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Background




1. Weighted sum

If X = (Xy, X, ...

y X ):

Z —_ 61X1 + 82X2 + .-+ Hme

m
z 0; X
j=1

—

X,

R
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. Dot product/ ;. _ S .
WElgthd Sum weighted sum’ ;9’ %

Recall the linear regression model, where X = (X1, X,, ..., X,,) and Y € R:

m
N g0 =00+ ) 6,
=1

How would you rewrite this expression as a single dot product?

&
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. Dot product/ ;.. X .
WElgthd Sum weighted sum’ ;9’ &

Recall the linear regression model, where X = (X1, X,, ..., X,,) and Y € R:
m
g(X) = 6, + Z 6, X,
j=1
How would you rewrite this expression as a single dot product?

g(X) — 80X0 + 61X1 + 92X2 + -+ Qme Define XO =1

=0TX New X = (1, Xy, Xz, 0, Xp) , 97 (00,0, .. 0.

Prepending X, = 1 to each feature vector X makes
matrix operators more accessible.
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Sigmoid function g(z)

The sigmoid function: 1“82)
1 0.8 +
Z —
02) = Trez 06 1
0.4 A
Sigmoid squashes z to 0d 1
a humber between O and 1. '
I IO l l l l I 7

Recall definition of probability:

A number between O and 1
o(z) can represent

a probability.
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Conditional likelihood function

Training data (n datapoints):
(2@, yD) drawn i.i.d. from a distribution f(X = x®, Y = y®|9) = f(x®,yV|9)

n
— (D)1 (D) conditional likelihood
i arg;naxl_llf(y | x0,0) of training data
1=

n
= arg max z log f(y®W] xV, 6) log conditional likelihood
o 4
=1

* MLE in this lecture is estimator that
arg max LL(Q) maximizes conditional likelihood
6 e Confusingly, log conditional

likelihood is also written as LL(0)
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Prediction models so far

Linear Regression (Regression)

X 6, + z 6. X; v X can be dependent
=1 W Regression model (Y € R, not discrete)

Naive Bayes (Classification)

X R R R Tractable with NB assumption, but...
P(X|Y)P(Y) P(X,Y) 1 Realistically, X; features not
Y necessarily conditionally independent
¥ = arg maxP(Y | X) W Actually models P(X,Y), not P(Y|X)?
y={0,1}
= arg max P(X|Y)P(Y)

y={0,1} Lisa Yan, C$109, 2020 Stanford University 10




Introducing Logistic Regression!

Linear Regression ideas Classification models

+ compute power
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Logistic Regression

2.\
m v sigmoid function ji
6y + 0:X; 1 o P(Y = 11X
X 0 ;1] Z a(z)—l_l_e_z 1. ( | )
Logistic Regression m
Model: P(Y — 1|X — X) =0 00 + Z HJX]
j=1
Predict Y as the most likely Y ? = arg max P(Y | X)
given our observation X = x: y={0,1}
Since Y € {0,1}, PY=0|X=x)=1-0(6, + X7, 0;x/)

Sigmoid function also known as “logit” function
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Logistic Regression

6 parameter

P(Y =1|X = x)
X conditional likelihood

input features

m
P(Y= 1|X=x) =0 80+28jxj
j=1
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Logistic Regression cartoon

6 parameter
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Logistic Regression cartoon

m
P(Y= 1|X=x) =a(90+29jxj)
=1

]:
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Logistic Regression cartoon

P(Y =1|x)

m
| P(Y=1X=x)=0 00+Ze-x-
X, input features j=1 ™

10,1,1]
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Components of Logistic Regression

P(Y =1|x) ‘)

Vv

m
P(Y= 1|X=x) — 0 HO-I_ZHjxj
j=1

6 weights
(aka parameters)

Lisa Yan, CS109, 2020 Slides courtesy of Chris Piech Stanford University 17




Components of Logistic Regression

P(Y =1|x) ()

Vv

m
P(Y= 1|X=x) — 0 HO-I_ZH]'X]
j=1
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Components of Logistic Regression

P(Y =1|x) ()

squashing function
b/tOand 1

Vv

m
P(Y= 1|X=x) — 0 90+29jxj
j=1
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Components of Logistic Regression

prediction

m
P(Y= 1|X=x) — 0 90+29jxj
j=1
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Difterent predictions for different inputs

PY=1X=x)=0c| 0+ ) 0;x;
X, input features | ( 0 ; j 1)
[0,1,1]
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Different predictions for different inputs

7 P(Y=1X=x)=0|0y+ ) 0O:x;
X, input features | ( 0 Z j 1)
[0,0,1]
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Parameters affect prediction

m
P(Y= 1|X=x) =a(90+20jxj)
=1

]:
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Parameters affect prediction

m
P(Y — 1|X — x) — O'(HO +ZHJX])
=1

]:
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For simplicity

m
PY=1|X=x)=o0]| 6, +29]x]
j=1

PY=1X=x)=o0 2 @ where xo = 1

=0 - L@o)@ @w«\
X‘"(/ X\/XZ) )&vv\}
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Logistic regression classifier

Y = arg max P(Y|X)
y=10,1}

P(Y=1|X=x) = 0(27‘:0 Hjxj) =d(0"x)

Estimate parameters

from training data 0 = (09,01,07, ..., )

Training

Given an observation X = (X, X5, ..., X,,,), predict

¥ = arg max P(Y|X)
y={0,1}

Testing

Lisa Yan, C$109, 2020 Stanford University 26
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Training:
The big picture




Logistic regression classifier

¥ = arg max P(Y|X)
y={0,1}

P(Y=1|X=x) = 0(27‘:0 Hjxj) =d(0"x)

Gy G .
(ﬂ (Y4 3 %L\zk“’)n

Estimate parameters

Training from training data 0 = (00,01, ..., Om)
Choose 6 that optimizes some objective:
Determine objective function We are modeling P(Y|X)
Find gradient with respect to 6 directly, so we maximize the
Solve analytically by setting to O, or conditional likelihood of
computationally with gradient ascent training data.
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Estimating 6

n
1. Determine objective 1_[ @1 +D
_ 7, = arg max x\’,0
function MLE 89 | | f(y | )

2. Gradientw.rt. 6;,forj =0,1,...,m

3. Solve s
. . initialize X
* No analytical derivation of 8,;; ... repeat many times:
* ...but can still compute 8,;; ¢ compute gradient

with gradient ascent! X += n * gradient

Lisa Yan, C$109, 2020 Stanford University 29




1. Determine objective function

P(Y=1|X=x) = 0(271:0 Hjxj)

n
OmLe =|arg maXl_[ f (y(i)l x®, 0) =|arg max LL(6)
6 : 6
i=1

= d(0Tx)
First: Interpret Second: Write a differentiable
conditional likelihood expression for log conditional
with Logistic Regression likelihood

Lisa Yan, CS109, 2020 Stanford University 30



Determine objective function (interpret)

n o P(Y = 11X = x) = o(X7, 6;x/)
OmLe = arg maxl_[f(y(‘)| xD,0) = d(0Tx)

] ’
Suppose you have n = 2 training datapoints: (1, 1), (x?),0)

Consider the following expressions for a given 6:

a(6TxV) o(9Tx?) a(6TxW) (1 — a(HTx(Z)))

(1 _ O.(QTx(l))) s(6Tx®) (1 _ O.(HTx(l))) (1 _ O.(QTx(Z)))

Interpret the above expressions as probabilities. \? Y
If we let 8 = 0,,;, which probability should be highest? 2/

Lisa Yan, C$109, 2020 Stanford University 31




Determine objective function (interpret)

n o P(Y = 11X = x) = o(XTL, 0;x;)
HMLE = darg maxl_[f(y(l)l x(l); 9) = O'(H%Wx) "
0 .
=1
Suppose you have n = 2 training datapoints: (2D, 1), (x2,0)
) BECAN
Consider the following expressions for a given 0: RY - g .
5o ¢ POES e P =™ X
o(6TxD) o(67xP) a(6TxW) (1 —o(87x?)
Pt | %) T 0= 1K= P ) P (Moo kexd™)

(1-0(67xW)) o (67x@) 51 —o(67x)) (1 - a(67x®))
POeoliad™) POY ot [ Ve ™) Tl ol % =x®) POzo 1 =x™)
Interpret the above expressions as probabilities.

If we let 8 = 0y, , which probability should be highest?
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Determine objective function (write)

P(Y = 11X = x) = o(X7, 6;x/)
OriE = arg;nax LL(6) =g(8Tx)

What is a differentiable
expression for P(Y = y| X = x)?

a(0Tx) ify=1

P(YZY|X=x)={1—a(9Tx) ity =0

What is a differentiable expression 1L0) =1 o1 ,
for LL(8), log conditional likelihood? Ogl;[f(y |x9,0)

=)
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1. Determine objective function (write)

P(Y = 11X = x) = o(X7, 6;x/)
OriE = arg;nax LL(6) =g(8Tx)

1. What is a differentiable
expression for P(Y = y| X = x)?
Brpelp)

a(67x) ify=1

P(Yzylxzx)={1—a(9Tx) ify =0

bed \ -
Recall ? (8- Q ; 3 <) 9
Bernoulli MLE! P v=° oo (1-ale )Qj
p " (-
2. What is a differentiable expression LL(O) =1 D) xD g
for LL(H) Iog Cond|t|onal_|kellhood’? ( ) Ognf(y <.6) ‘)
w/\

Z@B @LQ OB% —/Zoé(l\@ﬁ” UG{?T )>
- X‘ - Z 7 LGLM)\ [\- UBHB(/\’G@K“

Lisa Yan, CS109, 2020 Stanford University 34
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Determine objective function (write)

P(Y = 11X = x) = o(X7, 6;x/)
OriE = arggnax LL(6) =g(8Tx)

What is a differentiable
expression for P(Y = y| X = x)?

P(Y =y|X =x) = (c(67x)) (1 - 5(8T%)) °

What is a differentiable expression
for LL(8), log conditional likelihood?
LL(O) = 2 yWlog a(HTx(i)) + (1 - y(i)) log (1 — U(HTx(i)))

1=1
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2. Find gradient with respect to 6

Oy g = arg maxl_[f(y(i)| x@), 0) = arg max LL(0)
6 L 6

Optimization
problem: noo | | |
LL(O) = ) yDloga(67x®) + (1 - y)log (1 - o(67x®))
=1
Gradient w.r.t. 6;, forj = 0,1, ..., m: D= (Qo OBy g“é 6
B)) ‘
G I p— | - 2B Y,
00 2[}1 0'(9 X )] (derived later) 20
=1
How do we interpret the gradient \l&

contribution of the i-th training datapoint?

Lisa Yan, CS109, 2020 Stanford University 36



Find gradient with respect to 6

Optimization OmLE = arg maXl_[f(y(‘)l x®, 0) = arg max LL(6)

problem:
LL(6) —2 yOlogo(67x®) + (1 - y®)log (1 - o(67xD))

=1

Gradientw.rt. 6;,forj = 0,1, ...,m " ‘
T >
X =2 Bk
\)V‘D

n
L
JOLL(6) 2[}](1) O.(HTx(l))] () (derived later)

00, :
i=1 T

scale by j-th feature

Lisa Yan, CS109, 2020 Stanford University 37




Find gradient with respect to 6

Optimization OmLE = arg maXl_[f(y(‘)l x®, 0) = arg max LL(6)

problem:
LL(6) —2 yOlogo(67x®) + (1 - y®)log (1 - o(67xD))

=1

Gradientw.rt. 6;,forj = 0,1, ...,m

dLL(6)
00,

n
2[3’(0 G(eTx(l))] Q (derived later)

=1
lor0 P(Y =1|X =xV)

Lisa Yan, CS109, 2020 Stanford University 38




Find gradient with respect to 6

n
o Ouip = 1_[ [ xO g) = LL(O
Optimization MLE = Al INax | | ¥ ) arg max (6)

problem: = | . -
LL(A) = z yWlog J(BTx(l)) + (1 - y(”) log (1 — U(HTx(l)))

=1

Gradient w.r.t. 6;, forj = 0,1, ..., m:

n
OLL(0 _ _ _
69( ) - E[y(l) - G(eTx(l))] xj(l) (derived later)
J i=1

Suppose y® = 1 (the true class label for i-th datapoint):
If 5(87x®) > 0.5, correct
If 6(87xW) < 0.5, incorrect = change 6, more

~
Lisa Yan, CS109, 2020 Stanford University 39




3. Solve

1. Optimization OmLe = arg maXl_[f(y(‘)l x®), 0) = arg max LL(6)

problem:
LL(6) —2 yOlogo(67x®) + (1 - y®)log (1 - o(67xD))

=1

(3LL(0)

2. Gradientw.rt. 6;,forj =0,1,...,m

Z[y(l) U(@Tx(l))] (®)

3. Solve

Stay tuned!

Lisa Yan, CS109, 2020 Stanford University 40
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Logistic Regression Model Review

¥ = arg max P(Y|X) Y is prediction of Y )
yg{(),l} | X: [)(]/r" /XM)—r Xb——i

m 9:’[,@0;@!/“’/@%)
PY=1X=x)=o0 Z 0x; | = g(0Tx) | wherex, =1
=0

m sigmoid function
X 0o + 2 0;X; o(2) = — P(Y = 1]X)
j=1 1+e7%

Lisa Yan, C$109, 2020 Stanford University 42




Another view of Logistic Regression

Logistic =
Regression P(Y = 1|X =x) = d(087x) where 67x= zejxj
Model - j=0

1 ® 000 o000 o0 (7 1)

0.9
0.8
0.7
0.6
0.5 | » z=0"Tx
0.4

0.3
0.2
0.1

0

For the “correct” parameters 6:
(x,1) should have 87x > 0
(x,0) should have 87x < 0

s o o eseeve (Z,0)

S5 4 3 2 1 0 1 2 3 4 5
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Learning parameters

Learn parameters 8 = (8,, 04, ..., 0.,)

Tralnlng HMLE = drg max LL(H)
6
n
o LL(O) = z yWloga(8TxW) + (1 —y®)log (1 — a(HTx(‘)))
Dty -
Sl aLL 6
( ) E[y(l) — g(eTx(l))] @) forj=0,1,..,m

No analytical derivation of 8y ...
...but can still compute 8,,; ; with gradient ascent!

Lisa Yan, CS109, 2020 Stanford University 44




Gradient Ascent Review

Walk uphill and you will find a local maxima
(if your step is small enough).

\\\\i

W

0,
o

Logistic regression LL(6)
IS concave

Lisa Yan, C$109, 2020 Stanford University 45
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Training: Gradient ascent step

3. Optimize. aLL(H)

Z[y@ G

repeat many times:

for all thetas:

H_IIGW — 9_01(1 aLL(QOId)

agold

Hold_l_n z[y(l) HoldT (l))] ](-)

_ -J
\W What does this look like in code?
V

Lisa Yan, CS109, 2020 Stanford University 47
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o o . Gradient grew _ go ; T i l.
Training: Gradient Ascent Ascent Step " = 07 +11° Z[y“ (60147 x®)] £

initialize 6; = @ for 0 = ]

repeat many times:

IA
=

gradient[j] = 0 for 0 = ]

IA
=

// compute all gradient[j]’s
// based on n training examples

9; += n * gradient[j] for all @ =

—
IA
=

Lisa Yan, CS109, 2020 Stanford University 48




. . . Gradient =~ L l_ T i
Training: Gradient Ascent pscent step " =67+ ), [0 —a (0°47x0)] 57

initialize 6; = @ for 0 = ]

repeat many times:

IA
=

gradient[j] = 0 for @ < j = m
for each training example (x, y):
for each @ < j < m:

// update gradient[j] for
// current (x,y) example

6; += n * gradient[j] for all @ = j = m

Lisa Yan, CS109, 2020 Stanford University 49




. . . Gradient =~ L l_ T i
Training: Gradient Ascent Ascent Step & = 67+ Z y® — o (6°14°x®)]

initialize 6; = @ for 0 = ]

IA
=

repeat many times: ia{(r,w
gradient[j] = 0 for @ <= j = m v
for each training example (x, y):
for each @ < j < m:
1 What are the
gradient[j] += |y - [+ o-07x| Y important details?
6; += n * gradient[j] for all @ = j = m \25)

Lisa Yan, CS109, 2020 Stanford University 50



o o . Gradient grew _ go ; T i l.
Training: Gradient Ascent Ascent Step " = 67 + 11 Z[y“ (60147 x®)] £

initialize 6; = @ for 0 = ] x; is j-th feature of

repeat many times: input x = (xq, ..., Xp)

IA
=

gradient[j] = 0 for @ < j = m
for each training example (x, y):
for each @ < j < m:

gradient[]] +=

6; += n * gradient[j] for all @ = j = m
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o o . Gradient grew _ go ; T i l.
Training: Gradient Ascent Ascent Step " = 67 + 11 Z[y“ (60147 x®)] £

O f;lErX'
srepD: 17 Yot (5, %) 200, o, K ot Z,05%5

initialize 6; = @ for 0 = ]

repeat many times:

IA

m

Insert x, = 1 before

gradient[j] = 0 for @ < j = m training

for each training example (x, y):
for each @ < j < m:

radient[q] —[ -
gradient[j] += |y -

9; += n * gradient[j] for all @ =

—
IA
=

Lisa Yan, C$109, 2020 Stanford University 52




o o . Gradient grew _ go ; T i l.
Training: Gradient Ascent Ascent Step " = 07 +11° Z[y“ (60147 x®)] £

initialize 6; = @ for 0 = ]

repeat many times:

IA
=

gradient[j] = 0 for @ <= j = m

for each training example (x, y): Finish computing
for each @ < j < m: gradient before
—_— - . updating any part of 6
gradient[]] += y——1+__ﬁrJ:w

| 6; += n % gradient[j] for all @ = m |
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o o . Gradient grew _ go ; T i l.
Training: Gradient Ascent Ascent Step " = 07 +11° Z[y“ (60147 x®)] £

initialize 6; = @ for 0 = ]

repeat many times:

IA
=

gradient[j] = 0 for @ < j = m
for each training example (x, y):
for each @ < j < m:

1 _ Learning rate n is a
constant you set

Q before training
§; +=[nJ—* gradient[j] for all @ = j = m

Lisa Yan, C$109, 2020 Stanford University 54
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o o . Gradient grew _ go ; T i l.
Training: Gradient Ascent Ascent Step " = 07 +11° Z[y“ (60147 x®)] £

initialize 6; = @ for @ <= j = m x;j is j-th feature of
repeat many times: input x = (xq, «.., Xp)
: o : Insert x, = 1 before
gradient[j] = 0 for 0 = j = m training
for each training example (x, y): Finish computing
for each @ < j < m: gradient before
- updating any part of 6
. &
: : Learning rate n is a
radient += [ — ]x-
g L] Y T feoTx| Y constant you set

_ _ before training
6; += n * gradient[j] for all @ = j = m
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Introducing notation y

¥ = arg max P(Y|X) ?YS ’p‘f’%&d&@ \:J@e\ N
y={0,1}

P(Y=1|X=x) = 0(27‘:0 Hjxj) =d(0"x)

Small y is
conditional probability

=P(Y=1|X=x) =d(8"x)

y ify=1

Lisa Yan, CS109, 2020 Stanford University 57




Testing: Classification with Logistic Regression

Training

Testing

Learn parameters 8 = (8,, 04, ..., 0.,)

via gradient n | | |
ascent: 07 =67+ 2 ly® — o (910" x®)| £
=1

Compute y =P(Y =1|X =x) =0(8Tx) = PR
Classify instance as: 05

{1 y > 0.5, equivalently 67x > 0 | 7B

0 otherwise

Parameters 6; are not updated during testing phase

Lisa Yan, CS109, 2020 Stanford University 58
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Announcements

What do you want to learn? Extra To P IC
91 responses
Survey results

Laws of Large Numbers 32 (35.2%)
Poisson Processes 1 (12.1%)
RN AIDETISES Sie 36 (39.6%) Friday 6/1
simulated
Random permutations 10 (11%)
Random subsets 11 (12.1%) _
Utility of Money 46 (50.5%) Friday 6/1
Jensen's inequality 17(18.7%) Friday 6/1
Markov/Chebyshev’s Inequalities 35 (38.5%)
Expected runtime of QuickSort 28 (30.8%)
Intro to Deep Leaming 72(79.1%) Monday 6/8
Poisson processes i —1 (1.1%) Last lecture!
Intro to Probabilistic Models i1 (1.1%)
. , 1(1.1%)
More depth into Bayesian 1(1.1%)
statistics, wh... 1(1.1%)
tiktok/instagram algorithms! -1 (1.1%)
More ML applications, like : ::::;
Classificati. .. 1(1.1%)
0 20 40 60 80
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Interesting probability news

The Time Everyone
“Corrected’ the
World’s Smartest

=
*
-

MARILYN vos SAVANT
;olurhnist Parade Magazin

https://priceonomics.com/the-time-everyone- CS109 Current Events Spreadsheet

corrected-the-worlds-smartest/ Lisa Yan, CS109, 2020 Stanford University 61



https://docs.google.com/spreadsheets/d/1ijvvCoCKG86gITqSxYEPL_77U7VK__mn-ChvyDkhXX4/
https://priceonomics.com/the-time-everyone-corrected-the-worlds-smartest/
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Intuition about Logistic Regression

Logistic =
Regression P(Y = 1|X =x) = d(8Tx) where 0"x= z@xj

=0
Model s (ibﬂiL

Logistic Regression is trying to fit
a line that separates data instances
where y = 1 from those where y = 0:

s e © 0x=0
We call such data (or functions clesl el ©
generating the data linearly separabile.

Naive Bayes is linear too, because there is no interaction between
different features.

Lisa Yan, CS109, 2020 Stanford University 63




Data is often not linearly separable

* Not possible to draw a line that successfully separates all the
y = 1 points (green) from the y = 0 points (red)

* Despite this fact, Logistic Regression and Naive Bayes still often work
well in practice

Lisa Yan, CS109, 2020 Stanford University 64




Many tradeofts in choosing an algorithm

Naive Bayes Logistic Regression
Modeling goal P(X,Y) P(Y|X)
Generative or Generative: could use joint Discriminative: just tries to
discriminative? distribution to generate new discriminatey =0vsy =1
points (“* but you might not X cannot generate new points
need this extra effort) b/cnoP(X,Y)) ol [BTA >

' Needs parametric form

Continuous input (e.g., Gaussian) or Yes, easily

features discretized buckets (for b W‘
multinomial features) 'y
L. Multi-valued discrete data
Discrete input Yes, multi-value discrete hard (e.g., if X; € {4, B, C}, not
features data = multinomial P(X;|Y) necessarily good to encode as

Lisa Yan, CS109, 2020 {1’ 2’ 3} Stanford University 65
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Background: Calculus

Calculus refresher #1.

Derivative(sum) = - 0 fl (x)
sum(derivative) 5 x fl (x) =

Calculus refresher #2: of (x) 0f(z)0z
Chain rule =

0x dz 0x

Calculus Chain Rule

. aka decomposition
f(x) o f(Z(x)) of composed functions

Lisa Yan, CS109, 2020 Stanford University 67




Are you ready?

L ~

Quora . - PO T Arvswer n Spaces A Notifcat (:r'.\°

Momerts Personal Expenences mportart Life Lessors % /

What is your best "I've never been more ready in my life"

moment?
Answer ) Follow 2 +% Request OO O KR 9 & e
1 Answer
Right now!!!
» Upvote 1 "::. Share "3' .{‘ ese

Lisa Yan, CS109, 2020
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Compute gradient of log conditional likelihood

- OLL(6)
Find: 69j where

n
. _ _ | | ditional
LL(B) = z y® loga(HTx(‘)) + (1 _ y(l)) log (1 _ a(HTx(‘))) I?kgeﬁﬁgoljlona
i=1 T >

ok DL Bsptitype 7
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Aside: Sigmoid has a beautiful derivative

Sigmoid function: Derivative:

d
e = e —0(2) = 0 @1 - 0(2)]

What is 6‘_ O'(HTX)’?

o(x)[1 = o(x)]x;
ag(@"x)[1 —0(0Tx)]x
(0" x)[1 - 0(8"x)]x;

a(0Tx)x;[1 — (0T x)x;] \7&
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Aside: Sigmoid has a beautiful derivative

Sigmoid function: Derivative:
1 d
0(2) = = —0(2) = 0(2)[1 - 0(2)]
S 2 Yok =25 0K
What is i0'(97136)’? Letz =6"x = z O X - 693\2&% e 7oy PO
6‘0]- = T D
d 0 0z
—o0(0Tx) = — C— (Chain Rule)
35,700 =50 35
(0" x)[1 - 0(8"x)]x; — —

= 5(07X)[1 — o (67X)|x;
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Re-introducing notation y

Y = arg max P(Y|X)
y=10,1}

P(Y=1|X=x) = 0(27‘:0 Hjxj) =d(0"x)

y=P(Y =1X=x) =0c(68"x)

y ify=1

PY=ylX=x)=@)A-9»""
- ——
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Compute gradient of log conditional likelihood

- OLL(6)
Find: 69]- where

. log conditional

LL(6 =z D 1og g (8TxD) + (1 — vlog (1 — o(8TxD)) o0
(0) i:1y ogo(6xW) + (1 -y )Og(1 o( x)) likelihood

n
LL(6) = z y D log 5@ + (1-y®)log(1 - )’;(i))
=1
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Compute gradient of log conditional likelihood

LL | |
0 659) ag [y(l) log(y(l)) + (1 y(l)) log(l y(l))] | et 5;(1) _ J(@Tx(‘))
J 1=
N 09 |
- z H@ [y(l) log(y(l)) + (1 — y(l)) log(l y(l))] 96, (Chain Rule)
L
. f_’_—'—'ﬁf \
2 [y(l) (i) ( o (l)) ()] }7(0(1 — y(i))xj(i) (calculus)
NT —
n
= 2[3’ -3 (l)] X" = z[y ® — g(oTx®)] xV (simplify)
ts i=1

io(v m«/\h&
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Compute gradient of log conditional likelihood

LL | |
0 659) ag [y(l) log(y(l)) + (1 y(l)) log(l y(l))] | et }’;(l) _ G(HTx(‘))
J =
N 09 |
- z H@ [y(l) log(y(l)) + (1 — y(l)) log(l y(l))] 96, (Chain Rule)
e
- r‘_’——’"ﬁ( \
2 [y(l) (i) ( o (l)) ()] }7(0(1 — y(i))xj(i) (calculus)
Ne —
n
= 2[3’ O —3 (l)] X; Q = z[y(i) — o(6Tx®W)] xj(i) (simplify)
ts i=1

io(v m«/\h&
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Compute gradient of log conditional likelihood

ILL(6)
06,

\d L
AP g

n
| | T
= z[y(‘) —o(8TxW)] xj(l) f\&/
i=1
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%) M=) &
=7 Wﬁwm’% ??(VE;)”X\\(VD)&’
) ?DU\( 0 T(N= ) "1U& ‘(f\)
N S X
7= P =) =7(x, 1=0

¢ N\—l 79 2 (y=1 ) < Phrze ) =1
- WQ\L/O \ X

P e |x) >o.s

«—\J\/\)
0 >

b .o,
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