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Section 8 Solutions

1. MLE and MAP
To start, let us look briefly at how we calculate the parameters for Maximum Likelihood
and Maximum a Posteriori Estimation. As usual, we let 𝑓 be some probability distribution
function, and we let 𝑔 some prior probability distribution function.

𝜃𝑀𝐿𝐸 = arg max
𝜃

𝑛∏
𝑖=1

𝑓 (𝑋𝑖 |𝜃)

𝜃𝑀𝐴𝑃 = arg max
𝜃

𝑛∏
𝑖=1

𝑓 (𝑋𝑖 |𝜃)𝑔(𝜃)

These look suspiciously similar, which begs the question: what is the difference between
MLE and MAP?

(a) The only difference between the MLE and MAP updates is the introduction of an
additional equation 𝑔(𝜃). In words, what are we doing when we add 𝑔(𝜃)?

(b) Write the log likelihood function 𝐿𝐿 (𝜃) for both MLE and MAP, being sure to use the
properties of log to simplify your work.

(c) Let us now look at 𝜃 = arg max 𝐿𝐿 (𝜃) for 𝜃𝑀𝐴𝑃 and 𝜃𝑀𝐿𝐸 . Notably, there is one
additional term for 𝜃𝑀𝐴𝑃 — this is not surprising, given our earlier observation. What
does that additional term need to equal so that 𝜃𝑀𝐴𝑃 and 𝜃𝑀𝐿𝐸 are equal?

(d) If we do the above so that 𝜃𝑀𝐴𝑃 = 𝜃𝑀𝐿𝐸 , what kind of probability distribution function
should 𝑔(𝜃) be equal to? And what does that say about the relationship between 𝜃𝑀𝐴𝑃

and 𝜃𝑀𝐿𝐸?

(a) When we add the prior 𝑔(𝜃) we are essentially giving our model additional in-
formation to make predictions. Of course, there is a question of what information
makes sense and what information is computationally feasible. In other words, what
calculations can we give our model, based on the data, that will be helpful?
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(b) The log likelihood functions are as follows.

𝐿𝐿 (𝜃𝑀𝐿𝐸 ) =
𝑛∑
𝑖=1

log 𝑓 (𝑋𝑖 |𝜃)

𝐿𝐿 (𝜃𝑀𝐴𝑃) =
𝑛∑
𝑖=1

log( 𝑓 (𝑋𝑖 |𝜃)𝑔(𝜃))

=
𝑛∑
𝑖=1

log 𝑓 (𝑋𝑖 |𝜃) + log 𝑔(𝜃)

As a practical piece of advice, if you do not know where to start when making
calculations with log likelihood, a good place to start is to apply the definition, and
then separate the terms as much as possible. It makes things clearer!

(c) 𝜃𝑀𝐴𝑃 and 𝜃𝑀𝐿𝐸 are given below.

𝜃𝑀𝐴𝑃 = arg max
𝜃

𝑛∑
𝑖=1

log 𝑓 (𝑋𝑖 |𝜃) + log 𝑔(𝜃)

𝜃𝑀𝐿𝐸 = arg max
𝜃

𝑛∑
𝑖=1

log 𝑓 (𝑋𝑖 |𝜃)

Intuitively, we want log 𝑔(𝜃) to not matter. The key insight here is that, when we
optimize, constants do not matter. Thus if 𝑔(𝜃) were a constant, then we could drop
log 𝑔(𝜃) from the 𝜃𝑀𝐴𝑃 calculation, thus making 𝜃𝑀𝐴𝑃 = 𝜃𝑀𝐿𝐸 .

(d) We saw that 𝑔(𝜃) needs to be constant, which means that 𝑔(𝜃) needs to be the prob-
ability distribution function for a uniform distribution. Intuitively, if 𝑔 is dependent
on 𝜃 in any way, when we take the gradient with respect to 𝜃, the term corresponding
to log 𝑔(𝜃) would not go away. However, this is equivalent to not having a prior at
all — which is exactly what we have with MLE. (Make sure you think about why
a uniform prior would be the same as having 𝑔(𝜃) = 1 for all 𝜃. One way to think
about this formally is to take the next step and calculate the gradient.)
To conclude, we have proven that MLE is a special case of MAP, where we have a
uniform prior, i.e. no additional information is given to the model.

2. Multiclass Bayes
In this problem we are going to explore how to write Naive Bayes for multiple output classes.
We want to predict a single output variable Y which represents how a user feels about a book.
Unlike in your homework, the output variable Y can take on one of the four values in the set
{Like,Love,Haha, Sad}. We will base our predictions off of three binary feature variables
𝑋1, 𝑋2, and 𝑋3 which are indicators of the user’s taste. All values 𝑋𝑖 ∈ {0, 1}.
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We have access to a dataset with 10,000 users. Each user in the dataset has a value for
𝑋1, 𝑋2, 𝑋3 and 𝑌 . You can use a special query method count that returns the number of users
in the dataset with the given equality constraints (and only equality constraints). Here are
some example usages of count:

count(𝑋1 = 1, 𝑌 = Haha) returns the number of users where 𝑋1 = 1 and 𝑌 = Haha.
count(𝑌 = Love) returns the number of users where 𝑌 = Love.
count(𝑋1 = 0, 𝑋3 = 0) returns the number of users where 𝑋1 = 0, and 𝑋3 = 0.

You are given a new user with 𝑋1 = 1, 𝑋2 = 1, 𝑋3 = 0. What is the best prediction for how the
user will feel about the book (𝑌 )? You may leave your answer in terms of an argmax function.
You should explain how you would calculate all probabilities used in your expression. Use
Laplace estimation when calculating probabilities.

We can make the Naive Bayes assumption of independence and simplify argmax of
𝑃(𝑌 |X) to get an expression for 𝑌 , the predicted output value, and evaluate it using the
provided count function.

𝑌 = arg max
𝑦

𝑃(𝑋1 = 1, 𝑋2 = 1, 𝑋3 = 0|𝑌 = 𝑦)𝑃(𝑌 = 𝑦)
𝑃(𝑋1 = 1, 𝑋2 = 1, 𝑋3 = 0)

= arg max
𝑦

𝑃(𝑋1 = 1, 𝑋2 = 1, 𝑋3 = 0|𝑌 = 𝑦)𝑃(𝑌 = 𝑦)

= arg max
𝑦

𝑃(𝑋1 = 1|𝑌 = 𝑦)𝑃(𝑋2 = 1|𝑌 = 𝑦)𝑃(𝑋3 = 0|𝑌 = 𝑦)𝑃(𝑌 = 𝑦), where:

𝑃(𝑋1 = 1|𝑌 = 𝑦) = [count(𝑋1 = 1, 𝑌 = 𝑦) + 1]/count(𝑌 = 𝑦) + 2
𝑃(𝑋2 = 1|𝑌 = 𝑦) = [count(𝑋2 = 1, 𝑌 = 𝑦) + 1]/count(𝑌 = 𝑦) + 2
𝑃(𝑋3 = 1|𝑌 = 𝑦) = [count(𝑋3 = 1, 𝑌 = 𝑦) + 1]/count(𝑌 = 𝑦) + 2
𝑃(𝑋1 = 0|𝑌 = 𝑦) = [count(𝑋1 = 0, 𝑌 = 𝑦) + 1]/count(𝑌 = 𝑦) + 2
𝑃(𝑋2 = 0|𝑌 = 𝑦) = [count(𝑋2 = 0, 𝑌 = 𝑦) + 1]/count(𝑌 = 𝑦) + 2
𝑃(𝑋3 = 0|𝑌 = 𝑦) = [count(𝑋3 = 0, 𝑌 = 𝑦) + 1]/count(𝑌 = 𝑦) + 2

you don’t need to use MAP to estimate 𝑃(𝑌 ): 𝑃(𝑌 = 𝑦) = count(𝑌 = 𝑦)/10, 000

3. Vision Test
You decide that the vision tests given by eye doctors would be more precise if we used
an approach inspired by logistic regression. In a vision test a user looks at a letter with a
particular font size and either correctly guesses the letter or incorrectly guesses the letter.
You assume that the probability that a particular patient is able to guess a letter correctly is:

𝑝 = 𝜎(𝜃 + 𝑓 )

Where 𝜃 is the user’s vision score and 𝑓 is the font size of the letter.
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Explain how you could estimate a user’s vision score (𝜃) based on their 20 responses
( 𝑓 (1) , 𝑦 (1)) . . . ( 𝑓 (20) , 𝑦 (20)), where 𝑦 (𝑖) is an indicator variable for whether the user cor-
rectly identified the 𝑖th letter and 𝑓 (𝑖) is the font size of the 𝑖th letter. Solve for any and all
partial derivatives required by the approach you describe in your answer.
Formula reference for Logistic Regression:

𝜎(𝑧) = 1
1 + 𝑒−𝑧

𝐿𝐿 (𝜃) =
𝑛∑
𝑖=0

𝑦 (𝑖) log 𝜎(𝜃𝑇x(𝑖)) + (1 − 𝑦 (𝑖)) log [1 − 𝜎(𝜃𝑇x(𝑖))]

𝜕𝐿𝐿 (𝜃)
𝜕𝜃 𝑗

=
𝑛∑
𝑖=0

[
𝑦 (𝑖) − 𝜎(𝜃𝑇x(𝑖))

]
𝑥 (𝑖)𝑗

We are going to solve this problem by finding the MLE estimate of 𝜃. To find the MLE
estimate, we are going to find the argmax of the log likelihood function. To calculate
argmax we are going to use gradient ascent, which requires that we know the partial
derivative of the log likelihood function with respect to theta.
We first write the log likelihood. Note that, below, we write 𝑝 for 𝑝 (𝑖) = 𝜎(𝜃𝑇x(𝑖)), to
make our notation cleaner.

𝐿 (𝜃) =
20∏
𝑖=1

𝑝𝑦
(𝑖) (1 − 𝑝)1−𝑦 (𝑖)

𝐿𝐿 (𝜃) =
20∑
𝑖=1

(𝑦 (𝑖) log(𝑝) + (1 − 𝑦 (𝑖)) log(1 − 𝑝))

Then we find the derivative of log likelihood with respect to 𝜃 for one datapoint:
𝜕𝐿𝐿

𝜕𝜃
=
𝜕𝐿𝐿

𝜕𝑝
· 𝜕𝑝
𝜕𝜃

We can calculate both the smaller partial derivatives independently:

𝜕𝐿𝐿

𝜕𝑝
=

𝑦 (𝑖)

𝑝
− 1 − 𝑦 (𝑖)

1 − 𝑝
and

𝜕𝑝

𝜕𝜃
= 𝑝 [1 − 𝑝]

Putting it all together for one letter:

𝜕𝐿𝐿

𝜕𝜃
=
𝜕𝐿𝐿

𝜕𝑝
· 𝜕𝑝
𝜕𝜃

=
[ 𝑦 (𝑖)
𝑝

− 1 − 𝑦 (𝑖)

1 − 𝑝

]
𝑝 [1 − 𝑝]

= 𝑦 (𝑖) (1 − 𝑝) − 𝑝(1 − 𝑦 (𝑖)) = 𝑦 (𝑖) − 𝑝 = 𝑦 (𝑖) − 𝜎(𝜃 + 𝑓 )

For all twenty examples:

𝜕𝐿𝐿

𝜕𝜃
=

20∑
𝑖=1

𝑦 (𝑖) − 𝜎(𝜃 + 𝑓 (𝑖))
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The Most Important Features
Let’s explore saliency, a measure of how important a feature is for classification. We define
the saliency of the 𝑖th input feature for a given example (x, 𝑦) to be the absolute value of the
partial derivative of the log likelihood of the sample prediction, with respect to that input
feature

�� 𝜕𝐿𝐿
𝜕𝑥𝑖

��. In the images below, we show both input images and the corresponding saliency
of the input features (in this case, input features are pixels):

First consider a trained logistic regression classifier with weights 𝜃. Like the logistic regres-
sion classifier that you wrote in your homework it predicts binary class labels. In this question
we allow the values of x to be real numbers, which doesn’t change the algorithm (neither
training nor testing).

a. What is the Log Likelihood of a single training example (x, 𝑦) for a logistic regression
classifier?

𝐿𝐿 (𝜃) = 𝑦 · log 𝜎
(
𝜃𝑇 · x

)
+
(
1 − 𝑦

)
log

[
1 − 𝜎

(
𝜃𝑇 · x

)]
b. Calculate is the saliency of a single feature (𝑥𝑖) in a training example (x, 𝑦).

We can calculate the saliency for a single feature as follows.

𝐿𝐿 (𝜃) = 𝑦 log 𝑧 +
(
1 − 𝑦

)
log

(
1 − 𝑧

)
where 𝑧 = 𝜎

(
𝜃𝑇 · x

)
𝜕𝐿𝐿

𝜕𝑥𝑖
=
𝜕𝐿𝐿

𝜕𝑧
· 𝜕𝑧
𝜕𝑥𝑖

chain rule

=
( 𝑦
𝑧
− 1 − 𝑦

1 − 𝑧

)
·
(
𝑧(1 − 𝑧)𝜃𝑖

)
partial derivatives

saliency =
��� ( 𝑦

𝑧
− 1 − 𝑦

1 − 𝑧

)
𝑧(1 − 𝑧)𝜃𝑖

���
Show that the ratio of saliency for features 𝑖 and 𝑗 is the ratio of the absolute value of
their weights |𝜃𝑖 |

|𝜃 𝑗 | .
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We can take the ratio as follows using our expression above.

saliency for feature 𝑖, 𝑆𝑖 =
��� ( 𝑦

𝑧
− 1 − 𝑦

1 − 𝑧

)
𝑧(1 − 𝑧)𝜃𝑖

��� , and same for 𝑆 𝑗

𝑆𝑖
𝑆 𝑗

=

��� ( 𝑦𝑧 − 1−𝑦
1−𝑧

)
𝑧(1 − 𝑧)𝜃𝑖

������ ( 𝑦𝑧 − 1−𝑦
1−𝑧

)
𝑧(1 − 𝑧)𝜃𝑖

��� = 𝑆𝑖
𝑆 𝑗

=

��� 𝜃𝑖 ������ 𝜃 𝑗 ��� by elimination


