26: Utility of Money, Simulating Probabilities, Jensen's Inequality

Lisa Yan June 5, 2020

Quick slide reference

- 3 Simulating Probabilities
- 14 Jensen's Inequality
- 20 Training: The big picture

LIVE

LIVE

LIVE

LIVE

Simulating Probabilities

from scipy import stats stats, wittom generate BarBinomial

random.random() function

Since computers are deterministic, true randomness does not exist.

We settle for <u>pseudo-randomness</u>: A sequence that looks random, but is actually deterministically generated.

random.random(), np.random.random()

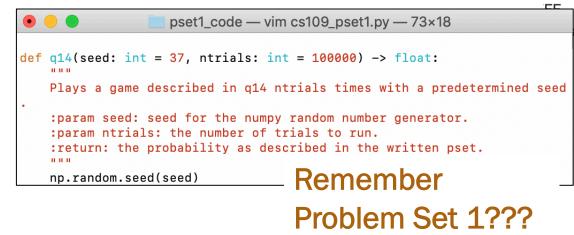
0.

- returns a float uniformly in [0.0, 1.0) with the Mersenne Twister:
- 53-bit precision floating point, repeats after 2**19937-1 numbers
- Seed number: X_0 used to generate sequence $X_1, X_2, ..., X_n, ...$

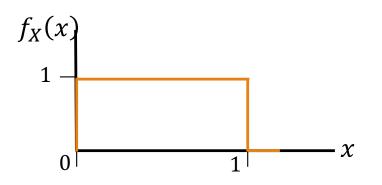
Initialization [edit]

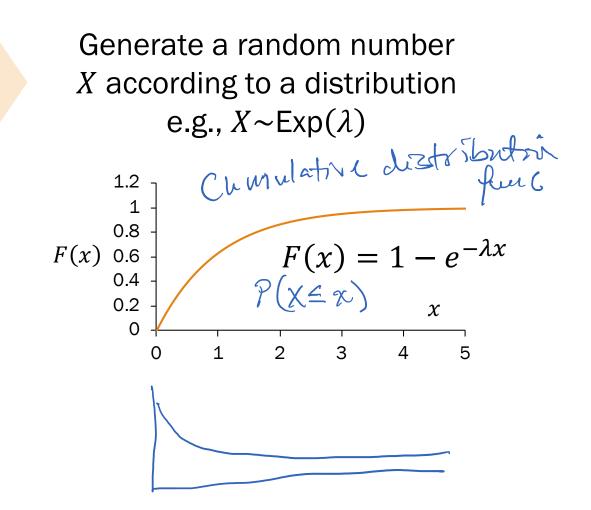
The state needed for a Mersenne Twister implementation is an array of *n* values of *w* bits each. To initialize the array, a *w*-bit seed value is used to supply x_0 through x_{n-1} by setting x_0 to the seed value and thereafter setting

 $x_i = f \times (x_{i-1} \oplus (x_{i-1} >> (w{-}2))) + i$



random.random()
np.random.random()
Generate a random float
in interval [0.0, 1.0)
U~Uni(0,1)





Inverse Transform Sampling

Given the ability to generate numbers \sim Uni(0,1), how do we generate another number according to a CDF *F*?

$$X = F^{-1}(U) \qquad \qquad F(F^{-1}(a) = b \Leftrightarrow F(b) = a \qquad \qquad a = F(b)$$

<u>def</u> F^{-1} the inverse of CDF: $F^{-1}(a) = b \Leftrightarrow F(b) = a$

Interpret: If we have a RV $U \sim \text{Uni}(0,1)$, the above RV X (which is a function of U) follows a probability distribution such that $P(X \leq x) = F(x)$.

Proof:

$$P(X \le x) = P(F^{-1}(U) \le x)$$
$$= P(U \le F(x))$$

= F(x)

 $F(F^{-1}(u_{1})) \subseteq F(x)$ f(x) = F(x) $F(x) \leq 1$ $F(x) = u \text{ if } 0 \leq u \leq 1$

Inverse Transform Sampling (Continuous)

How do we generate the exponential distribution $X \sim \text{Exp}(\lambda)$? $F(x) = 1 - e^{-\lambda x} = u$

- CDF: $F(x) = 1 e^{-\lambda x}$ where $x \ge 0$
- Compute inverse: $F^{-1}(u) = -\frac{\log(1-u)}{2}$
- Note if $U \sim \text{Uni}(0,1)$, then $(1 U) \sim \text{Uni}(0,1)$
- Therefore:

$$F^{-1}(U) = -\frac{\log(U)}{\lambda}$$

Note: Closed-form inverse may not always exist, like with the Normal distribution

Check it out!!! (demo)

 $l - u = e^{-i\Lambda X}$

 $\chi = -\log(1-\omega)$

 $\log(1-u) = -\lambda x$

Inverse Transform Sampling (Discrete)

 $X \sim \text{Poi}(\lambda = 3)$ has CDF F(X = x) as shown:

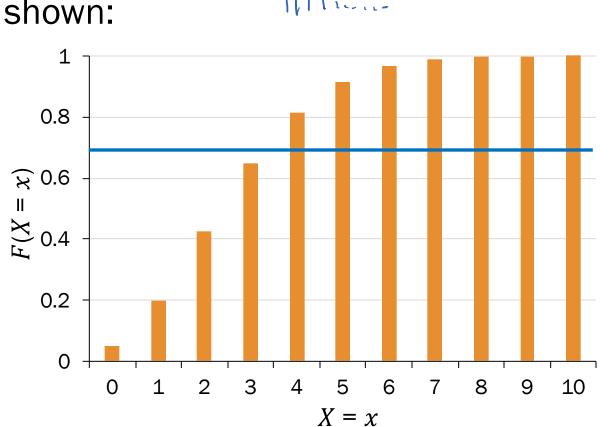
1. Generate $U \sim \text{Uni}(0,1)$

u = 0.7

x = 4

2. As x increases, determine first $F(x) \ge U$

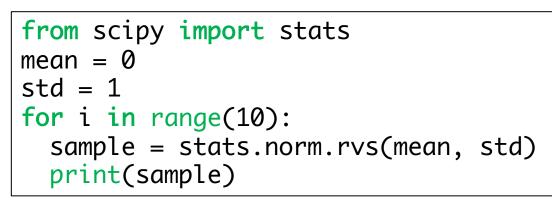
3. Return this value of x



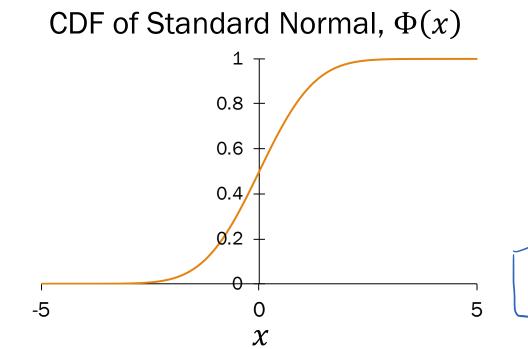
Check it out!!! (demo)

How does a computer sample the Normal?

How does Python generate random values according to a Normal distribution?



-1.5213511002970745 1.3986457271717916 2.1661966495582745 -0.09612045842653026 -0.6504681012424954 -0.6614649985106745 -1.1273650614139048 -1.8898482565694437 -2.4804202575017054 0.8141949960752278



Inverse transform sampling

- 1. Generate a random probability u from $U \sim \text{Unif}(0,1)$.
- 2. Find x such that $\Phi(x) = u$. In other words, compute $x = \Phi^{-1}(u)$.

(Since Φ^{-1} has no analytical solution, look up Box-Muller transform for further reading)

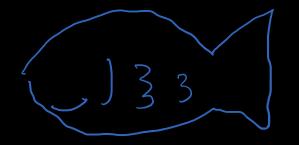
https://en.wikipedia.org/wiki/Box%E2%80%93Muller_tr ansform

Lisa Yan, CS109, 2020

Another option: Rejection Filtering

Monte Carlo sampling!

Check out Ross 10.2.2 for more information



Interlude for fish jokes/announcements

End of Quarter changes, part 2

- Problem Set 6 is now optional (still part of your final weighted course grade, but if you can pass without it, you don't need to turn it in)
- Passing work requirement now 6 of <u>8</u> assignments (PS1 to PS6, Quiz 1, Quiz 2)

· 265%

Interesting probability news

Pioneering technique uses satellites to detect ocean plastic

https://www.circularonline.co.uk/news/pioneering-technique-uses-satellites-to-detect-ocean-plastic/

- Manually, they selected pixels that were suspected to be dominated by plastics using the spectral signature and the FDI, as well as a <u>Normalised</u> <u>Difference Vegetation Index (NDVI)</u>.
- Then using an automated approach, floating materials were differentiated using a <u>Naïve Bayes (Bayesian)</u> <u>classification model</u>.
- Across the four study sites, suspected plastics were successfully classified as plastics with an overall accuracy of 86% (Gulf Islands 100%, Accra 87%, Scotland 83% and Da Nang 77%).

LIVE

Jensen's Inequality

Jensen's inequality

Jensen's inequality:

If g(x) is a convex function, then $E[g(X)] \ge g(E[X])$.

Johan Ludwig William Valdemar Jensen Danish mathematician (1859–1925)

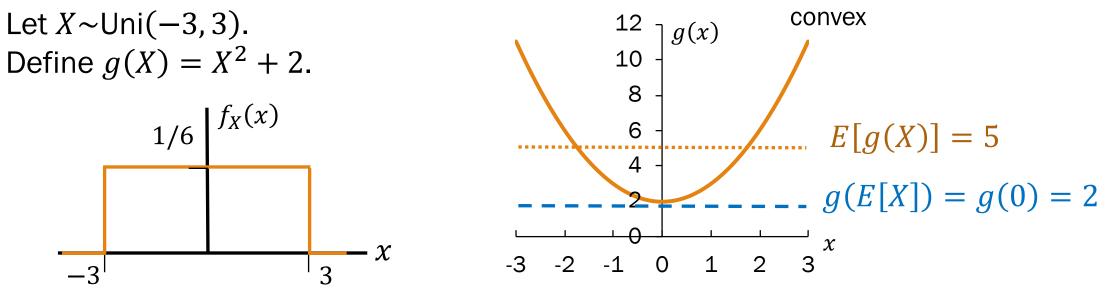
Dr. Eggman from Sonic the Hedgehog?

Jensen's inequality

Jensen's inequality:

If g(x) is a convex function, then $E[g(X)] \ge g(E[X])$.

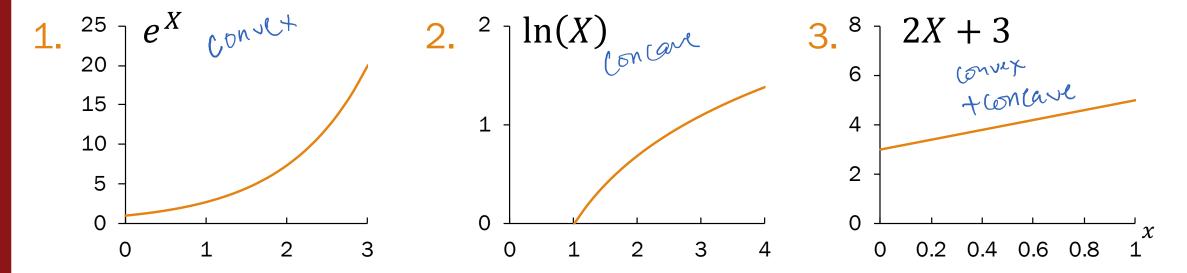
<u>def</u> convex function g(x): if $g''(x) \ge 0$ for all x. (Convex = "bowl") <u>def</u> concave function g(x): if -g(x) is convex.



Jensen's quick check

g(x) is convex, $\forall x : g''^{(x)} \ge 0$ $E[g(X)] \ge g(E[X])$

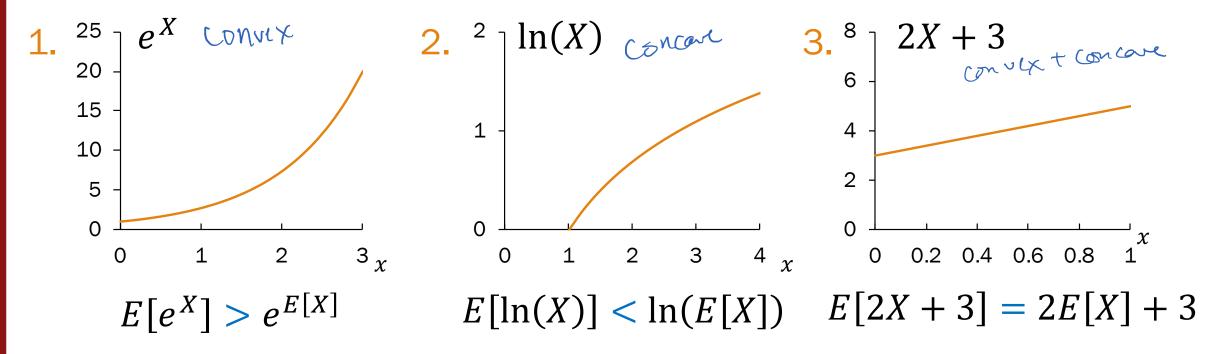
Let $X \sim \text{Uniform}$ for the domain of each below graph. Compare E[g(X)] and g(E[X]): (>, <, =)



Jensen's quick check

g(x) is convex, $\forall x : g''^{(x)} \ge 0$ $E[g(X)] \ge g(E[X])$

Let $X \sim \text{Uniform}$ for the domain of each below graph. Compare E[g(X)] and g(E[X]): (>, <, =)



g is both concave and convex only if it is linear. E[g(X)] = g(E[X]) only if g(x) is a linear function.

Lisa Yan, CS109, 2020

Why Jensen's is useful

1. Is Standard Error an unbiased estimator? N_{\odot}

 $E[S^{2}] = \sigma^{2}$ $E[S^{2}/n] = \sigma^{2}/n$ $E[S^{2}/n] = \sigma^{2}/n$ $E[\sqrt{S^{2}/n}] < \sqrt{\sigma^{2}/n}$ Square root is concavex S

$$SE = \sqrt{\frac{S^2}{n}} = \sqrt{\frac{S^2}{n}} = \sqrt{\frac{1}{2}} = \sqrt{\frac{1}{$$

g(x) is convex,

 $\forall x: q^{\prime\prime(x)} \ge 0$

Jensen's Inequality also used in:

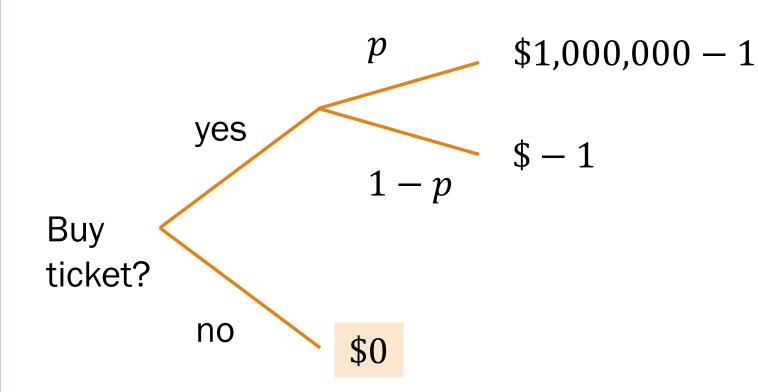
- CS228, KL divergence: What is the best approximate distribution q(x) to perform Bayesian inference where the true distribution is actually p(x)? _
- CS229, EM algorithm: How do we iteratively find the the maximum likelihood or MAP estimates without performing gradient ascent?

 $E[g(X)] \ge g(E[X])$

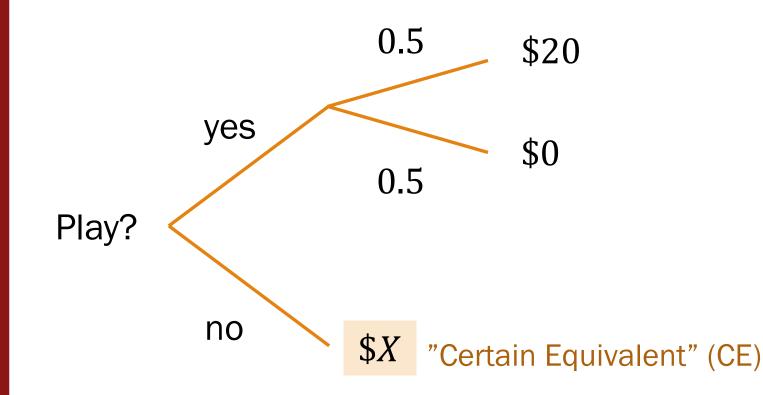
LIVE

Utility of Money

Recall the probability tree!



Let's play a game. What choice would you make?

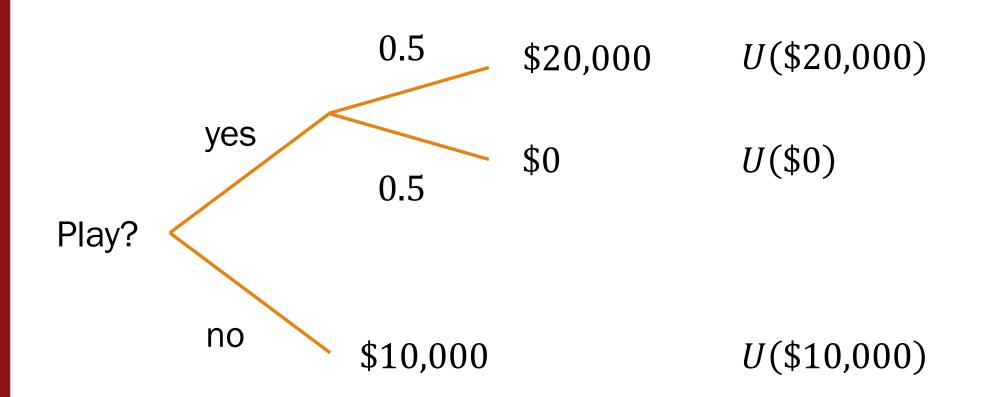


For what value of X are you <u>indifferent</u> to playing? A. X = 3B. X = 7C. X = 9D. X = 10

<u>def</u> Certain equivalent: The value of the game to *you* (different for different people)

Lisa Yan, CS109, 2020

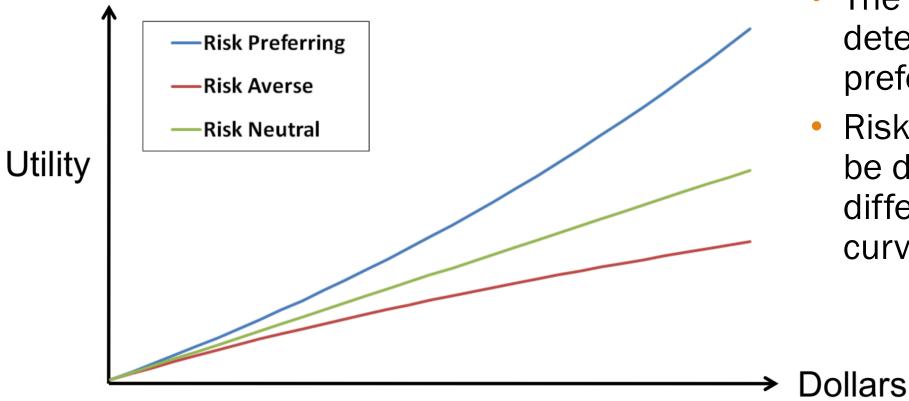
Utility



<u>def</u> Utility U(X) is the "value" you derive from X

• Can be monetary, but often includes intangibles like quality of life, life expectancy, personal beliefs, etc.

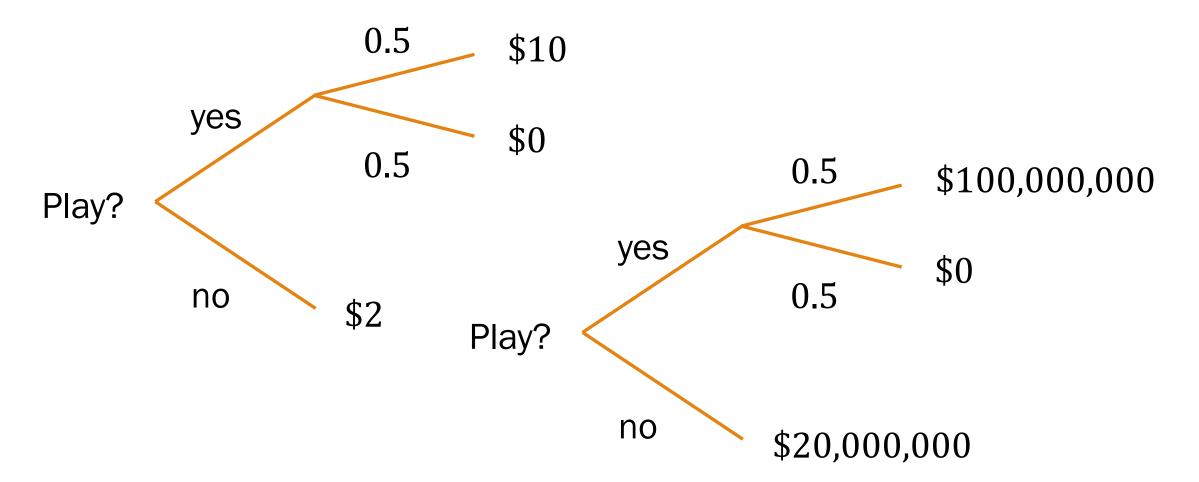
Utility curves



- The utility curve determines your "risk preference."
- Risk preference can be different in different parts of the curve

Non-linearity utility of money

Interestingly, these two choices are different for most people:



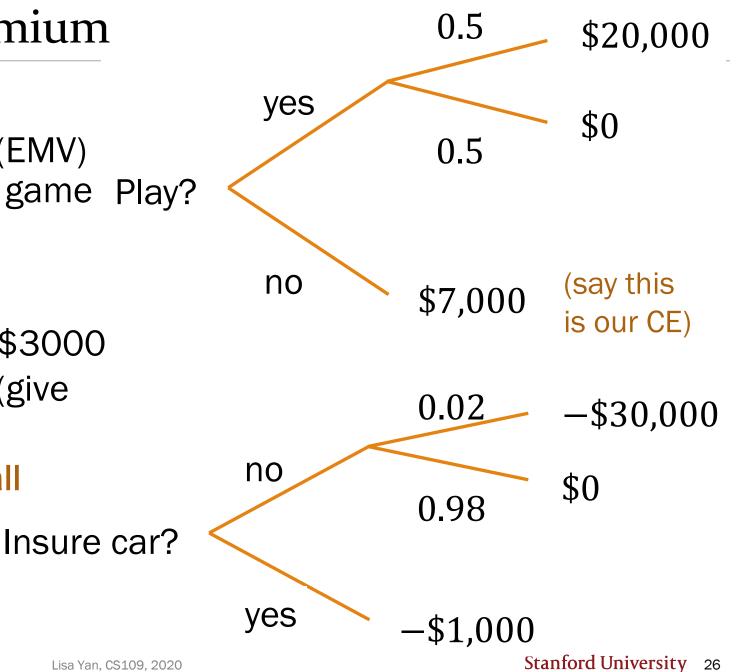
Insurance and risk premium

A slightly different game:

 Expected monetary value (EMV)
 = expected dollar value of game Play? (here, \$10,000)

Risk premium = EMV – CE = \$3000

- How much would you pay (give up) to avoid risk?
- This is what insurance is all about.

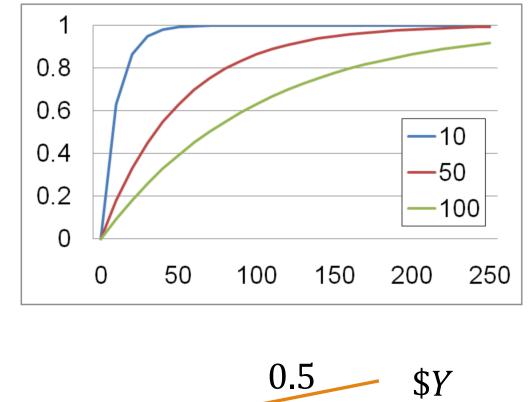


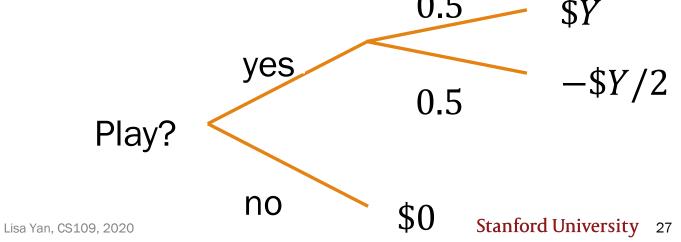
Exponential utility curves

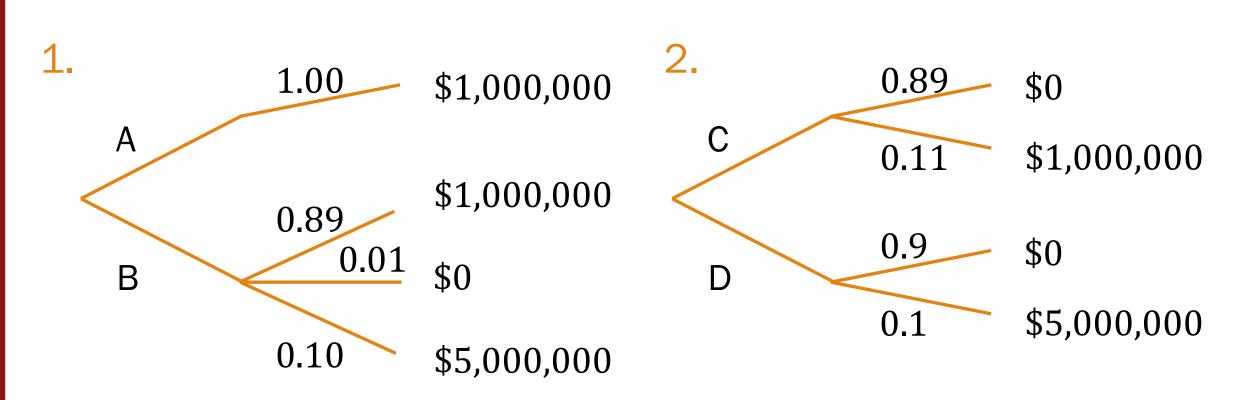
Many people have exponential utility curves:

$$U(x) = 1 - e^{-x/R}$$

- *R* is your "risk tolerance"
- Larger R = less risk aversion. Makes utility function more "linear"
- $R \approx$ highest value of Y for which you would play:







Which option would you choose in each case? How many of you chose A and D?

Lisa Yan, CS109, 2020

