05: Independence

Lisa Yan April 15, 2020

Quick slide reference

- 3 Generalized Chain Rule 63 Contract Contr
-
- 16 Independent Trials 05c_independence_ii

9 Independence 05b_independence_i

21 Exercises and deMorgan's Laws LIVE

05a_chain

Generalized Chain Rule

Review

Definition of conditional probability:

$$
P(E|F) = \frac{P(EF)}{P(F)}
$$

The Chain Rule:

$$
P(EF) = P(E|F)P(F)
$$

= $P(E) P(E|F)$
= $P(E) P(F|E)$

Generalized Chain Rule

$P(E_1E_2E_3...E_n)$ $= P(E_1)P(E_2|E_1)P(E_3|E_1E_2) \dots P(E_n|E_1E_2 \dots E_{n-1})$

Lisa Yan, CS109, 2020

Quick check

You are going to a friend's Halloween party.

Let $C =$ there is candy $M =$ there is music

 $E =$ no one wears your costume $W =$ you wear a costume

An awesome party means that all of these events must occur.

What is P (awesome party) = P (CMEW)?

- A. $P(C)P(M|C)P(E|CM)P(W|CME)$
- B. $P(M)P(C|M)P(E|MC)P(W|MCE)$
- C. $P(W)P(E|W)P(CM|EW)$
- D. A, B, and C
- E. None/other

Quick check

You are going to a friend's Halloween party.

Let $C =$ there is candy $M =$ there is music

 $E =$ no one wears your costume $W =$ you wear a costume

An awesome party means that all of these events must occur.

What is P (awesome party) = P ($CMEW$)?

- A. $P(C)P(M|C)P(E|CM)P(W|CME)$ $= P (CMEM)$ B. $P(M)P(C|M)P(E|MC)P(W|MCE) = P(MC)E W)$
- \Rightarrow C. $P(W)P(E|W)P(CM|EW)$
	- A, B, and C
		- E. None/other

Chain Rule is a way of introducing "order" and "procedure" into probability.

 $=$ P $(WECM)$

Think of the children

Two parents both have an (A, a) gene pair.

- Each parent will pass on one of their genes (each gene equally likely) to their child.
- The probability of a single child having curly hair (recessive trait) is 0.25.
- There are three children.

What is the probability that all three children have curly hair?

Lisa Yan, CS109, 2020

Let E_1, E_2, E_3 be the events that child 1, 2, and 3 have curly hair,

Let
$$
E_1, E_2, E_3
$$
 be the events that child 1, 2, $P(E_1E_2E_3) = P(E_1)P(E_2|E_1)P(E_3|E_1E_2)$

\nand 3 have curly hair, respectively.

\n Ψ $\$

aa

 $A\!\!\!\perp\!\!\!\perp$, Aa_laA

05b_independence_i

Independence I

 \mathcal{Z}

 $10.$

Two events E and F are defined as independent if: $P(EF) = P(E)P(F)$

Otherwise E and F are called **dependent** events.

If E and F are independent, then:

 $P(E|F) = P(E)$

Intuition through proof

Statement:

If E and F are independent, then $P(E|F) = P(E)$.

Proof:

$$
P(E|F) = \frac{P(EF)}{P(F)}
$$

$$
= \frac{P(E)P(F)}{P(F)}
$$

$$
= P(E)
$$

Definition of conditional probability

Independence of E and F

Taking the bus to cancellation city

events E and F

Knowing that F happened does not change our belief that E happened.

Independent $P(EF) = P(E)P(F)$

Lisa Yan, CS109, 2020

Dice, our misunderstood friends

- Roll two 6-sided dice, yielding values D_1 and D_2 .
- Let event $E: D_1 = 1$ event F : $D_2 = 6$ event $G: \quad D_1^- + D_2 = 5 \qquad G = \{(1,4), (2,3), (3,2), (4,1)\}$

1. Are E and F independent? 2. Are E and G independent?

 $EF=\{(\mathbf{l},\mathbf{b})\}$ $P(E) = 1/6$ $P(F) = 1/6$ $P(EF) = 1/36$

independent

$$
P(E) = 1/6
$$

\n
$$
P(G) = 4/36 = 1/9
$$

\n
$$
P(EG) = 1/36 \neq P(E)P(G)
$$

\n
$$
\bigtimes \text{dependent}
$$

\n
$$
\bigvee_{i=1}^{n} P(E)P(G)
$$

events E and $F \rightarrow P(E|F) = P(E)$ Independent $P(EF) = P(E)P(F)$

Generalizing independence

Three events E, F , and G are independent if:

$$
P(EFG) = P(E)P(F)P(G), \text{ and } P(EF) = P(E)P(F), \text{ and } P(EG) = P(E)P(G), \text{ and } P(FG) = P(F)P(G)
$$
\nfor $r = 1, ..., n$:
\nfor every subset $E_1, E_2, ..., E_r$:

 H_{μ} H_{μ} H_{μ}

n events $E_1, E_2, ..., E_n$ are independent if:

for every subset $E_1, E_2, ..., E_r$: $P(E_1, E_2, ..., E_r) = P(E_1)P(E_2) \cdots P(E_r)$

Independent trials:

Outcomes of n separate flips of a coin are all independent of one another. Each flip in this case is a trial of the experiment.

Dice, increasingly misunderstood (still our friends)

- Each roll of a 6-sided die is an independent trial.
- Two rolls: D_1 and D_2 .
- Let event $E: D_1 = 1$ event F : $D_2 = 6$ event $G: D_1 + D_2 = 7$

 $G = \{(1,6), (2,5), (3,4), (4,3), (5,2), (6,1)\}\$

1. Are E and F 2. Are E and G independent? ✅ $EF=2(1,63)$

independent?

3. Are F and G 4. Are E, F, G independent? independent?

 $P(EF) = 1/36$ $=$ $\sqrt{6}$ \cdot $\sqrt{6}$

Dice, increasingly misunderstood (still our friends)

- Each roll of a 6-sided die is an independent trial.
- Two rolls: D_1 and D_2 .
- Let event $E: D_1 = 1$ event F : $D_2 = 6$ event $G: D_1 + D_2 = 7$

$$
\frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=
$$

$$
\mathcal{P}(6) = \frac{16}{|5|} = \frac{6}{36} = \frac{1}{6}
$$

G = {(1,6), (2,5), (3,4), (4,3), (5,2), (6,1)}

1. Are E and F **v** independent? $P(F) = \bigcup_{b}$ $P(EF) = 1/36$

2. Are E and G 3. Are F and G 4. Are E, F, G ▼independent? independent? independent? ★independent? independent? $E6 = \left\{ (\dot{1}, b) \right\}$ $F6 = \left\{ (1, \dot{6}) \right\}$ $P(F6) = \frac{1}{8!} F \frac{1}{6} \cdot \frac{1}{6} V_6$ $P(E_6) = 1/26 = 1/6.16$ = $P(F_6) = 1/26 = 1/6.116$

Pairwise independence is not sufficient to prove independence of >2 events!

05b_independence_ii

Independence II

Independent trials

We often are interested in experiments consisting of n independent trials.

- n trials, each with the same set of possible outcomes
- n -way independence: an event in one subset of trials is independent of events in other subsets of trials

Examples:

- Flip a coin n times
- Roll a die n times
- Send a multiple choice survey to n people
- Send n web requests to k different servers

Think of the children as independent trials

Two parents both have an (A, a) gene pair.

- Each parent will pass on one of their genes (each gene equally likely) to their child.
- The probability of a single child having curly hair (recessive trait) is 0.25.

There are three children. Each child is an independent trial. \leq

What is the probability that all three children have curly hair?

Let E_1, E_2, E_3 be the events that child 1, 2, and 3 have curly hair, respectively.

$$
P(E_1E_2E_3) = P(E_1)P(E_2|E_1)P(E_3|E_1E_2)
$$

= $P(E_1)P(E_2)P(E_3)P(E_3)P(E_3)P(E_3)$
= $P(E_1)P(E_2)P(E_3)$

Network reliability

Consider the following parallel network:

- \cdot *n* independent routers, each with probability p_i of functioning (where $1 \le i \le n$)
- $E =$ functional path from A to B exists.

What is $P(E)$?

Network reliability

Consider the following parallel network:

- \cdot n independent routers, each with probability p_i of functioning (where $1 \leq i \leq n$)
- $E =$ functional path from A to B exists.

What is $P(E)$?

A
\n
$$
p_1
$$

\n p_2
\n p_3
\n p_n
\n p_n

 $P(E) = P(\geq 1$ one router works) $= 1 - P(\text{all routers fail}) = 1 - P\left(\text{R1fail} \cap R_{2} \text{fail} \cap \cdots \cap \text{Rn} \text{fail}\right)$ $= 1 - (1 - p_1)(1 - p_2) \cdots (1 - p_n)$ $= 1 - | (1 - p_i)$ $i=1$ \overline{n} ≥ 1 with independent trials: take complement

(live) 05: Independence

Lisa Yan April 15, 2020

Review

Two events E and F are defined as independent if:

$$
P(EF) = P(E)P(F)
$$

For independent events E and F ,

• $P(E|F) = P(E)$

Think Slide 24 has two q
Think yourself. We'll go o yourself. We'll go o

Post any clarification

https://us.edstem.org/

Think by yourself: 2

Independence?

- 1. Two events E and F are independent if:
	- A. Knowing that F happens means that E can't happen.
	- B. Knowing that F happens doesn't change probability that E happened.

Choose $A_{B,p}^{\sigma}$ both

2. Are E and F independent in the following pictures?

Independence?

Assuring P(E) = 0 1. Two events E and F are independent if: $P(E|F) = O^{f(\frac{1}{k})}$ \mathbb{X} . Knowing that F happens means that E can't happen. \widehat{B} . Knowing that F happens doesn't change probability that E happened. $P(E|F) = P(E)$ 2. Are E and F independent in the following pictures?

Two events E and F are defined as independent if:

$$
P(EF) = P(E)P(F)
$$

For independent events E and F ,

- $P(E|F) = P(E)$
- E and F^C are independent.

new

Independence of complements

Statement:

If E and F are independent, then E and F^C are independent.

Proof:

 $P(EF^{C}) = P(E) - P(EF)$ $= P(E) - \widetilde{P(E)}P(F)$ $= P(E)[1 - P(F)]$ $= P(E)P(F^C)$ E and F^C are independent $P(E|F^c) = P(E)$
 $P(E|F) = P(E)$

Intersection Independence of E^{ϵ} and F Factoring Complement

Definition of independence

Knowing that F did or didn't happen does not change our belief that E happened.

Review

Two events E and F are defined as independent if:

$$
P(EF) = P(E)P(F)
$$

For independent events E and F ,

- $P(E|F) = P(E)$
- E and F^C are independent

Independent trials are when we observe independent sub-experiments, each of which has the same set of possible outcomes.

Breakout Rooms

Check out the quest (Slide 30). Post an

https://us.edstem.org/d

Breakout rooms: 5

(biased) Coin Flips

Suppose we flip a coin n times. Each coin flip is an independent trial with probability p of coming up heads. Write an expression for the following:

- $P(n \text{ heads on } n \text{ coin flips})$
- $P(n \text{ tails on } n \text{ coin flips})$
- P(first k heads, then $n k$ tails)
- P (exactly k heads on n coin flips)

(biased) Coin Flips

Suppose we flip a coin n times. Each coin flip is an independent trial with probability p of coming up heads. Write an expression for the following:

- $P(n \text{ heads on } n \text{ coin flips})$
- $P(n \text{ tails on } n \text{ coin flips})$
- 3. P(first k heads, then $n k$ tails)
- *P*(exactly k heads on n coin flips)

of mutually
$$
p^k(1-p)^{n-k}
$$

\n# of mutually P (a particular outcome's exclusive k heads on *n* coin flips)
\noutcomes

 $(1-p)^n$
 $P^{lc} (1-p)^{n-k}$ $\begin{cases} T\tau\tau\cdot H\cdot H\\ H\cdot H\tau\cdot T\\ H\tau H\tau\cdot H\tau \end{cases}$

Make sure you understand #4! It will come up again.

Interlude for jokes/announcements

Announcements

Free Online CTL Tutoring

CTL offers appointment tutoring for CS 109, in addition to tutor For more information and to schedule an appointment, visit our schedule page. We also have a variety of remote learning resources coaching [available to assist with all of your learning needs!](https://us.edstem.org/courses/109/discussion/27277%3Fcomment=93040)

Still confused about Monty Hall? Check out the code! https://us.edstem.org/courses/109/discussion/27277

Probability of events

Probability of events

Probability of events

Augustus De Morgan

Augustus De Morgan (1806–1871):

British mathematician who wrote the book *Formal Logic* (1847).

He looked remarkably similar to Jason Alexander (George from Seinfeld) (but that's not important right now)

Lisa Yan, CS109, 2020

De Morgan's Laws

DeMorgan's lets you switch from AND to OR.

In probability:
\n
$$
P(E_1 E_2 \cdots E_n)
$$
\n
$$
= 1 - P\left((E_1 E_2 \cdots E_n)^c \right)
$$
\n
$$
= 1 - P\left(\underbrace{E_1^c \cup E_2^c \cup \cdots \cup E_n^c}_{\text{Great if } E_i^c \text{ mutually exclusive!}} \right)
$$

$$
(E \cup F)^{C} = E^{C} \cap F^{C}
$$

$$
\left(\bigcup_{i=1}^{n} E_{i}\right)^{C} = \bigcap_{i=1}^{n} E_{i}^{C}
$$

$$
\mathbb{Z} \cap \mathbb{Z} \times \mathbb{Z}
$$

Great if E_i independent! **Stanford University** 38 In probability: $P(E_1 \cup E_2 \cup \cdots \cup E_n)$ $= 1 - P((E_1 \cup E_2 \cup \dots \cup E_n)^C)$ $= 1 - P(E_1^c E_2^c \cdots E_n^c)$

Think, then Breakout Rooms

Check out the quest (Slide 40). These a Post any clarification

https://us.edstem.org/d

Think by yourself: 2 Breakout rooms: 5

Hash table fun

What is $P(E)$ if

 m strings are hashed (unequally) into a hash table with n buckets.

1. $E =$ bucket 1 has ≥ 1 string hashed into it?

• Each string hashed is an *independent trial* w.p. p_i of getting hashed into bucket i.

2. $E =$ at least 1 of buckets 1 to k has ≥ 1 string hashed into it?

Hash table fun

- m strings are hashed (unequally) into a hash table with n buckets.
- Each string hashed is an *independent trial* w.p. p_i of getting hashed into bucket i.

What is $P(E)$ if

1. $E =$ bucket 1 has ≥ 1 string hashed into it?

```
\tilde{l}=\vert,...,MDefine S_i = string i is
 hashed into bucket 1
 S_i^C = string i is <u>not</u>
 hashed into bucket 1
                 P(S_i) = p_1P(S_i^C) = 1 - p_1
```
Hash table fun

- m strings are hashed (unequally) into a hash table with n buckets.
- Each string hashed is an independent trial w.p. p_i of getting hashed into bucket i.

What is $P(E)$ if 1. $E =$ bucket 1 has ≥ 1 string hashed into it?

WTF (not-real acronym for Want To Find):

WIF (IOU-Real acronym IOT WAIL IOTING):	S_i^C = string <i>i</i> is not hsched into bucket 1
$P(E) = P(S_1 \cup S_2 \cup \cdots \cup S_m)$	hsched into bucket 1
$= 1 - P((S_1 \cup S_2 \cup \cdots \cup S_m)^C)$	Complement
$= 1 - P(S_1^C S_2^C \cdots S_m^C)$	De Morgan's Law
$P(S_i) = p_1$	De Morgan's Law
$P(S_i^C) = 1 - p_1$	
$= 1 - (1 - p_1)^m$	S_i independent trials

Define S_i = string *i* is

hashed into bucket 1

 U_{m}

More hash table fun: Possible approach?

- m strings are hashed (unequally) into a hash table with n buckets.
- Each string hashed is an *independent trial* w.p. p_i of getting hashed into bucket i.

What is $P(E)$ if 1. $E =$ bucket 1 has ≥ 1 string hashed into it? 2. $E =$ at least 1 of buckets 1 to k has ≥ 1 string hashed into it?

$$
P(E) = P(F_1 \cup F_2 \cup \cdots \cup F_k)
$$

\n
$$
= 1 - P((F_1 \cup F_2 \cup \cdots \cup F_k)^c) \underbrace{C_{\text{sub-sub}}}
$$

\n
$$
= 1 - P(F_1^c)P(F_2^c) \cdots P(F_k^c)
$$

\n
$$
= 1 - P(F_1^c)P(F_2^c) \cdots P(F_k^c)
$$

\n
$$
= 1 - P(F_1^c)P(F_2^c) \cdots P(F_k^c)
$$

\n
$$
= \frac{P(\overline{F_1} \cup F_2^c) \cdots P(F_k^c)}{\frac{P(\overline{F_1} \cup F_2^c) \cdots P(\overline{F_k}^c)}{\frac{P(\overline{F_1} \cup F_2^c \cup F_1^c)}{\frac{P(\overline{F_1} \cup F_2^c)}{\frac{P(\overline{F_1} \cup F_2^c \cup F_1^c)}{\frac{P(\overline{F_1} \cup F_2
$$

Lisa Yan, CS109, 2020

Stanford University 43

 $\hat{L} = \int_{L} \cdots \int_{L} P$ budded

More hash table fun

- m strings are hashed (unequally) into a hash table with n buckets.
- Each string hashed is an independent trial w.p. p_i of getting hashed into bucket i.

What is $P(E)$ if 1. $E =$ bucket 1 has ≥ 1 string hashed into it? 2. $E =$ at least 1 of buckets 1 to k has ≥ 1 string hashed into it?

$$
P(E) = P(F_1 \cup F_2 \cup \cdots \cup F_k)
$$

\n
$$
= 1 - P((F_1 \cup F_2 \cup \cdots \cup F_k)^c)_{\text{a,cleob L+b k, have no string in it}} = 1 - P(F_1^c F_2^c \cdots F_k^c)
$$

\n
$$
= 1 - P(F_1^c F_2^c \cdots F_k^c)
$$

\n
$$
= P(\text{no strings hashed to buckets 1 to } k)
$$

\n
$$
= (P(\text{string hashed outside bits 1 to } k))^m
$$

\n
$$
= (1 - p_1 - p_2 \cdots - p_k)^m \underbrace{\downarrow}_{\text{a,deph}} \underbrace{\downarrow}_{\text{a,de
$$

The fun never stops with hash tables

- m strings are hashed (unequally) into a hash table with n buckets.
- Each string hashed is an *independent trial* w.p. p_i of getting hashed into bucket i.

What is $P(E)$ if

1. $E =$ bucket 1 has ≥ 1 string hashed into it?

2. $E =$ at least 1 of buckets 1 to k has ≥ 1 string hashed into it?

Looking for a challenge? \odot

The fun never stops with hash tables

- m strings are hashed (unequally) into a hash table with n buckets.
- Each string hashed is an independent trial w.p. p_i of getting hashed into bucket i.

What is $P(E)$ if

1. $E =$ bucket 1 has ≥ 1 string hashed into it?

- 2. $E =$ at least 1 of buckets 1 to k has ≥ 1 string hashed into it?
- 3. $E =$ each of \mathcal{L} buckets 1 to k has ≥ 1 string hashed into it?

Hint: Use Part 2's event definition:

Define F_i = bucket *i* has at least one string in it

The fun never stops with hash tables

- m strings are hashed (unequally) into a hash table with n buckets.
- Each string hashed is an independent trial w.p. p_i of getting hashed into bucket i.

What is $P(E)$ if 3. $E =$ each of or ϵ buckets 1 to k has ≥ 1 string hashed into it?

Define
$$
F_i = \text{bucket } i
$$
 has at least one string in it least one string in it least one string in it

\n
$$
= 1 - P\left(F_1 F_2 \cdots F_k\right)^c\right)
$$
\nComplement

\n
$$
= 1 - P\left(F_2^c \cup F_2^c \cup \dots \cup F_k^c\right)
$$
\nDe Morgan's Law

\n
$$
= 1 - P\left(\bigcup_{i=1}^k F_i^c\right) = 1 - \sum_{r=1}^k (-1)^{(r+1)} \sum_{i_1 < \dots < i_r} P\left(F_{i_1}^c F_{i_2}^c \dots F_{i_r}^c\right)
$$
\nwhere $P\left(F_{i_1}^c F_{i_2}^c \dots F_{i_r}^c\right) = (1 - p_{i_1} - p_{i_2} \dots - p_{i_r})^m$