25: Logistic Regression

Lisa Yan June 3, 2020

Quick slide reference

3	Background	25a_background
9	Logistic Regression	25b_logistic_regression
27	Training: The big picture	25c_lr_training
56	Training: The details, Testing	LIVE
59	Philosophy	LIVE
63	Gradient Derivation	25e_derivation

Background

1. Weighted sum

If
$$X = (X_1, X_2, ..., X_m)$$
:

$$Z = \theta_1 X_1 + \theta_2 X_2 + \dots + \theta_m X_m$$

$$=\sum_{j=1}^m \theta_j X_j$$

weighted sum

$$= \theta^T X$$

dot product

$$[0, b_{2}]$$

1. Weighted sum

Dot product/ weighted sum $\theta^T X = \sum_{j=1}^m \theta_j X_j$

Recall the linear regression model, where $X = (X_1, X_2, ..., X_m)$ and $Y \in \mathbb{R}$:

$$\widehat{Y} = g(X) = \theta_0 + \sum_{j=1}^m \theta_j X_j$$

How would you rewrite this expression as a single dot product?

1. Weighted sum

Dot product/ weighted sum $\theta^T X = \sum_{j=1}^m \theta_j X_j$

Recall the linear regression model, where $X = (X_1, X_2, ..., X_m)$ and $Y \in \mathbb{R}$:

$$g(\mathbf{X}) = \theta_0 + \sum_{j=1}^m \theta_j X_j$$

How would you rewrite this expression as a single dot product?

$$g(\mathbf{X}) = \theta_0 X_0 + \theta_1 X_1 + \theta_2 X_2 + \dots + \theta_m X_m \qquad \text{Define } X_0 = 1$$

$$= \theta^T \mathbf{X} \qquad \text{New } \mathbf{X} = (1, X_1, X_2, \dots, X_m) \quad \theta^T \left(\mathbf{Q}_0, \mathbf{Q}_1, \dots, \mathbf{Q}_m \right)$$

Prepending $X_0 = 1$ to each feature vector X makes matrix operators more accessible.

2. Sigmoid function $\sigma(z)$

The sigmoid function:

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

 Sigmoid squashes z to a number between 0 and 1.

Recall definition of probability:
 A number between 0 and 1

 $\sigma(z)$ can represent a probability.

3. Conditional likelihood function

Training data (*n* datapoints):

• $(x^{(i)}, y^{(i)})$ drawn i.i.d. from a distribution $f(X = x^{(i)}, Y = y^{(i)}|\theta) = f(x^{(i)}, y^{(i)}|\theta)$

$$\theta_{MLE} = \arg\max_{\theta} \prod_{i=1}^{n} f(y^{(i)} | \mathbf{x}^{(i)}, \theta)$$

$$= \arg\max_{\theta} \sum_{i=1}^{n} \log f(y^{(i)} | \mathbf{x}^{(i)}, \theta)$$

$$= \arg\max_{\theta} LL(\theta)$$

conditional likelihood of training data

log conditional likelihood

- MLE in this lecture is estimator that maximizes <u>conditional likelihood</u>
- Confusingly, log conditional likelihood is also written as $LL(\theta)$

Logistic Regression

Linear Regression (Regression)

$$\theta_0 + \sum_{j=1}^m \theta_j X_j$$

 $\widehat{Y} = \theta_0 + \sum_{i=1}^m \theta_i X_i$

 $\bigvee X$ can be dependent

 \Re Regression model ($\widehat{Y} \in \mathbb{R}$, not discrete)

Naïve Bayes (Classification)

$$\widehat{Y} = \underset{y=\{0,1\}}{\operatorname{arg max}} P(Y \mid X)$$

$$= \underset{y=\{0,1\}}{\operatorname{arg max}} P(X \mid Y) P(Y)$$

- ✓ Tractable with NB assumption, but...
- \triangle Realistically, X_i features not necessarily conditionally independent
- Actually models P(X, Y), not P(Y|X)?

Introducing Logistic Regression!

Linear Regression ideas

Classification models

+ compute power

Logistic Regression

$$\theta_0 + \sum_{j=1}^m \theta_j X_j$$

sigmoid function
$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

Logistic Regression Model:

$$P(Y = 1 | X = x) = \sigma \left(\theta_0 + \sum_{j=1}^m \theta_j x_j\right)$$

Predict \hat{Y} as the most likely Ygiven our observation X = x:

$$\widehat{Y} = \arg \max_{y = \{0,1\}} P(Y \mid X)$$

• Since
$$Y \in \{0,1\}$$
,

$$P(Y = 0 | \mathbf{X} = \mathbf{x}) = 1 - \sigma(\theta_0 + \sum_{j=1}^m \theta_j x_j)$$

Sigmoid function also known as "logit" function

Logistic Regression

$$P(Y = 1 | X = x) = \sigma \left(\theta_0 + \sum_{j=1}^m \theta_j x_j\right)$$

Logistic Regression cartoon

 θ parameter

Logistic Regression cartoon

Logistic Regression cartoon

Different predictions for different inputs

X, input features [0,1,1]

Different predictions for different inputs

X, input features [0,0,1]

Parameters affect prediction

Parameters affect prediction

For simplicity

$$P(Y = 1 | X = x) = \sigma \left(\theta_0 + \sum_{j=1}^m \theta_j x_j\right)$$

$$P(Y = 1 | X = x) = \sigma \left(\sum_{j=0}^{m} \theta_{j} x_{j} \right) = \overline{\sigma(\theta^{T} x)} \text{ where } x_{0} = 1$$

$$\sum_{j=0}^{m} \overline{\sigma(\theta^{T} x)} \text{ where } x_{0} = 1$$

Logistic regression classifier

$$\widehat{Y} = \underset{y=\{0,1\}}{\arg \max} P(Y|X)$$

$$P(Y = 1|X = x) = \sigma(\sum_{j=0}^{m} \theta_{j} x_{j}) = \sigma(\theta^{T} x)$$

Training

Estimate parameters from training data

$$\theta = (\theta_0, \theta_1, \theta_2, \dots, \theta_m)$$

Testing

Given an observation $X = (X_1, X_2, ..., X_m)$, predict $\hat{Y} = \arg \max P(Y|X)$ $y = \{0,1\}$

Training: The big picture

Logistic regression classifier

$$\hat{Y} = \arg \max_{y = \{0,1\}} P(Y|X)$$

$$P(Y = 1|X = x) = \sigma(\sum_{j=0}^{m} \theta_{j} x_{j}) = \sigma(\theta^{T} x)$$

Training

Estimate parameters from training data

$$(x^{(i)},y^{(i)})$$
 $i=1,\ldots,n$

$$\theta = (\theta_0, \theta_1, \theta_2, \dots, \theta_m)$$

Choose θ that optimizes some objective:

- Determine objective function
- Find gradient with respect to θ
- Solve analytically by setting to 0, or computationally with gradient ascent

We are modeling P(Y|X)directly, so we maximize the conditional likelihood of training data.

Estimating θ

1. Determine objective function

$$\theta_{MLE} = \arg\max_{\theta} \prod_{i=1}^{n} f(y^{(i)} | \mathbf{x}^{(i)}, \theta)$$

2. Gradient w.r.t. θ_i , for j = 0, 1, ..., m

3. Solve

- No analytical derivation of θ_{MLE} ...
- ...but can still compute θ_{MLE} with gradient ascent!

```
initialize x
repeat many times:
  compute gradient
  x += \eta * gradient
```

1. Determine objective function

$$\theta_{MLE} = \arg \max_{\theta} \prod_{i=1}^{n} f(y^{(i)} | \mathbf{x}^{(i)}, \theta) = \arg \max_{\theta} LL(\theta)$$

$$P(Y = 1 | \mathbf{X} = \mathbf{x}) = \sigma(\sum_{j=0}^{m} \theta_{j} x_{j})$$

$$= \sigma(\theta^{T} \mathbf{x})$$

First: Interpret conditional likelihood with Logistic Regression Second: Write a differentiable expression for log conditional likelihood

1. Determine objective function (interpret)

$$\theta_{MLE} = \arg\max_{\theta} \prod_{i=1}^{n} f(y^{(i)}|\mathbf{x}^{(i)}, \theta) = \arg\max_{\theta} LL(\theta) \qquad P(Y = 1|\mathbf{X} = \mathbf{x}) = \sigma(\sum_{j=0}^{m} \theta_{j} x_{j}) \\ = \sigma(\theta^{T} \mathbf{x})$$
 Suppose you have $n = 2$ training datapoints: $(\mathbf{x}^{(1)}, 1), (\mathbf{x}^{(2)}, 0)$

Consider the following expressions for a given θ :

A.
$$\sigma(\theta^T \mathbf{x}^{(1)}) \sigma(\theta^T \mathbf{x}^{(2)})$$

C.
$$\sigma(\theta^T \mathbf{x}^{(1)}) \left(1 - \sigma(\theta^T \mathbf{x}^{(2)})\right)$$

B.
$$\left(1 - \sigma(\theta^T \boldsymbol{x}^{(1)})\right) \sigma(\theta^T \boldsymbol{x}^{(2)})$$

D.
$$(1 - \sigma(\theta^T \mathbf{x}^{(1)})) (1 - \sigma(\theta^T \mathbf{x}^{(2)}))$$

- Interpret the above expressions as probabilities.
- If we let $\theta = \theta_{MLE}$, which probability should be highest?

1. Determine objective function (interpret)

$$\theta_{MLE} = \arg\max_{\theta} \prod_{i=1}^{n} f(y^{(i)} | \mathbf{x}^{(i)}, \theta) = \arg\max_{\theta} LL(\theta)$$

$$P(Y = 1 | \mathbf{X} = \mathbf{x}) = \sigma(\sum_{j=0}^{m} \theta_{j} x_{j})$$

$$= \sigma(\theta^{T} \mathbf{x})$$

Suppose you have n=2 training datapoints:

Consider the following expressions for a given θ :

A.
$$\sigma(\theta^T x^{(1)}) \sigma(\theta^T x^{(2)})$$

P(Y=1 | $\chi = \chi^{(1)}$) P(Y=1 | $\chi = \chi^{(2)}$)

B. $(1 - \sigma(\theta^T x^{(1)})) \sigma(\theta^T x^{(2)})$

P(Y=0 | $\chi = \chi^{(1)}$) P(Y=1 | $\chi = \chi^{(2)}$)

$$(x^{(1)}, 1), (x^{(2)}, 0)$$
 $P(Y=5^{(2)}|X=x^{(2)})$
 $P(Y=5^{(2)}|X=x^{(2)})$

- C. $\sigma(\theta^T x^{(1)}) \left(1 \sigma(\theta^T x^{(2)})\right)$ $P(\langle z | | \chi = \chi^{(1)}) P(\langle z | \chi = \chi^{(2)}) \rangle$
- D. $(1 \sigma(\theta^T \mathbf{x}^{(1)})) (1 \sigma(\theta^T \mathbf{x}^{(2)}))$ $P((-\sigma(\mathbf{x} = \mathbf{x}^{(1)}))) P((-\sigma(\mathbf{x} = \mathbf{x}^{(1)})))$
- 1. Interpret the above expressions as probabilities.
- 2. If we let $\theta = \theta_{MLE}$, which probability should be highest?

1. Determine objective function (write)

$$\theta_{MLE} = \arg\max_{\theta} \prod_{i=1}^{n} f(y^{(i)} | x^{(i)}, \theta) = \arg\max_{\theta} LL(\theta)$$

$$P(Y = 1 | X = x) = \sigma(\sum_{j=0}^{m} \theta_{j} x_{j})$$

$$= \sigma(\theta^{T} x)$$

What is a differentiable expression for P(Y = y | X = x)?

$$P(Y = y | \mathbf{X} = \mathbf{x}) = \begin{cases} \sigma(\theta^T \mathbf{x}) & \text{if } y = 1\\ 1 - \sigma(\theta^T \mathbf{x}) & \text{if } y = 0 \end{cases}$$

2. What is a differentiable expression for $LL(\theta)$, log conditional likelihood?

$$LL(\theta) = \log \prod_{i=1}^{n} f(y^{(i)} | \mathbf{x}^{(i)}, \theta)$$

1. Determine objective function (write)

$$\theta_{MLE} = \arg\max_{\theta} \prod_{i=1}^{n} f(y^{(i)} | \mathbf{x}^{(i)}, \theta) = \arg\max_{\theta} LL(\theta)$$

$$P(Y = 1 | \mathbf{X} = \mathbf{x}) = \sigma(\sum_{j=0}^{m} \theta_{j} x_{j})$$

$$= \sigma(\theta^{T} \mathbf{x})$$

1. What is a differentiable expression for P(Y = y | X = x)?

$$P(Y = y | \mathbf{X} = \mathbf{x}) = \begin{cases} \sigma(\theta^T \mathbf{x}) & \text{if } y = 1\\ 1 - \sigma(\theta^T \mathbf{x}) & \text{if } y = 0 \end{cases}$$

Recall
$$P(B=b)=\begin{cases} P & b=1 \\ P & b=0 \end{cases}$$
Bernoulli MLE!

$$\sigma(\Theta^T X)^{\delta} \left(1 - \sigma(\Theta^T X)\right)^{1-\delta}$$

$$\sum_{i=1}^{n} \log \left[\sigma(\mathbf{p}^{r} \mathbf{x})^{i} \right] \left(1 - \sigma(\mathbf{p}^{r} \mathbf{x}^{n})^{1 - \mathbf{y}^{(n)}} \right]$$

1. Determine objective function (write)

$$\theta_{MLE} = \arg\max_{\theta} \prod_{i=1}^{n} f(y^{(i)} | x^{(i)}, \theta) = \arg\max_{\theta} LL(\theta)$$

$$P(Y = 1 | X = x) = \sigma(\sum_{j=0}^{m} \theta_{j} x_{j})$$

$$= \sigma(\theta^{T} x)$$

1. What is a differentiable expression for P(Y = y | X = x)?

$$P(Y = y | X = x) = (\sigma(\theta^T x))^y (1 - \sigma(\theta^T x))^{1-y}$$

2. What is a differentiable expression for $LL(\theta)$, log conditional likelihood?

$$LL(\theta) = \sum_{i=1}^{n} y^{(i)} \log \sigma(\theta^T \mathbf{x}^{(i)}) + (1 - y^{(i)}) \log \left(1 - \sigma(\theta^T \mathbf{x}^{(i)})\right)$$

2. Find gradient with respect to θ

Optimization problem:

$$\theta_{MLE} = \arg\max_{\theta} \prod_{i=1}^{n} f(y^{(i)} | \mathbf{x}^{(i)}, \theta) = \arg\max_{\theta} LL(\theta)$$

$$LL(\theta) = \sum_{i=1}^{n} y^{(i)} \log \sigma(\theta^{T} \mathbf{x}^{(i)}) + (1 - y^{(i)}) \log(1 - \sigma(\theta^{T} \mathbf{x}^{(i)}))$$

Gradient w.r.t. θ_i , for j = 0, 1, ..., m:

$$\frac{\partial LL(\theta)}{\partial \theta_j} = \sum_{i=1}^n \left[y^{(i)} - \sigma(\theta^T \mathbf{x}^{(i)}) \right] x_j^{(i)}$$

How do we interpret the gradient contribution of the i-th training datapoint?

2. Find gradient with respect to θ

Optimization problem:

$$\theta_{MLE} = \arg\max_{\theta} \prod_{i=1}^{n} f(y^{(i)} | \mathbf{x}^{(i)}, \theta) = \arg\max_{\theta} LL(\theta)$$

$$LL(\theta) = \sum_{i=1}^{n} y^{(i)} \log \sigma(\theta^{T} \mathbf{x}^{(i)}) + (1 - y^{(i)}) \log(1 - \sigma(\theta^{T} \mathbf{x}^{(i)}))$$

Gradient w.r.t. θ_j , for j = 0, 1, ..., m:

$$\frac{\partial LL(\theta)}{\partial \theta_j} = \sum_{i=1}^n \left[y^{(i)} - \sigma(\theta^T \boldsymbol{x}^{(i)}) \right] x_j^{(i)}$$

(derived later)

らてX(i) = ころり(x)

scale by j-th feature

2. Find gradient with respect to θ

Optimization problem:

$$\theta_{MLE} = \arg\max_{\theta} \prod_{i=1}^{n} f(y^{(i)} | \mathbf{x}^{(i)}, \theta) = \arg\max_{\theta} LL(\theta)$$

$$LL(\theta) = \sum_{i=1}^{n} y^{(i)} \log \sigma(\theta^{T} \mathbf{x}^{(i)}) + (1 - y^{(i)}) \log(1 - \sigma(\theta^{T} \mathbf{x}^{(i)}))$$

Gradient w.r.t. θ_i , for j = 0, 1, ..., m:

$$\frac{\partial LL(\theta)}{\partial \theta_j} = \sum_{i=1}^n \begin{bmatrix} y^{(i)} - \sigma(\theta^T x^{(i)}) \end{bmatrix} x_j^{(i)} \qquad \text{(derived later)}$$

$$1 \text{ or } 0 \quad P(Y = 1 | X = x^{(i)})$$

2. Find gradient with respect to θ

Optimization problem:

$$\theta_{MLE} = \arg\max_{\theta} \prod_{i=1}^{n} f(y^{(i)} | \mathbf{x}^{(i)}, \theta) = \arg\max_{\theta} LL(\theta)$$

$$LL(\theta) = \sum_{i=1}^{n} y^{(i)} \log \sigma(\theta^{T} \mathbf{x}^{(i)}) + (1 - y^{(i)}) \log(1 - \sigma(\theta^{T} \mathbf{x}^{(i)}))$$

Gradient w.r.t. θ_i , for j = 0, 1, ..., m:

$$\frac{\partial LL(\theta)}{\partial \theta_j} = \sum_{i=1}^n \left[y^{(i)} - \sigma(\theta^T x^{(i)}) \right] x_j^{(i)}$$
 (derived later)

Suppose $y^{(i)} = 1$ (the true class label for *i*-th datapoint):

- If $\sigma(\theta^T x^{(i)}) \ge 0.5$, correct
- If $\sigma(\theta^T x^{(i)}) < 0.5$, incorrect \rightarrow change θ_i more

3. Solve

1. Optimization problem:

$$\theta_{MLE} = \arg\max_{\theta} \prod_{i=1}^{n} f(y^{(i)} | \mathbf{x}^{(i)}, \theta) = \arg\max_{\theta} LL(\theta)$$

$$LL(\theta) = \sum_{i=1}^{n} y^{(i)} \log \sigma(\theta^{T} \mathbf{x}^{(i)}) + (1 - y^{(i)}) \log(1 - \sigma(\theta^{T} \mathbf{x}^{(i)}))$$

2. Gradient w.r.t. θ_j , for j = 0, 1, ..., m:

$$\frac{\partial LL(\theta)}{\partial \theta_j} = \sum_{i=1}^n \left[y^{(i)} - \sigma(\theta^T \mathbf{x}^{(i)}) \right] x_j^{(i)}$$

3. Solve

Stay tuned!

(live) 25: Logistic Regression

Lisa Yan June 3, 2020

Logistic Regression Model

$$\widehat{Y} = \arg \max_{y = \{0,1\}} P(Y|X)$$

$$P(Y = 1 | \mathbf{X} = \mathbf{x}) = \sigma \left(\sum_{j=0}^{m} \theta_{j} x_{j} \right) = \sigma(\theta^{T} \mathbf{x})$$

$$\hat{Y}$$
 is prediction of Y

$$\chi = (\chi_1, \dots, \chi_m) + \chi_b = 1$$

$$\theta = (\theta_0, \theta_1, \dots, \theta_m)$$

where $x_0 = 1$

sigmoid function

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

$$\widehat{P}(Y=1|\boldsymbol{X})$$

Another view of Logistic Regression

$$e \quad \theta^T \mathbf{x} = \sum_{j=0}^m \theta_j x_j$$

$$z = \theta^T \mathbf{x}$$

For the "correct" parameters θ :

- (x, 1) should have $\theta^T x > 0$
- (x,0) should have $\theta^T x \leq 0$

Learning parameters

Training

desiration)

Learn parameters $\theta = (\theta_0, \theta_1, ..., \theta_m)$

$$\theta_{MLE} = \arg\max_{\theta} LL(\theta)$$

$$LL(\theta) = \sum_{i=1}^{n} y^{(i)} \log \sigma(\theta^{T} \boldsymbol{x}^{(i)}) + (1 - y^{(i)}) \log \left(1 - \sigma(\theta^{T} \boldsymbol{x}^{(i)})\right)$$

$$\frac{\partial LL(\theta)}{\partial \theta_j} = \sum_{i=1}^n \left[y^{(i)} - \sigma(\theta^T \boldsymbol{x}^{(i)}) \right] x_j^{(i)} \qquad \text{for } j = 0, 1, ..., m$$

- No analytical derivation of θ_{MLE} ...
- ...but can still compute θ_{MLE} with gradient ascent!

Walk uphill and you will find a local maxima (if your step is small enough).

Logistic regression $LL(\theta)$ is concave

Training: The details

Training: Gradient ascent step

3. Optimize.

$$\frac{\partial LL(\theta)}{\partial \theta_j} = \sum_{i=1}^n \left[y^{(i)} - \sigma(\theta^T \boldsymbol{x}^{(i)}) \right] x_j^{(i)}$$

repeat many times:

for all thetas:

$$\theta_{j}^{\text{new}} = \theta_{j}^{\text{old}} + \eta \cdot \frac{\partial LL(\theta^{\text{old}})}{\partial \theta_{j}^{\text{old}}}$$

$$= \theta_{j}^{\text{old}} + \eta \cdot \sum_{i=1}^{n} \left[y^{(i)} - \sigma \left(\theta^{\text{old}^{T}} \boldsymbol{x}^{(i)} \right) \right] x_{j}^{(i)}$$
What does this

What does this look like in code?

Ascent Step
$$\theta_j^{\text{new}} = \theta_j^{\text{old}} + \eta \cdot \sum_{i=1}^n \left[y^{(i)} - \sigma \left(\theta^{\text{old}^T} \boldsymbol{x}^{(i)} \right) \right] x_j^{(i)}$$

```
initialize \theta_i = \emptyset for \emptyset \le j \le m
repeat many times:
   gradient[j] = 0 for 0 \le j \le m
   // compute all gradient[j]'s
   // based on n training examples
   \theta_i += \eta * gradient[j] for all 0 \le j \le m
```

Ascent Step
$$\theta_j^{\text{new}} = \theta_j^{\text{old}} + \eta \cdot \sum_{i=1}^n \left[y^{(i)} - \sigma \left(\theta^{\text{old}^T} \boldsymbol{x^{(i)}} \right) \right] x_j^{(i)}$$

```
initialize \theta_i = \emptyset for \emptyset \le j \le m
repeat many times:
   gradient[j] = 0 for 0 \le j \le m
   for each training example (x, y):
     for each 0 \le j \le m:
        // update gradient[j] for
        // current (x,y) example
   \theta_i += \eta * gradient[j] for all 0 \le j \le m
```

Ascent Step
$$\theta_j^{\text{new}} = \theta_j^{\text{old}} + \eta \cdot \sum_{i=1}^n \left[y^{(i)} - \sigma \left(\theta^{\text{old}^T} \boldsymbol{x^{(i)}} \right) \right] x_j^{(i)}$$

```
initialize \theta_i = \emptyset for \emptyset \le j \le m
                                                       j=[, ..., N
repeat many times:
   gradient[j] = 0 for 0 \le j \le m
   for each training example (x, y):
       for each 0 \le j \le m:
          gradient[j] += \left[y - \frac{1}{1 + \rho^{-\theta^T x}}\right] x_j
    \theta_i += \eta * gradient[j] for all 0 \le j \le m
```

What are the important details?

Ascent Step
$$\theta_j^{\text{new}} = \theta_j^{\text{old}} + \eta \cdot \sum_{i=1}^n \left[y^{(i)} - \sigma \left(\theta^{\text{old}^T} \boldsymbol{x^{(i)}} \right) \right] x_j^{(i)}$$

```
initialize \theta_i = \emptyset for \emptyset \le j \le m
repeat many times:
   gradient[j] = 0 for 0 \le j \le m
   for each training example (x, y):
      for each 0 \le j \le m:
          gradient[j] += \left[y - \frac{1}{1 + e^{-\theta^T x}}\right] x_j
    \theta_i += \eta * gradient[j] for all 0 \le j \le m
```

• x_j is j-th feature of input $\mathbf{x} = (x_1, ..., x_m)$

$$\begin{array}{l} \text{Gradient} \\ \text{Ascent Step} \ \theta_j^{\text{new}} = \theta_j^{\text{old}} + \eta \cdot \sum_{i=1}^n \left[y^{(i)} - \sigma \left(\theta^{\text{old}^T} \pmb{x}^{(i)} \right) \right] \, x_j^{(i)} \end{array}$$

Step D: insert
$$X_0 = 1$$
 $(X_1, ..., X_n) \rightarrow (J_1 X_1, ..., X_n)$ $\Theta_0 + \sum_{j=1}^{n} \Theta_j X_j^*$

initialize $\theta_j = 0$ for $0 \le j \le m$ repeat many times:

```
gradient[j] = 0 for 0 ≤ j ≤ m
for each training example (x, y):
  for each 0 ≤ j ≤ m:
```

gradient[j] +=
$$\left[y - \frac{1}{1 + e^{-\theta^T x}}\right] x_j$$

$$\theta_i$$
 += η * gradient[j] for all $0 \le j \le m$

- x_j is j-th feature of input $\mathbf{x} = (x_1, ..., x_m)$
- Insert $x_0 = 1$ before training

$$\begin{array}{l} \text{Gradient} \\ \text{Ascent Step} \ \theta_j^{\text{new}} = \theta_j^{\text{old}} + \eta \cdot \sum_{i=1}^n \left[y^{(i)} - \sigma \left(\theta^{\text{old}^T} \pmb{x^{(i)}} \right) \right] \, x_j^{(i)} \end{array}$$

```
initialize \theta_i = \emptyset for \emptyset \le j \le m
repeat many times:
   gradient[j] = 0 for 0 \le j \le m
   for each training example (x, y):
      for each 0 \le j \le m:
         gradient[j] += \left[y-\frac{1}{1+\rho^{-\theta^T}x}\right]x_j
              * gradient[j] for all 0 ≤ j ≤ m
```

- x_j is j-th feature of input $\mathbf{x} = (x_1, ..., x_m)$
- Insert $x_0 = 1$ before training
- Finish computing gradient before updating any part of θ

Ascent Step
$$\theta_j^{\text{new}} = \theta_j^{\text{old}} + \eta \cdot \sum_{i=1}^n \left[y^{(i)} - \sigma \left(\theta^{\text{old}^T} \boldsymbol{x^{(i)}} \right) \right] x_j^{(i)}$$

```
initialize \theta_i = \emptyset for \emptyset \le j \le m
repeat many times:
   gradient[j] = 0 for 0 \le j \le m
   for each training example (x, y):
      for each 0 \le j \le m:
          gradient[j] += \left[y-\frac{1}{1+\rho^{-\theta^T}x}\right]x_j
   \theta_j += n * gradient[j] for all 0 \le j \le m
```

- x_i is j-th feature of input $\mathbf{x} = (x_1, \dots, x_m)$
- Insert $x_0 = 1$ before training
- Finish computing gradient before updating any part of θ
- Learning rate η is a constant you set before training

Ascent Step
$$\theta_j^{\text{new}} = \theta_j^{\text{old}} + \eta \cdot \sum_{i=1}^n \left[y^{(i)} - \sigma \left(\theta^{\text{old}^T} \boldsymbol{x^{(i)}} \right) \right] x_j^{(i)}$$

```
initialize \theta_i = \emptyset for \emptyset \le j \le m
repeat many times:
   gradient[j] = 0 for 0 \le j \le m
   for each training example (x, y):
       for each 0 \le j \le m:
          gradient[j] += \left[y - \frac{1}{1 + \rho^{-\theta^T}x}\right] x_j
    \theta_i += \eta * gradient[j] for all 0 \le j \le m
```

- x_i is j-th feature of input $x = (x_1, ..., x_m)$
- Insert $x_0 = 1$ before training
- Finish computing gradient before updating any part of θ
- Learning rate η is a constant you set before training

Testing

Introducing notation \hat{y}

$$\widehat{Y} = \underset{y=\{0,1\}}{\arg \max} P(Y|X)$$

$$P(Y = 1|X = x) = \sigma(\sum_{j=0}^{m} \theta_{j} x_{j}) = \sigma(\theta^{T} x)$$

$$\hat{y} = P(Y = 1 | X = x) = \sigma(\theta^T x)$$

Small \hat{y} is conditional probability

$$P(Y = y | \mathbf{X} = \mathbf{x}) = \begin{cases} \hat{y} & \text{if } y = 1\\ 1 - \hat{y} & \text{if } y = 0 \end{cases}$$

Testing: Classification with Logistic Regression

Training

Learn parameters
$$\theta = (\theta_0, \theta_1, \dots, \theta_m)$$

via gradient ascent:

$$\theta_j^{\text{new}} = \theta_j^{\text{old}} + \eta \cdot \sum_{i=1}^n \left[y^{(i)} - \sigma \left(\theta^{\text{old}^T} \boldsymbol{x}^{(i)} \right) \right] x_j^{(i)}$$

Testing

• Compute
$$\hat{y} = P(Y = 1 | X = x) = \sigma(\theta^T x) = \frac{1}{1 + e^{-\theta^T x}}$$

Classify instance as:

$$\begin{cases} 1 & \hat{y} > 0.5, \text{ equivalently } \theta^T x > 0 \\ 0 & \text{otherwise} \end{cases}$$

Parameters θ_i are <u>not</u> updated during testing phase

Announcements

Interesting probability news

The Time Everyone "Corrected" the World's Smartest Woman

https://priceonomics.com/the-time-everyone-corrected-the-worlds-smartest/

Philosophy

Intuition about Logistic Regression

Regression
$$P(Y=1|\boldsymbol{X}=\boldsymbol{x})=\sigma(\theta^T\boldsymbol{x})$$
 where $\theta^T\boldsymbol{x}=\sum_{j=0}^m\theta_j\boldsymbol{x}$

Logistic Regression is trying to fit a line that separates data instances where y = 1 from those where y = 0:

- We call such data (or functions generating the data <u>linearly separable</u>.
- Naïve Bayes is linear too, because there is no interaction between different features.

Data is often not linearly separable

- Not possible to draw a line that successfully separates all the y = 1 points (green) from the y = 0 points (red)
- Despite this fact, Logistic Regression and Naive Bayes still often work well in practice

Many tradeoffs in choosing an algorithm

Naïve Bayes

Modeling goal

P(X,Y)

Generative or discriminative? Generative: could use joint distribution to generate new points (but you might not need this extra effort)

Continuous input features

Needs parametric form (e.g., Gaussian) or discretized buckets (for multinomial features)

Discrete input features

Yes, multi-value discrete data = multinomial $P(X_i|Y)$ Logistic Regression

P(Y|X)

Discriminative: just tries to discriminate y = 0 vs y = 1(X cannot generate new points b/c no P(X,Y)

Yes, easily forange, apple, Lavava?

Multi-valued discrete data hard (e.g., if $X_i \in \{A, B, C\}$, not necessarily good to encode as $\{1, 2, 3\}$ Stanford University 65

Gradient Derivation

20's

Background: Calculus

Calculus refresher #1:

Derivative(sum) = sum(derivative)

$$\frac{\partial}{\partial x} \sum_{i=1}^{n} f_i(x) = \sum_{i=1}^{n} \frac{\partial f_i(x)}{\partial x}$$

Calculus refresher #2:

Chain rule 😿 😿 😿

$$\frac{\partial f(x)}{\partial x} = \frac{\partial f(z)}{\partial z} \frac{\partial z}{\partial x}$$

Calculus Chain Rule

$$f(x) = f(z(x))$$

aka decomposition of composed functions

Are you ready?

Find:
$$\frac{\partial LL(\theta)}{\partial \theta_j}$$
 where

$$LL(\theta) = \sum_{i=1}^{n} y^{(i)} \log \sigma(\theta^{T} \boldsymbol{x}^{(i)}) + (1 - y^{(i)}) \log \left(1 - \sigma(\theta^{T} \boldsymbol{x}^{(i)})\right)$$

$$Couple denote the constant (2) simplifies ?$$

log conditional likelihood

Aside: Sigmoid has a beautiful derivative

Sigmoid function:

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

Derivative:

$$\frac{d}{dz}\sigma(z) = \sigma(z)[1 - \sigma(z)]$$

What is
$$\frac{\partial}{\partial \theta_j} \sigma(\theta^T \mathbf{x})$$
?

- A. $\sigma(x_i)[1-\sigma(x_i)]x_i$
- B. $\sigma(\theta^T x)[1 \sigma(\theta^T x)]x$
- C. $\sigma(\theta^T x)[1 \sigma(\theta^T x)]x_i$
- D. $\sigma(\theta^T \mathbf{x}) x_i [1 \sigma(\theta^T \mathbf{x}) x_i]$
- None/other

Aside: Sigmoid has a beautiful derivative

Sigmoid function:

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

Derivative:

$$\frac{d}{dz}\sigma(z) = \sigma(z)[1 - \sigma(z)]$$

What is
$$\frac{\partial}{\partial \theta_j} \sigma(\theta^T \mathbf{x})$$
?

A.
$$\sigma(x_i)[1-\sigma(x_i)]x_i$$

B.
$$\sigma(\theta^T x)[1 - \sigma(\theta^T x)]x$$

C.
$$\sigma(\theta^T \mathbf{x})[1 - \sigma(\theta^T \mathbf{x})]x_i$$

D.
$$\sigma(\theta^T x) x_j [1 - \sigma(\theta^T x) x_j]$$

None/other

Let
$$z = \theta^T \mathbf{x} = \sum_{k=0}^m \theta_k x_k$$
. $\frac{\partial}{\partial Q} \sum_{k=0}^m \nabla_k \chi_k = \frac{\partial}{\partial Q} \nabla_k \chi_k$

$$\frac{\partial}{\partial \theta_j} \sigma(\theta^T \mathbf{x}) = \frac{\partial}{\partial z} \sigma(z) \cdot \frac{\partial z}{\partial \theta_j}$$
 (Chain Rule)
$$= \sigma(\theta^T \mathbf{x}) [1 - \sigma(\theta^T \mathbf{x})] x_j$$

Re-introducing notation \hat{y}

$$\widehat{Y} = \underset{y=\{0,1\}}{\arg \max} P(Y|X)$$

$$P(Y = 1|X = x) = \sigma(\sum_{j=0}^{m} \theta_{j} x_{j}) = \sigma(\theta^{T} x)$$

$$\hat{\mathbf{y}} = P(Y = 1 | \mathbf{X} = \mathbf{x}) = \sigma(\theta^T \mathbf{x})$$

$$P(Y = y | \mathbf{X} = \mathbf{x}) = \begin{cases} \hat{y} & \text{if } y = 1\\ 1 - \hat{y} & \text{if } y = 0 \end{cases}$$

$$P(Y = y | X = x) = (\hat{y})^{y} (1 - \hat{y})^{1-y}$$

Find:
$$\frac{\partial LL(\theta)}{\partial \theta_j}$$
 where

$$LL(\theta) = \sum_{i=1}^{n} y^{(i)} \log \sigma(\theta^{T} \mathbf{x}^{(i)}) + (1 - y^{(i)}) \log \left(1 - \sigma(\theta^{T} \mathbf{x}^{(i)})\right)$$

log conditional likelihood

$$LL(\theta) = \sum_{i=1}^{n} y^{(i)} \log \hat{y}^{(i)} + (1 - y^{(i)}) \log(1 - \hat{y}^{(i)})$$

$$\frac{\partial LL(\theta)}{\partial \theta_{j}} = \sum_{i=1}^{n} \frac{\partial}{\partial \theta_{j}} \left[y^{(i)} \log(\hat{y}^{(i)}) + (1 - y^{(i)}) \log(1 - \hat{y}^{(i)}) \right] \qquad \text{Let } \hat{y}^{(i)} = \sigma(\theta^{T} \boldsymbol{x}^{(i)})$$

$$= \sum_{i=1}^{n} \frac{\partial}{\partial \hat{y}^{(i)}} \left[y^{(i)} \log(\hat{y}^{(i)}) + (1 - y^{(i)}) \log(1 - \hat{y}^{(i)}) \right] \cdot \frac{\partial \hat{y}^{(i)}}{\partial \theta_{j}} \qquad \text{(Chain Rule)}$$

$$= \sum_{i=1}^{n} \left[y^{(i)} \frac{1}{\hat{y}^{(i)}} - (1 - y^{(i)}) \frac{1}{1 - \hat{y}^{(i)}} \right] \cdot \hat{y}^{(i)} (1 - \hat{y}^{(i)}) x_{j}^{(i)} \qquad \text{(calculus)}$$

$$= \sum_{i=1}^{n} \left[y^{(i)} - \hat{y}^{(i)} \right] x_{j}^{(i)} \qquad = \sum_{i=1}^{n} \left[y^{(i)} - \sigma(\theta^{T} \boldsymbol{x}^{(i)}) \right] x_{j}^{(i)} \qquad \text{(simplify)}$$

$$\frac{\partial LL(\theta)}{\partial \theta_{j}} = \sum_{i=1}^{n} \frac{\partial}{\partial \theta_{j}} \left[y^{(i)} \log(\hat{y}^{(i)}) + (1 - y^{(i)}) \log(1 - \hat{y}^{(i)}) \right] \qquad \text{Let } \hat{y}^{(i)} = \sigma(\theta^{T} \boldsymbol{x}^{(i)})$$

$$= \sum_{i=1}^{n} \frac{\partial}{\partial \hat{y}^{(i)}} \left[y^{(i)} \log(\hat{y}^{(i)}) + (1 - y^{(i)}) \log(1 - \hat{y}^{(i)}) \right] \cdot \frac{\partial \hat{y}^{(i)}}{\partial \theta_{j}} \qquad \text{(Chain Rule)}$$

$$= \sum_{i=1}^{n} \left[y^{(i)} \frac{1}{\hat{y}^{(i)}} - (1 - y^{(i)}) \frac{1}{1 - \hat{y}^{(i)}} \right] \cdot \hat{y}^{(i)} (1 - \hat{y}^{(i)}) x_{j}^{(i)} \qquad \text{(calculus)}$$

$$= \sum_{i=1}^{n} \left[y^{(i)} - \hat{y}^{(i)} \right] x_{j}^{(i)} \qquad = \sum_{i=1}^{n} \left[y^{(i)} - \sigma(\theta^{T} \boldsymbol{x}^{(i)}) \right] x_{j}^{(i)} \qquad \text{(simplify)}$$

$$\frac{\partial LL(\theta)}{\partial \theta_j} = \sum_{i=1}^n \frac{\partial}{\partial \theta_j} \left[y^{(i)} \log(\hat{y}^{(i)}) + (1 - y^{(i)}) \log(1 - \hat{y}^{(i)}) \right]$$
 Let $\hat{y}^{(i)} = \sigma(\theta^T x^{(i)})$

$$= \sum_{i=1}^{n} \frac{\partial}{\partial \hat{y}^{(i)}} \left[y^{(i)} \log(\hat{y}^{(i)}) + \left(1 - y^{(i)}\right) \log\left(1 - \hat{y}^{(i)}\right) \right] \cdot \frac{\partial \hat{y}^{(i)}}{\partial \theta_{j}}$$
 (Chain Rule)

$$= \sum_{i=1}^{n} \left[y^{(i)} \frac{1}{\hat{y}^{(i)}} - (1 - y^{(i)}) \frac{1}{1 - \hat{y}^{(i)}} \right] \cdot \hat{y}^{(i)} (1 - \hat{y}^{(i)}) x_j^{(i)}$$
 (calculus)

$$= \sum_{i=1}^{n} [y^{(i)} - \hat{y}^{(i)}] x_j^{(i)} = \sum_{i=1}^{n} [y^{(i)} - \sigma(\theta^T x^{(i)})] x_j^{(i)}$$

(simplify)

modelium $P(X_{3}=X|Y_{2})$ $P(X_{3}=X|Y_{2})$ EP(X|Y=1)P(Y=1) = P(X, Y=1) P(X|Y=0)P(Y=0) = P(X, Y=0)P(Y=1|X) + P(Y=0|X) = 1

22: P(Y=0|X) P(Y=1|X)>0.5

Stanford University 77