient}_b$

Optimization
problem:
$$\underset{\theta}{\operatorname{arg\,max}} \left[-\sum_{i=1}^{n} (y^{(i)} - ax^{(i)} - b)^{2} \right]$$
Gradient:
$$\frac{\partial h(\theta)}{\partial a} = \sum_{i=1}^{n} 2(y^{(i)} - ax^{(i)} - b)(x^{(i)})$$
$$= \underset{\theta}{\operatorname{arg\,max}} h(\theta)$$
$$\frac{\partial h(\theta)}{\partial b} = \sum_{i=1}^{n} 2(y^{(i)} - ax^{(i)} - b)$$

a, b = 0, 0 # initialize θ repeat many times:

gradient_a, gradient_b = 0, 0
for each training example (x, y):
 prediction_error = y - (a * x + b)
 gradient_a += 2 * prediction_error * x
 gradient_b += 2 * prediction_error

a += $\eta * \text{gradient}_a$ # θ += $\eta * \text{gradient}_b$ b += $\eta * \text{gradient}_b$

 $\hat{Y} = aX + b$, so update to *a* should also scale by $x^{(i)}$

Optimization $\underset{\theta}{\operatorname{arg\,max}} \left[-\sum_{i=1}^{n} (y^{(i)} - ax^{(i)} - b)^2 \right]$ Gradient: $\frac{\partial h(\theta)}{\partial a} = \sum_{i=1}^{n} 2(y^{(i)} - ax^{(i)} - b)(x^{(i)})$ $= \arg \max h(\theta)$ $\frac{\partial h(\theta)}{\partial b} = \sum_{i=1}^{n} 2(y^{(i)} - ax^{(i)} - b)$

```
a, b = 0, 0 # initialize \theta repeat many times:
```

 $b += \eta * gradient_b$

```
gradient_a, gradient_b = 0, 0
for each training example (x, y):
    prediction_error = y - (a * x + b)
    gradient_a += 2 * prediction_error * x
    gradient_b += 2 * prediction_error * 1
a += η * gradient_a # θ += η * gradient
```

```
\hat{Y} = aX + b, so
update to b just
scales by 1, not x^{(i)}
```

Reflecting on today

We did a lot today!

- Learned gradient ascent
- Modeled likelihood of training dataset
- Thanked argmax for its convenience
- Remembered calculus
- Implemented gradient ascent with multiple parameters to optimize for

Next up, we will use all these skills <u>and more</u> to tackle the final prediction model of CS109:

Logistic Regression

Lisa Yan, CS109, 2020

24f_extra_derivations

Extra: Derivations $\hat{Y} = a \times f = b$ •(anse, brist)= Ðrist = argumn €[(Y-ŷ]] · Onle = arguax L (6)

Don't make me get non-linear!

$$\theta_{MSE} = \underset{\theta=(a,b)}{\arg\min} E[(Y - aX - b)^2] \qquad \frac{d}{da} \left(g(a) \right)^2 - 2g(a) \overset{\text{def}}{da}$$

1. Differentiate w.r.t. (each) θ , $\frac{\partial}{\partial a} E[(Y - aX - b)^2] = E \begin{bmatrix} \frac{\partial}{\partial a} (Y - aX - b)^2 \end{bmatrix}$ set to 0 $E[\cdot]$ is a linear function w.r.t. a) E[-2(Y - aX - b)X] < 2(Y - aX - b)(-X)

$$= -2E[XY] + 2aE[X^2] + 2bE[X] \simeq \bigcirc$$

$$\frac{\partial}{\partial b} E[(Y - aX - b)^2] = E[-2(Y - aX - b)]$$
$$= -2E[Y] + 2aE[X] + 2b = \bigcirc$$

2. Solve resulting simultaneous equations

$$a_{MSE} = \frac{E[XY] - E[X]E[Y]}{E[X^2] - (E[X])^2} = \frac{\operatorname{Cov}(X,Y)}{\operatorname{Var}(X)} = \rho(X,Y)\frac{\sigma_Y}{\sigma_X} \qquad \underbrace{(\operatorname{ou}(X,Y) - \rho(X,Y)\sigma_X)}_{\operatorname{Var}(X)} = \mu_Y - \rho(X,Y)\frac{\sigma_Y}{\sigma_X}\mu_X = \mathcal{M}_Y - \mathcal{Q}_{nSE}\mu_X$$
$$= \mu_Y - \rho(X,Y)\frac{\sigma_Y}{\sigma_X}\mu_X = \mathcal{M}_Y - \mathcal{Q}_{nSE}\mu_X$$

10

Lisa Yan, CS109, 2020

Log conditional likelihood, a derivation

 $\widehat{Y} = g(X)$, where $g(\cdot)$ is a function with parameter θ

Show that θ_{MLE} maximizes the **log conditional likelihood** function:

$$\theta_{MLE} = \arg \max_{\theta} \sum_{i=1}^{n} \log f(y^{(i)} | x^{(i)}, \theta)$$

$$\begin{array}{ll} \underline{\text{Proof:}} & \theta_{MLE} = \arg\max_{\theta} \prod_{i=1}^{n} f\left(x^{(i)}, y^{(i)} | \theta\right) & = \arg\max_{\theta} \sum_{i=1}^{n} \log f\left(x^{(i)}, y^{(i)} | \theta\right) & \stackrel{(\theta_{MLE} \text{ also}}{\max \text{ maximizes } LL(\theta)} \\ & = \arg\max_{\theta} \sum_{i=1}^{n} \log f\left(x^{(i)} | \theta\right) + \sum_{i=1}^{n} \log f\left(y^{(i)} | x^{(i)}, \theta\right) & \stackrel{(\text{chain rule,}}{\log \text{ of product = sum of logs}} \end{array}$$

$$= \arg \max_{\theta} \sum_{i=1}^{n} \log f(x^{(i)}) + \sum_{i=1}^{n} \log f(y^{(i)}|x^{(i)},\theta)$$

$$= \arg \max_{\theta} \sum_{i=1}^{n} \log f(y^{(i)}|x^{(i)},\theta)$$

 $(f(x^{(i)}) \text{ constant w.r.t. } \theta)$

 $(x^{(i)} \text{ indep. of } \theta)$

Solving MSE equations (office hours)

$$\frac{\partial}{\partial a}E[(Y - aX - b)^{2}] = -2E[XY] + 2aE[X^{2}] + 2bE[X] = 0$$

$$\frac{\partial}{\partial b}E[(Y - aX - b)^{2}] = -2E[Y] + 2aE[X] + 2b = 0$$
Scale (2) by E[X]: - 2 E[X]E[Y] + 2a(E[X])^{2} + 2bE[X] = 0
(3)
(1) subtract (3): -2 E[XY] + 2E[X]E[Y] + 2a E[X]^{2} - 2a(E[X])^{2} = 0
Rewrite (3): -2 E[XY] + 2E[X]E[Y] = -2a[E[X^{2}] - (E[X])^{2}]
for a : -2(E[XY] - E[X]E[Y]) = -2a[E[X^{2}] - (E[X])^{2}]
Rewrite (2), solve - 2(E[XY] - E[X]E[Y]) = -2a[E[X^{2}] - (E[X])^{2}]
Rewrite (2), solve - 2[E[Y] + 2aE[X] = -2b
for b : -2E[Y] + 2aE[X] = -2b
breg = E[Y] - arise [E[X]
 $a_{MSE} = \frac{E[XY] - E[X]E[Y]}{E[X^{2}] - (E[X])^{2}}$

$$b_{MSE} = E[Y] - aE[X]$$

$$a_{MSE} = E[Y] - aE[X]$$

Lisa Yan, CS109, 2020

Stanford University 55