
CS 109: Probability for Computer Scientists
Section 4: Definitions and Theorems

0. Counting and Probability
(a) Product Rule: Suppose there are m1 possible outcomes for event A1, then m2 possible outcomes for

event A2,. . . , mn possible outcomes for event An. Then there are m1 ·m2 ·m3 · · ·mn =
∏n

i=1mi possible
outcomes overall.

(b) Number of ways to order n distinct objects: n! = n · (n− 1) · · · 3 · 2 · 1

(c) Number of ways to select from n distinct objects:

(a) Permutations (number of ways to linearly arrange k objects out of n distinct objects, when the
order of the k objects matters):

n!

(n− k)!

(b) Combinations (number of ways to choose k objects out of n distinct objects, when the order of the
k objects does not matter):

n!

k!(n− k)!
=

(
n

k

)
(d) Multinomial coefficients: Suppose there are n objects, but only k are distinct, with k ≤ n. (For

example, “godoggy” has n = 7 objects (characters) but only k = 4 are distinct: (g, o, d, y)). Let ni be
the number of times object i appears, for i ∈ {1, 2, . . . , k}. (For example, (3, 2, 1, 1), continuing the
“godoggy” example.) The number of distinct ways to arrange the n objects is:

n!

n1!n2! · · ·nk!
=

(
n

n1, n2, . . . , nk

)
(e) Binomial Theorem: ∀x, y ∈ R, ∀n ∈ N: (x+ y)n =

∑n
k=0

(
n
k

)
xkyn−k

(f) Principle of Inclusion-Exclusion (PIE): 2 events: |A ∪B| = |A|+ |B| − |A ∩B|
3 events: |A ∪B ∪ C| = |A|+ |B|+ |C| − |A ∩B| − |A ∩ C| − |B ∩ C|+ |A ∩B ∩ C|
In general: +singles - doubles + triples - quads + . . .

(g) Pigeonhole Principle: If there are n pigeons with k holes and n > k, then at least one hole contains at
least 2 (or to be precise, dnk e) pigeons.

(h) Complementary Counting (Complementing): If asked to find the number of ways to do X, you can:
find the total number of ways and then subtract the number of ways to not do X.

(i) Key Probability Definitions

(a) Sample Space: The set of all possible outcomes of an experiment, denoted S

(b) Event: Some subset of the sample space, usually a capital letter such as E ⊆ S

(c) Union: The union of two events E and F is denoted E ∪ F

(d) Intersection: The intersection of two events E and F is denoted E ∩ F or EF

(e) Mutually Exclusive: Events E and F are mutually exclusive iff E ∩ F = ∅
(f) Complement: The complement of an event E is denoted EC or E, and is equal to S \ E
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(g) DeMorgan’s Laws: (E ∪ F )C = EC ∩ FC and (E ∩ F )C = EC ∪ FC

(h) Probability of an event E: denoted P (E)

(i) Partition: Nonempty events E1, . . . , En partition the sample space S iff
• E1, . . . , En are exhaustive: E1 ∪ E2 ∪ · · · ∪ En =

⋃n
i=1Ei = S, and

• E1, . . . , En are pairwise mutually exclusive: ∀i 6= j, Ei ∩ Ej = ∅
– Note that for any event A (with A 6= ∅, A 6= S): A and AC partition S

(j) Axioms of Probability and their Consequences

(a) Axiom 1: Non-negativity For any event E, P (E) ≥ 0

(b) Axiom 2: Normalization P (S) = 1

(c) Axiom 3: Countable Additivity If E and F are mutually exclusive, then P (E∪F ) = P (E)+P (F ).
Also, if E1, E2, ... is a countable sequence of disjoint events, P (

⋃∞
k=1Ei) =

∑∞
k=1 P (Ei).

(d) Corollary 1: Complementation P (E) + P (EC) = 1

(e) Corollary 2: Monotonicity If E ⊆ F , P (E) ≤ P (F )

(f) Corollary 2: Inclusion-Exclusion P (E ∪ F ) = P (E) + P (F )− P (E ∩ F )

(k) Equally Likely Outcomes: If every outcome in a finite sample space S is equally likely, and E is an
event, then P (E) =

|E|
|S|

.

• Make sure to be consistent when counting |E| and |S|. Either order matters in both, or order doesn’t
matter in both.

(l) Conditional Probability: P (A|B) =
P (A ∩B)

P (B)

(m) Independence: Events E and F are independent iff P (E ∩ F ) = P (E)P (F ), or equivalently P (F ) =
P (F |E), or equivalently P (E) = P (E|F )

(n) Bayes Theorem: P (A|B) =
P (B|A)P (A)

P (B)

(o) Partition: Nonempty events E1, . . . , En partition the sample space S iff

• E1, . . . , En are exhaustive: E1 ∪ E2 ∪ · · · ∪ En =
⋃n

i=1Ei = S, and
• E1, . . . , En are pairwise mutually exclusive: ∀i 6= j, Ei ∩ Ej = ∅

– Note that for any event A (with A 6= ∅, A 6= S): A and AC partition S

(p) Law of Total Probability (LTP): Suppose A1, . . . , An partition S and let B be any event. Then
P (B) =

∑n
i=1 P (B ∩Ai) =

∑n
i=1 P (B | Ai)P (Ai)

(q) Bayes Theorem with LTP: Suppose A1, . . . , An partition S and let B be any event. Then P (A1|B) =
P (B | A1)P (A1)∑n
i=1 P (B | Ai)P (Ai)

. In particular, P (A|B) =
P (B | A)P (A)

P (B | A)P (A) + P (B | AC)P (AC)

(r) Chain Rule: Suppose A1, ..., An are events. Then,

P (A1 ∩ ... ∩An) = P (A1)P (A2|A1)P (A3|A1 ∩A2)...P (An|A1 ∩ ... ∩An−1)

(s) Conditional Independence: Events E and F are conditionally independent given event G (with P (G) >
0) iff P (E∩F |G) = P (E|G)P (F |G), or equivalently P (F |G) = P (F |E∩G), or equivalently P (E|G) =
P (E|F ∩G)
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1. Discrete Random Variables
(a) Random Variable (rv): A numeric function X : Ω → R of the outcome.

(b) Range/Support: The support/range of a random variable X, denoted ΩX , is the set of all possible
values that X can take on.

(c) Discrete Random Variable (drv): A random variable taking on a countable (either finite or countably
infinite) number of possible values.

(d) Probability Mass Function (pmf) for a discrete random variable X: a function pX : ΩX → [0, 1]
with pX (x) = P (X = x) that maps possible values of a discrete random variable to the probability of
that value happening, such that

∑
x pX(x) = 1.

(e) Expectation (expected value, mean, or average): The expectation of a discrete random variable is
defined to be E[X] =

∑
x xpX(x) =

∑
x xP (X = x). The expectation of a function of a discrete random

variable g(X) is E[g(X)] =
∑

x g(x)pX(x).

(f) Linearity of Expectation: Let X and Y be random variables, and a, b, c∈ R. Then, E[aX + bY + c] =
aE[X] + bE[Y ] + c.

(g) Variance: Let X be a random variable and µ = E[X]. The variance of X is defined to be Var(X) =
E
[
(X − µ)2

]
. Notice that since this is an expectation of a nonnegative random variable ((X − µ)2),

variance is always nonnegative. With some algebra, we can simplify this to Var(X) = E
[
X2
]
− E[X]2.

(h) Standard Deviation: Let X be a random variable. We define the standard deviation of X to be the
square root of the variance, and denote it σ =

√
Var(X).

(i) Property of Variance: Let a, b ∈ R and let X be a random variable. Then, Var(aX + b) = a2Var(X).

(j) Independence: Random variables X and Y are independent, written X⊥Y , iff

∀x∀y, P (X = x ∩ Y = y) = P (X = x)P (Y = y)

In this case, we have E[XY ] = E[X]E[Y ] (the converse is not necessarily true).

(k) i.i.d. (independent and identically distributed): Random variables X1, . . . , Xn are i.i.d. (or iid) iff
they are independent and have the same probability mass function.

(l) Variance of Independent Variables: If X⊥Y , Var (X + Y ) = Var (X) + Var(Y ). This depends on
independence, whereas linearity of expectation always holds. Note that this combined with the above
shows that ∀a, b, c ∈ R and if X⊥Y , Var(aX + bY + c) = a2Var(X) + b2Var(Y ).

2. Zoo of Discrete Random Variables
(a) Uniform: X ∼ Uniform(a, b) (Unif(a, b) for short), for integers a ≤ b, iff X has the following probability

mass function:
pX (k) =

1

b− a+ 1
, k = a, a+ 1, . . . , b

E[X] = a+b
2 and Var(X) = (b−a)(b−a+2)

12 . This represents each integer from [a, b] to be equally likely. For
example, a single roll of a fair die is Uniform(1, 6).

(b) Bernoulli (or indicator): X ∼ Bernoulli(p) (Ber(p) for short) iff X has the following probability mass
function:

pX (k) =

{
p, k = 1

1− p, k = 0
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E[X] = p and Var(X) = p(1− p). An example of a Bernoulli r.v. is one flip of a coin with P (head) = p.
By a clever trick, we can write

pX (k) = pk (1− p)1−k , k = 0, 1

(c) Binomial: X ∼ Binomial(n, p) (Bin(n, p) for short) iff X is the sum of n iid Bernoulli(p) random variables.
X has probability mass function

pX (k) =

(
n

k

)
pk (1− p)n−k , k = 0, 1, . . . , n

E[X] = np and Var(X) = np(1 − p). An example of a Binomial r.v. is the number of heads in n
independent flips of a coin with P (head) = p. Note that Bin(1, p) ≡ Ber(p). As n → ∞ and p →
0,with np = λ, then Bin (n, p) → Poi(λ). If X1, . . . , Xn are independent Binomial r.v.’s, where Xi ∼
Bin(Ni, p), then X = X1 + . . .+Xn ∼ Bin(N1 + . . .+Nn, p).

(d) Geometric: X ∼ Geometric(p) (Geo(p) for short) iff X has the following probability mass function:

pX (k) = (1− p)k−1 p, k = 1, 2, . . .

E[X] = 1
p and Var(X) = 1−p

p2
. An example of a Geometric r.v. is the number of independent coin flips

up to and including the first head, where P (head) = p.

(e) Negative Binomial: X ∼ NegativeBinomial(r, p) (NegBin(r, p) for short) iff X is the sum of r iid
Geometric(p) random variables. X has probability mass function

pX (k) =

(
k − 1

r − 1

)
pr (1− p)k−r , k = r, r + 1, . . .

E[X] = r
p and Var(X) = r(1−p)

p2
. An example of a Negative Binomial r.v. is the number of independent

coin flips up to and including the rth head, where P (head) = p. If X1, . . . , Xn are independent Negative
Binomial r.v.’s, where Xi ∼ NegBin(ri, p), then X = X1 + . . .+Xn ∼ NegBin(r1 + . . .+ rn, p).

(f) Poisson: X ∼ Poisson(λ) (Poi(λ) for short) iff X has the following probability mass function:

pX (k) = e−λλ
k

k!
, k = 0, 1, . . .

E[X] = λ and Var(X) = λ. An example of a Poisson r.v. is the number of people born during a particular
minute, where λ is the average birth rate per minute. If X1, . . . , Xn are independent Poisson r.v.’s, where
Xi ∼ Poi(λi), then X = X1 + . . .+Xn ∼ Poi(λ1 + . . .+ λn).

(g) Hypergeometric: X ∼ HyperGeometric(N,K, n) (HypGeo(N,K, n) for short) iff X has the following
probability mass function:

pX (k) =

(
K
k

)(
N−K
n−k

)(
N
n

) , k = max{0, n+K −N}, . . . ,min {K,n}

E[X] = nK
N . This represents the number of successes drawn, when n items are drawn from a bag with

N items (K of which are successes, and N − K failures) without replacement. If we did this with
replacement, then this scenario would be represented as Bin

(
n, KN

)
.
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3. Continuous Random Variables
(a) Cumulative Distribution Function (cdf): For any random variable (discrete or continuous) X, the

cumulative distribution function is defined as FX (x) = P (X ≤ x). Notice that this function must be
monotonically nondecreasing: if x < y then FX(x) ≤ FX(y), because P (X ≤ x) ≤ P (X ≤ y). Also
notice that since probabilities are between 0 and 1, that 0 ≤ FX(x) ≤ 1 for all x, with limx→−∞ FX(x) = 0
and limx→+∞ FX(x) = 1.

(b) Continuous Random Variable: A continuous random variable X is one for which its cumulative distribu-
tion function FX(x) : R → R is continuous everywhere. A continuous random variable has an uncountably
infinite number of values.

(c) Probability Density Function (pdf or density): Let X be a continuous random variable. Then the
probability density function fX(x) : R → R of X is defined as fX(x) = d

dxFX (x). Turning this around,
it means that FX(x) = P (X ≤ x) =

∫ x
−∞ fX (t) dt. From this, it follows that P (a ≤ X ≤ b) =

FX(b) − FX(a) =
∫ b
a fX(x)dx and that

∫∞
−∞ fX(x)dx = 1. From the fact that FX(x) is monotonically

nondecreasing it follows that fX(x) ≥ 0 for every real number x.
If X is a continuous random variable, note that in general fX (a) 6= P (X = a), since P (X = a) =
FX(a)− FX(a) = 0 for all a. However, the probability that X is close to a is proportional to fX (a): for
small δ, P

(
a− δ

2 < X < a+ δ
2

)
≈ δfX(a).

(d) i.i.d. (independent and identically distributed): Random variables X1, . . . , Xn are i.i.d. (or iid) if
they are independent and have the same probability mass function or probability density function.

(e) Univariate: Discrete to Continuous:
Discrete Continuous

PMF/PDF pX(x) = P (X = x) fX(x) 6= P (X = x) = 0

CDF FX (x) =
∑

t≤x pX(t) FX (x) =
∫ x
−∞ fX (t) dt

Normalization
∑

x pX(x) = 1
∫∞
−∞ fX (x) dx = 1

Expectation E[g(X)] =
∑

x g(x)pX(x) E[g(X)] =
∫∞
−∞ g(x)fX (x) dx

(f) Standardizing: Let X be any random variable (discrete or continuous, not necessarily normal), with
E[X] = µ and Var(X) = σ2. If we let Y = X−µ

σ , then E[Y ] = 0 and Var(Y ) = 1.

(g) Closure of the Normal Distribution: Let X ∼ N (µ, σ2). Then, aX + b ∼ N (aµ+ b, a2σ2). That is,
linear transformations of normal random variables are still normal.

(h) “Reproductive” Property of Normals: Let X1, . . . , Xn be independent normal random variables with
E[Xi] = µi and Var(Xi) = σ2

i . Let a1, . . . , an∈ R and b∈ R. Then,

X =

n∑
i=1

(aiXi + b) ∼ N

(
n∑

i=1

(aiµi + b),

n∑
i=1

a2iσ
2
i

)
There’s nothing special about the parameters – the important result here is that the resulting random
variable is still normally distributed.

(i) Law of Total Probability (Continuous): Let X,Y be continuous random variables. Then,

fX(x) =

∫ ∞

−∞
fX,Y (x, y)dy =

∫ ∞

−∞
fX|Y (x|y)fY (y)dy

(j) Convolution (Discrete): Let X,Y be independent discrete random variables, and Z = X + Y be their
convolution. Then,

pZ(z) = P (X + Y = z) =
∑
x

P (Y = z −X|X = x)P (X = x)
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=
∑
x

P (Y = z − x)P (X = x) =
∑
x

pX(x)pY (z − x)

(k) Convolution (Continuous): Let X,Y be independent continuous random variables, and Z = X + Y be
their convolution. Then,

FZ(z) = P (X + Y ≤ z) =

∫ ∞

−∞
P (Y ≤ z −X|X = x)fX(x)dx =

∫ ∞

−∞
FY (z − x)fX(x)dx

Hence, fZ(z) = F ′
Z(z) =

∫∞
−∞ fY (z − x)fX(x)dx.

(l) Multivariate: Discrete to Continuous:
Discrete Continuous

Joint PMF/PDF pX,Y (x, y) = P (X = x, Y = y) fX,Y (x, y) 6= P (X = x, Y = y)

Joint CDF FX,Y (x, y) =
∑

t≤x,s≤y pX,Y (t, s) FX,Y (x, y) =
∫ x
−∞

∫ y
−∞ fX,Y (t, s) dsdt

Normalization
∑

x,y pX,Y (x, y) = 1
∫∞
−∞

∫∞
−∞ fX,Y (x, y) dxdy = 1

Marginal PMF/PDF pX(x) =
∑

y pX,Y (x, y) fX(x) =
∫∞
−∞ fX,Y (x, y)dy

Expectation E[g(X,Y )] =
∑

x,y g(x, y)pX,Y (x, y) E[g(X,Y )] =
∫∞
−∞

∫∞
−∞ g(x, y)fX,Y (x, y)dxdy

Conditional PMF/PDF pX|Y (x|y) =
pX,Y (x,y)
pY (y) fX|Y (x|y) =

fX,Y (x,y)
fY (y)

Conditional Expectation E[X | Y = y] =
∑

x xpX|Y (x|y) E[X | Y = y] =
∫∞
−∞ xfX|Y (x|y)dx

Independence ∀x, y, pX,Y (x, y) = pX(x)pY (y) ∀x, y, fX,Y (x, y) = fX(x)fY (y)

(m) Law of Total Expectation: Let X be a random variable (discrete or continuous). If Y is a discrete
random variable, then

E[X] =
∑
y

E[X | Y = y] pY (y)

If Y is a continuous random variable, then

E[X] =

∫ ∞

−∞
E[X | Y = y] fY (y)dy

4. Zoo of Continuous Random Variables
(a) Uniform: X ∼ Uniform(a, b) iff X has the following probability density function:

fX (x) =

{
1

b−a if x ∈ [a, b]

0 otherwise

E[X] = a+b
2 and Var(X) = (b−a)2

12 . This represents each real number from [a, b] to be equally likely.

(b) Exponential: X ∼ Exponential(λ) iff X has the following probability density function:

fX (x) =

{
λe−λx if x ≥ 0
0 otherwise

E[X] = 1
λ and Var(X) = 1

λ2 . FX (x) = 1 − e−λx for x ≥ 0. The exponential random variable is the
continuous analog of the geometric random variable: it represents the waiting time to the next event,
where λ > 0 is the average number of events per unit time. Note that the exponential measures how
much time passes until the next event (any real number, continuous), whereas the Poisson measures how
many events occur in a unit of time (nonnegative integer, discrete). The exponential random variable X
is memoryless:

for any s, t ≥ 0, P (X > s+ t | X > s) = P (X > t)

The geometric random variable also has this property.
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(c) Normal (Gaussian, “bell curve”): X ∼ N (µ, σ2) iff X has the following probability density function:

fX (x) =
1

σ
√
2π

e−
1
2

(x−µ)2

σ2 , x ∈ R

E[X] = µ and Var(X) = σ2. The “standard normal” random variable is typically denoted Z and has
mean 0 and variance 1: if X ∼ N (µ, σ2), then Z = X−µ

σ ∼ N (0, 1). The CDF has no closed form, but
we denote the CDF of the standard normal as Φ(z) = FZ (z) = P (Z ≤ z). Note from symmetry of the
probability density function about z = 0 that: Φ(−z) = 1− Φ(z).
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