Based on the work of many CS109 staffs

1 Lecture 17, 5-18-20: Conditional Joint Distributions II

- 1. Let $X \sim \mathcal{N}(\mu_1, \sigma_1^2)$ and $Y \sim \mathcal{N}(\mu_2, \sigma_2^2)$. What is μ and σ for $X + Y \sim \mathcal{N}(\mu, \sigma)$?
- 2. Let $X \sim \text{Uni}(0, 1)$ and $Y \sim \text{Uni}(0, 1)$. What is the PDF for X + Y?
- 3. In general, for two independent random variables X and Y, what is the PDF f of X + Y?

2 Lecture 18, 5-20-20: Sampling/Bootstrapping

- 1. Computing the sample mean is similar to the population mean: sum all available points and divide by the number of points. However, sample variance is slightly different from population variance.
 - (a) Consider the equation for population variance, and an analogous equation for sample variance.

$$\sigma^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2 \qquad (1) \qquad S_{biased}^2 = \frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X})^2 \qquad (2)$$

 S_{biased}^2 is a random variable which estimates the constant σ^2 . Is $E[S_{biased}^2]$ greater or less than σ^2 ?

(b) Write the equation for $S_{unbiased}^2$ (known simply as S^2 in the slides). This is known as *Bessel's correction*.

3 Lecture 1, 5-22-20: Central Limit Theorem

1. What is the distribution (with name and parameter(s)) of the average of *n* i.i.d. random variables, $X_1, ..., X_n$, each with mean μ and variance σ^2 ?