
Before reading the solutions, we encourage you to go through the exam first. To help 
guide your studying, we went through and tagged each of the exam questions with 
relevant topics. If you are struggling with a particular question, we encourage you to 
brush up on the tagged topic. Note that these are not comprehensive are rather intended to 
serve as a starting point for your studying! 
 
As always, please come to Office Hours or ask on Piazza for clarifications! Good luck 
studying!  ☺ 
 
CS109 Final, Fall 2017 
 
1. a. Axioms of Probability 
1. b. Conditional Probability and Bayes 
1. c. Conditional Probability and Bayes 
1. d. Conditional Probability and Bayes 
1. e. Conditional Probability 
 
2. a. PDFs and CDFs 
2. b. PDFs and CDFs 
2. c. Log-likelihood 
2. d. Coding implementation (Parameter estimation) 
 
(3 is a section problem) 
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3. b. Sum of normal RVs 
3. c. CDF of Normal and Difference of RVs 
3. d. CDF of Normal and Difference of RVs 
3. e. Probability calculations 
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4. a. Beta distribution 
4. b. Beta distribution 
4. c. Coding implementation (pseudocode) 
4. d. Expectations 
4. e. Pseudocode (p-value) 
 
5. Expected value of maximum of two RVs 
 
6. Naïve Bayes 
 
(7 is a section problem) 
7. a. Log likelihood function 
7. b. Saliency maps (deep learning) 
7. c. Saliency maps (deep learning) 
7. d. Saliency maps (deep learning) 
7. e. Weights calculation (deep learning) 



Final Fall 2017 Solution

Noah Arthurs and Gili Rusak

November 30, 2019

Disclaimer: These solutions are not super verbose or complete. They’re
just meant to give you an idea of how to do each problem. Feel free to start
discussions on Piazza if you’re confused.

1. (a)

P (MC) =
100� 15

100
=

85

100

(b)

P (A|MC) =
40

40 + 45
=

40

85

(c)

P (A|M) =
P (M |A)P (A)

P (M |A)P (A) + P (M |AC)P (AC)

=
P (M |A)P (A)

P (M |A)P (A) + P (M |AC)(1� P (A))

=
1/5P (A)

1/5P (A) + 1/10(1� P (A)) = 2P (A)
2P (A)+1�P (A)

=
2P (A)

P (A) + 1

(d)
P (A) = P (A|M)P (M) + P (A|MC)P (MC)

=
2P (A)

P (A) + 1
· 15

100
+

40

85

85

100

100P (A) =
30P (A)

P (A) + 1
+ 40

[100P (A)� 40][P (A) + 1] = 30P (A)

100P (A)2 + 100P (A)� 40P (A)� 40 = 30P (A)

0 = 10P (A)2 + 3P (A)� 4

P (A) = root(10, 3, -4)
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(e)

P (A) = P (A|M)P (M)+P (A|MC)P (MC) = P (A|MC)(P (M)+P (MC)) = P (A|MC)

2. (a) P (X > 4) = 1�P (X < 4) = 1�FX(4) = 1� (1� (1+ 4)�2) = 1/25

(b) E[X] = 0.5, V ar(X) = 0.75

Let Y be sum of samples. Therefore by CLT, Y ⇠ N(50, 75).

P (Y > 55) = 1� P (Y < 55) = 1� �((55� 50)/
p
75)

(c) Assume each xi is drawn from X ⇠ ExamPareto(↵):

LL(↵) = log⇧n
i=1fX(xi) = ⌃n

i=1 log(↵(1+xi)
�(↵+1)) = ⌃n

i=1(log(↵)�(↵+1) log(1+xi))

(d) Gradient ascent would be good (we have a 1-d gradient):

r↵LL(↵) =
dLL
d↵ = ⌃n

i=1(1/↵� log(1+xi)) = n/↵�⌃n
i=1 log(1+xi)

Even better is to find the point of inflection directly. We do this by
setting dLL

d↵ = 0:

n/↵� ⌃n
i=1 log(1 + xi) = 0 =) ↵ =

n

⌃n
i=1 log(1 + xi)

To double check that this is a maximum:

d2↵

d↵2
=

�n

↵2

Since n is positive, this is negative, so we’ve found our maximum!

(a) Number of passwords of length k is given by 26k.

Number of passwords of length 5-10 is given by ⌃10
k=526

k

(b) Let Y be the amount of time to execute k lines. Y =
Pk

i=1 Xi where
Xi is the amount of time to execute line i. Xi ⇠ N(µ = 5,�2 = 0.5).

Since Y is the sum of independent normals:

Y ⇠ N(µ =
kX

i=1

5,�2 =
kX

i=1

0.5)

Y ⇠ N(µ = 5k,�2 = 0.5k)
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(c) From the last problem:

Time to run 6 lines of code A ⇠ N(µ = 30,�2 = 3)

Time to run 6 lines of code B ⇠ N(µ = 20,�2 = 2)

�B ⇠ N(µ = �20,�2 = 2)

A�B ⇠ N(µ = 10,�2 = 5)

P (A > B) = P (A�B > 0) = 1� FA�B(0) = 1� �(
0� 10p

5
) ⇡ 1.0

(d) I suspect that the answer they were looking for was p5, as you need
each of 5 incorrect-length (4 line) runs to be slower than the correct-
length (6 line) run. However, this is not right! Because there is only
one length of the correct run, the incorrect run lengths are depen-
dent! As an intuition, if 4 out of 5 incorrect runs are slower than
the correct run, that would make us think that the correct run was
unusually fast and thus believe that the 5th incorrect run has a good
chance of being slower as well. So let’s do it better!

We need the probability that each of 5 incorrect-length runs is less
than the length of the correct-length run. Let A be the length of the
correct-length run and B1, ..., B5 be the length of each incorrect run.
Now, let’s say we condition on A = a. We then have:

P (A > Bi|A = a) = P (Bi < a) = �

✓
a� 20p

2

◆

Now, the important thing is that conditioned on A = a, whether or
not each Bi is greater than A is independent, so now we can multiply
the probabilities:

P (A > B1, ..., B5|A = a) = �

✓
a� 20p

2

◆5

Ok, so the last step is to marginalize out a:

P (A > B1, ..., B5) =

Z 1

a=�1
fA(a)�

✓
a� 20p

2

◆5

da

where fA(a) is the pdf of A ⇠ N(30, 3).

Because this solution is so nasty and doesn’t use p, I think they were
looking for p5 even though it’s wrong.
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(e) See solution to Section 5 Problem 3 Part c.

(f) See solution to Section 5 Problem 3 Part d.

3. For parts a, c, and d, see PS5 #8 solutions. For part b, use definition of
Beta to get 0.008.

For part e:

We’ve observed 10 successes and 10 fails from drug 1 (0.5 success rate),
75 successes and 5 fails from drug 2 (0.94 success rate). Under null hy-
pothesis, we have one distribution from which we’ve observed 85 successes
and 15 fails (0.85 success rate). To do our p-test, repeatedly draw one
sample of size 20 and one sample of size 80 from Bernoulli(0.85) and see
how often the di↵erence in success rates is at lest 0.44. (See Corgi problem
from section 6 if you’re confused).

4. Problem 4acd PSET 5 number 8abc. Problem 6b: Variance of Beta =
ab

(a+b)2(a+b+1) =
16·14

(16+14)2(16+14+1)

5. Let Z = max(X,Y ). There are two nice ways to solve for the PDF of Z:

1. (X or Y must equal z, the other must be no higher): fZ(z) = fX(z)P (Y 
z) + fY (z)P (X  z) = 1 ⇤ z + 1 ⇤ z = 2z

2. (Find CDF, take derivative): FZ(z) = P (X < z, Y < z) = P (X <

z)P (Y < z) = z2 =) fZ(z) =
dFZ(z)

dz = 2z

We can then use our expectation formula:

E[Z] =

Z 1

z=0
zfZ(z) =

Z 1

z=0
2z2 =


2z3

3

�1

0

=
2

3

6. We use ”⇡” to denote where we make our Naive Bayes assumption:

argmax
y

P (Y = y|X = x1, x2) = argmax
y

f(X1 = x1, X2 = x2|Y = y)P (Y = y)

f(X1 = x1, X2 = x2)

⇡ argmax
y

f(X1 = x1|Y = y)f(X2 = x2|Y = y)P (Y = y)

f(X1 = x1, X2 = x2)

= argmax
y

f(X1 = x1|Y = y)f(X2 = x2|Y = y)P (Y = y)

Now note that we predict Y = 1 if:

f(X1 = 5|Y = 1)f(X2 = 3|Y = 1)P (Y = 1) > f(X1 = 5|Y = 0)f(X2 = 3|Y = 0)P (Y = 0)
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If I weren’t so lazy, I would plug in the values from the problem at this
point.

7. abc: See Section 8 Problem 3.

For d:

Let z1 = ✓(y)1 h1, z2 = ✓(y)2 h2, and z = z1 + z2 so that ŷ = �(z):

����
dLL

dxi

���� =
����
dLL

ŷ

dŷ

dz

dz

dxi

����

=

����
dLL

ŷ

dŷ

dz

✓
dz1
dh1

dh1

dxi
+

dz2
dh2

dh2

dxi

◆����

=

����

✓
y

ŷ
� 1� y

1� ŷ

◆
ŷ(1� ŷ)

⇣
✓(y)1 (h1(1� h1)✓

(h)
i,1 ) + ✓(y)2 (h2(1� h2)✓

(h)
i,2 )

⌘����

e:

Divide ✓2 by 100. This makes the outputs of the dot products the same
as before.
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