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1. (a) The number of ways to order 10 distinct objects is 10!. Common mistake: treating songs by the
same artist as indistinguishable.

(b) Group the two songs by artist A. There are 2 ways to order this group. Then if this group is treated
as a single object, we have to order 9 objects, which can be done in 9! ways. This gives a total of
2 · 9! ways to order the songs such that the two songs from artist A are played in a row. Divide by
the sample space (from part a) to get

2 · 9!
10!

= 1/5

Common mistakes: forgetting to count the 2 ways of ordering the two songs by artist A. Only
counting the number of ways to place the songs by artist A and ignoring the ordering of the rest
of the songs. Only computing the probability of the two songs playing first (instead of in a row
anywhere among the 10 songs).

(c) Let A be the event that the two songs by artist A are played in a row, and let B be the event that the
two songs by artist B are played in a row. Using the inclusion-exclusion principle, we have

P(A ∪ B) = P(A) + P(B) − P(A ∩ B)

P(A) = P(B) = 1/5 from part (b). To compute P(A∩ B), we follow a similar approach to part (b):
First, group the two songs by A in one group and the two songs by B in another group. For each
of these two groups, there are 2 ways to order the two songs. Then this leaves us with 8 distinct
things to order (the 6 other songs, the group of the two A songs, and the group of the two B songs),
which can be done 8! ways. So P(A ∩ B) = 2 · 2 · 8!/10!, and

P(A ∪ B) = 1/5 + 1/5 − 2 · 2 · 8!/10! = 2/5 − 2/45 = 16/45

Common mistakes: just multiplying the answer to part (b) by 2. This only works if A and B are
mutually exclusive, which they are not. Claiming P(A ∩ B) = P(A) · P(B), which is not true
here because A and B are not independent. Many people were slightly off in their computations
of P(A ∩ B), miscounting the final number of things to order, or forgetting to order the 2-song
groups, etc.

(d) There are 5! ways to arrange the 5 artists in the first 5 songs. This determines the order of artists
in the last five songs, so there is only one way to choose that order. For each artist, we must order
the artist’s two songs to decide which song to put in the first half (2! = 2 choices). Therefore, the
total number of arrangements is 5! · (2!)5.
Common mistake: leaving out the ordering of the songs, or only multiplying by 2! once.

2. (a) 108. There are 10 options for each of the 8 digits in the passcode.
(b) 106

108 = 0.01. They can try 106 passwords in one second, and each passcode is equally likely. Note
that we are trying passwords sequentially, not randomly, so using the geometric distribution was
not appropriate here.

(c)
∞∑
i=1

©­«P(X = i) ©­«
i−1∑
j=0

2jª®¬ª®¬ =
∞∑
i=1

(
1 − 1

1000

) i−1 (
1

1000

)
(2i − 1)

3. (a) (
2050

2

)
=

2049∑
n=0

n =
2050∑
n=1

2050 − n

Common mistakes: 2050 · 2049 (order shouldn’t matter), off by 1 on summation bounds, product
instead of summation.
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(b) (
50
2

)
=

49∑
n=0

n =
50∑
n=1

50 − n

Commonmistakes: 50 ·49 (order shouldn’t matter), off by 1 on summation bounds, product instead
of summation.

(c) (
2050

2

)
/5 −

(
50
2

)
+ 1 =

(
2050

2

)
/5 −

(
50
2

)
We gave credit for correct setup and technique, even if you used incorrect values found in (a) and
(b).

(d)
n∑

i=d

(
n
i

) (
1
5

) i (4
5

)n−i
= 1 −

d∑
i=0

(
n
i

) (
1
5

) i (4
5

)n−i
where n =

(2050
2

)
−

(50
2
)
. We accepted approximations with a normal distribution as long as it

was mentioned that it was an approximation, and a justification was given for why a normal
approximation is appropriate. We also accepted bounds beginning or ending at d + 1 instead of d.
Common mistakes: using Poisson or negative binomial; incorrect bounds; incorrect binomial
form; finding the probability that a song receives exactly 1/5 of votes instead of > 1/5.

(e) Let S2 be the event that Shazam predicts X2, the Andy Williams song. P(S2 | X1) = P(Shazam is
incorrect) = 1 − q, and P(S2 |X2) = P(Shazam is correct) = q. Using Bayes’ theorem:

P(X1 | S2) =
P(S2 | X1)P(X1)

P(S2 | X1)P(X1) + P(S2 | X2)P(X2)

=
(1 − q)0.8

(1 − q)0.8 + q · 0.2

P(X2 | S2) =
P(S2 | X2)P(X2)

P(S2 | X1)P(X1) + P(S2 | X2)P(X2)

=
q · 0.2

(1 − q)0.8 + q · 0.2

Common mistake: trying to find P(X1 | Shazam is correct). We don’t know that the prediction is
correct, just that it predicted the Andy Williams song.

4. (a) For X ∼ N(0, 2),

P(X ≥ 1.2) = P(X − 0
√

2
≥ 1.2 − 0
√

2
)

= P(Z ≥ 1.2
√

2
)

= 1 − P(Z ≤ 1.2
√

2
)

= 1 − P(Z ≤ 0.85)
= 0.1977

(b) For X ∼ Uni(0, 10) and Y ∼ Uni(0, 10),

fX (x) =
{

1
10 0 ≤ x ≤ 10
0 otherwise
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fY (y) =
{

1
10 0 ≤ y ≤ 10
0 otherwise

Since X and Y are independent,

fX,Y (x, y) = fX (x) · fY (y) =
{

1
100 0 ≤ x, y ≤ 10
0 otherwise

(c) Let R be the event that the user is a robot, C be the position that the user clicked, and D being the
position’s distance to the center.

P(C = (3, 3)|R) = P(C = (3, 3)|R)P(R)
P(C = (3, 3)|R)P(R) + P(C = (3, 3)|RC)P(RC)

= lim
ε→0

ε fD |R(2)P(R)
ε fD |R(2)P(R) + ε fC |RC ((3, 3))P(RC)

= lim
ε→0

fD |R(2)P(R)
fD |R(2)P(R) + fC |RC ((3, 3))P(RC)

=
fC |R(2)0.2

fD |R(2)0.2 + fC |RC ((3, 3))0.8

=

1√
4π

e
(2−0)2

2·2 0.2

1√
4π

e
(2−0)2

2·2 0.2 + 1
1000.8

=

1√
4π

e−10.2
1√
4π

e−10.2 + 1
1000.8

Since D = 2 is not exactly equivalent to C = (3, 3), we also gave credit if you divided fD |R(2) by
4π, the circumference of the circle with radius 2!

5. (a) Standard deviation =
√

Var(X) = 1
λ

Mean = E[X] = 1
λ

Using the CDF of an exponential FX (x) = 1 − e−λx , we get P(0 < x < 2
λ ) = FX ( 2λ ) = 1 − e−2.

(b) Let M be the maximum of X1 and X2. The CDF of M , FM (k), is the probability that both X1 and
X2 are at most k, so we need:

P(M ≤ k) = P(X1 ≤ k ∩ X2 ≤ k)
= P(X1 ≤ k) · P(X2 ≤ k) by independence

= (1 − e−kλ1 )(1 − e−kλ2 )

6. (a) P(no drop in any given minute) = 1− p. The number of requests in each minute, and therefore the
probability of dropping a request in each minute, are independent random variables, so

P(no drops in whole hour) = (1 − p)60 > 0.99

p < 1 − (0.99) 1
60[

or 1 − 60√0.99, or 1 − e( 1
60 ln 0.99)

]
This is equal to P(X = 0) for X ∼ Bin(60, p). (Common mistake: using 15 million as the number
of trials for this binomial.) Since n = 60 is large enough and p is small, we gave almost full
credit for a correct Poisson approximation (p < − 1

60 ln 0.99). However, note that approximation is
unnecessary here and doesn’t really simplify the answer.
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(b) Let Y be a random variable representing the number of requests received in a particular minute.
Y ∼ Poi(λ), with λ = 15,000,000. Each server can handle C = 10,000 requests per minute, so the
probability of dropping a request in any given minute is

p = P(Y > CK) = 1 − P(Y ≤ CK)

= 1 −
CK∑
i=0

pY (i)

= 1 −
CK∑
i=0

e−λ
λi

i!

From part (a) we have p < 1 − (0.99) 1
60 , so

p = 1 −
CK∑
i=0

e−λ
λi

i!
< 1 − (0.99) 1

60

10 000K∑
i=0

e−15 000 000 15 000 000i

i!
> (0.99) 1

60

(There isn’t a closed-form solution for K in terms of elementary operations; we gave full credit
for getting to this inequality.)
Part (d) explores the use of the normal approximation, which is applicable for this value of λ, but
we asked for an exact solution in part (a), so we took off a bit more for using an approximation
here.

(c) We start by approximating X ∼ P(1000) with Y ∼ N(1000, 1000):

p(990 < X < 1000) = P(990.5 < Y < 999.5) continuity correction
= P(Y < 999.5) − P(Y < 990.5)

= P
(
Y − 1000
√

1000
<

999.5 − 1000
√

1000

)
−

P
(
Y − 1000
√

1000
<

990.5 − 1000
√

1000

)
= P

(
Z <

−0.5
√

1000

)
− P

(
Z <

−9.5
√

1000

)
= Φ

(
−0.5
√

1000

)
− Φ

(
−9.5
√

1000

)
= 1 − Φ

(
0.5
√

1000

)
−

(
1 − Φ

(
9.5
√

1000

))
= Φ

(
9.5
√

1000

)
− Φ

(
0.5
√

1000

)
(d) Let X be a random variable which represents the number of requests in a minute. Since we receive

on average 15 million requests per minute, X ∼ Poi(λ = 15 million).
Following from part (c), since the value of λ for X is larger than 1,000, we can approximate X
using a normal that matches its mean and variance. Since both the mean and variance of a Poisson
are equal to λ, X ≈ Y where Y ∼ N(µ = 15 million, σ2 = 15 million).
We want to choose number of servers K such that the probability that we get more than 10,000 ·K
requests in one minute is equal to p from part (a):
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p = P(X ≤ 10 000K)
≈ P(Y < 10 000K + 0.5) continuity correction

= P
(
Z <

10 000K + 0.5 − λ
√
λ

)
transform to standard normal

= Φ

(
10 000K + 0.5 − λ

√
λ

)
since Φ is the CDF of Z

Φ
−1(p) = 10 000K + 0.5 − λ

√
λ

using the probit function

K =
Φ−1(p)

√
λ + λ − 0.5

10 000

The expression above would get full credit. For curiosity, let’s find out the numeric answer:

K =
Φ−1(p)

√
λ + λ − 0.5

10 000

K =
Φ−1( 60√0.99)

√
15 000 000 + 15 000 000 − 0.5

10 000

K =
3.5866 · 3872.98 + 15 000 000 − 0.5

10 000
K = d1501.4e = 1502

Interestingly, with 1500 servers, you have a 0.5 chance of dropping a request. With just two more
servers the probability of not-dropping a request increases to 0.9998 (which is the numeric value
for p).
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