05: Independence

Lisa Yan April 15, 2020

Quick slide reference

- 3 Generalized Chain Rule 63 Constants Communication Co
-
- 16 Independent Trials 05c_independence_ii

21 Exercises and deMorgan's Laws LIVE

9 Independence 05b_independence_i

05a_chain

Generalized Chain Rule

Review

Definition of conditional probability:

$$
P(E|F) = \frac{P(EF)}{P(F)}
$$

The Chain Rule:

$$
P(EF) = P(E|F)P(F)
$$

Generalized Chain Rule

$P(E_1E_2E_3...E_n)$ $= P(E_1)P(E_2|E_1)P(E_3|E_1E_2) \dots P(E_n|E_1E_2 \dots E_{n-1})$

Lisa Yan, CS109, 2020

Quick check

You are going to a friend's Halloween party.

Let $C =$ there is candy $M =$ there is music

 $W =$ you wear a costume

 $E =$ no one wears your costume

An awesome party means that all of these events must occur.

What is P (awesome party) = P ($CMWE$)?

- A. $P(C)P(M|C)P(W|CM)P(E|CMW)$
- B. $P(M)P(C|M)P(W|MC)P(E|MCW)$
- C. $P(W)P(E|W)P(CM|EW)$
- D. A, B, and C
- E. None/other

Quick check

You are going to a friend's Halloween party.

Let $C =$ there is candy $M =$ there is music

 $E =$ no one wears your costume $W =$ you wear a costume

An awesome party means that all of these events must occur.

What is P (awesome party) = P (CMEW)?

- A. $P(C)P(M|C)P(E|CM)P(W|CME)$
- B. $P(M)P(C|M)P(E|MC)P(W|MCE)$
- C. $P(W)P(E|W)P(CM|EW)$
- D. A, B, and C
- E. None/other

Chain Rule is a way of introducing "order" and "procedure" into probability.

Think of the children

Two parents both have an (A, a) gene pair.

- Each parent will pass on one of their genes (each gene equally likely) to their child.
- The probability of a single child having curly hair (recessive trait) is 0.25.
- There are three children.

What is the probability that all three children have curly hair?

Let E_1, E_2, E_3 be the events that child 1, 2, and 3 have curly hair, respectively. $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$

$$
P(E_1E_2E_3) = P(E_1)P(E_2|E_1)P(E_3|E_1E_2)
$$

05b_independence_i

Independence I

Two events E and F are defined as independent if: $P(EF) = P(E)P(F)$

Otherwise E and F are called <u>dependent</u> events.

If E and F are independent, then:

 $P(E|F) = P(E)$

Intuition through proof

Statement:

If E and F are independent, then $P(E|F) = P(E)$.

Proof:

$$
P(E|F) = \frac{P(EF)}{P(F)}
$$

$$
= \frac{P(E)P(F)}{P(F)}
$$

$$
= P(E)
$$

Definition of conditional probability

Independence of E and F

Taking the bus to cancellation city

Independent

events E and F

Knowing that F happened does not change our belief that E happened.

 $P(EF) = P(E)P(F)$

Dice, our misunderstood friends

- Roll two 6-sided dice, yielding values D_1 and D_2 .
	- Let event $E: D_1 = 1$ event $F: D_2 = 6$ event *G*: $D_1 + D_2 = 5$
- $G = \{(1,4), (2,3), (3,2), (4,1)\}\$

events E and F

1. Are E and F independent? 2. Are E and G independent?

 $P(E) = 1/6$ $P(F) = 1/6$ $P(EF) = 1/36$

$$
P(E) = 1/6
$$

$$
P(G) = 4/36 = 1/9
$$

$$
P(EG) = 1/36 \neq P(E)P(G)
$$

 $P(E|F) = P(E)$

Independent $P(EF) = P(E)P(F)$

Generalizing independence

 $\overline{}$

Three events E, F , and G are independent if:

$$
P(EFG) = P(E)P(F)P(G), \text{ and}
$$

\n
$$
P(EF) = P(E)P(F), \text{ and}
$$

\n
$$
P(EG) = P(E)P(G), \text{ and}
$$

\n
$$
P(FG) = P(F)P(G)
$$

\nfor $r = 1, ..., n$:
\nfor every subset $F_1, F_2, ..., F_n$:

n events $E_1, E_2, ..., E_n$ are independent if:

for every subset $E_1, E_2, ..., E_r$: $P(E_1, E_2, ..., E_r) = P(E_1)P(E_2) \cdots P(E_r)$

- Each roll of a 6-sided die is an independent trial.
- Two rolls: D_1 and D_2 .
- Let event $E: D_1 = 1$ event $F: D_2 = 6$ event $G: D_1 + D_2 = 7$

 $G = \{(1,6), (2,5), (3,4), (4,3), (5,2), (6,1)\}\$

independent? ✅

independent?

1. Are E and F $\quad 2.$ Are E and G $\quad 3.$ Are F and G $\quad 4.$ Are E, F, G independent? independent?

 $P(EF) = 1/36$

- Each roll of a 6-sided die is an independent trial.
- Two rolls: D_1 and D_2 .
- Let event $E: D_1 = 1$ event $F: D_2 = 6$ event *G*: $D_1 + D_2 = 7$

 $\ddot{}$

 $G = \{(1,6), (2,5), (3,4), (4,3), (5,2), (6,1)\}\$

1. Are E and $F = 2$

2. Are
$$
E
$$
 and G

3. Are F and G 4. Are E , F , G **v**independent?

independent? ✅ ✅ ✅ ❌independent?

 $P(EF) = 1/36$

Pairwise independence is not sufficient to prove independence of >2 events!

Lisa Yan, CS109, 2020

05b_independence_ii

Independence II

Independent trials

We often are interested in experiments consisting of n independent trials.

- n trials, each with the same set of possible outcomes
- n -way independence: an event in one subset of trials is independent of events in other subsets of trials

Examples:

- Flip a coin n times
- Roll a die n times
- Send a multiple choice survey to n people
- Send n web requests to k different servers

Think of the children as independent trials

Two parents both have an (A, a) gene pair.

- Each parent will pass on one of their genes (each gene equally likely) to their child.
- The probability of a single child having curly hair (recessive trait) is 0.25.

There are three children. Each child is an independent trial.

What is the probability that all three children have curly hair?

Let E_1, E_2, E_3 be the events that child 1, 2, and 3 have curly hair, respectively.

$$
P(E_1E_2E_3) = P(E_1)P(E_2|E_1)P(E_3|E_1E_2)
$$

Network reliability

Consider the following parallel network:

- \bullet *n* independent routers, each with probability p_i of functioning (where $1 \leq i \leq n$)
- $E =$ functional path from A to B exists.

What is $P(E)$?

Network reliability

Consider the following parallel network:

- \cdot n independent routers, each with probability p_i of functioning (where $1 \leq i \leq n$)
- $E =$ functional path from A to B exists.

What is $P(E)$?

 $P(E) = P(\geq 1$ one router works) $= 1 - P$ (all routers fail) $= 1 - (1 - p_1)(1 - p_2) \cdots (1 - p_n)$ $= 1 - | \ \ |$ $i=1$ \overline{n} $(1-p_i)$ ≥ 1 with independent trials:

take complement

06a_cond_indep

Conditional Independence

Conditional Paradigm

For any events A, B, and E, you can condition consistently on E, and all formulas still hold:

Axiom 1 $0 \leq P(A|E) \leq 1$ Corollary 1 (complement) Transitivity $P(AB|E) = P(BA|E)$

Bayes' Theorem

 $C|E$ Chain Rule $P(AB|E) = P(B|E)P(A|BE)$ $P(A|BE) =$ $P(B|AE)P(A|E)$ $P(B|E)$ **BAL** 's theorem?

Conditional Independence

Conditional Probability **Independence**

Lisa Yan, CS109, 2020

events E and F $P(E|F) = P(E)$ Independent $P(EF) = P(E)P(F)$

Two events A and B are defined as conditionally independent given E if: $P(AB|E) = P(A|E)P(B|E)$

An equivalent definition:

A.
$$
P(A|B) = P(A)
$$

\nB. $P(A|BE) = P(A)$
\nC. $P(A|BE) = P(A|E)$

Lisa Yan, CS109, 2020

events E and F $P(E|F) = P(E)$ Independent $P(EF) = P(E)P(F)$

Two events A and B are defined as conditionally independent given E if: $P(AB|E) = P(A|E)P(B|E)$

An equivalent definition:

A.
$$
P(A|B) = P(A)
$$

\nB. $P(A|BE) = P(A)$
\nC. $P(A|BE) = P(A|E)$

Conditional Independence

Conditional Probability **Independence**

Lisa Yan, CS109, 2020

Netflix and Condition

Let $E = a$ user watches Life is Beautiful. Let $F = a$ user watches Amelie. What is $P(E)$? $P(E) \approx$ # people who have watched movie $\frac{2 \text{ whole have valence more}}{4 \text{ people on Netflux}} =$ 10,234,231 50,923,123 ≈ 0.20

What is the probability that a user watches Life is Beautiful, given they watched Amelie?

> $P(E|F) =$ $P(EF$ $P(F)$ = # people who have watched both # people who have watched Amelie ≈ 0.42

Let E be the event that a user watches the given movie. Let F be the event that the same user watches Amelie.

Review

Netflix and Condition (on many movies)

What if $E_1E_2E_3E_4$ are not independent? (e.g., all international emotional comedies)

$$
P(E_4|E_1E_2E_3) = \frac{P(E_1E_2E_3E_4)}{P(E_1E_2E_3)} = \frac{\# \text{ people who have watched all 4}}{\# \text{ people who have watched those 3}}
$$

We need to keep track of an exponential number of movie-watching statistics

Lisa Yan, CS109, 2020

Netflix and Condition (on many movies)

 $P(E_1E_2E_3)$ An easier probability to store and compute!

Conditional independence is a Big Deal

Conditional independence is a practical, real-world way of decomposing hard probability questions.

"Exploiting conditional independence to generate fast probabilistic computations is one of the main contributions CS has made to probability theory."

–Judea Pearl wins 2011 Turing Award,

"For fundamental contributions to artificial intelligence

through the development of a calculus for probabilistic and causal reasoning"

Netflix and Condition

Challenge: How do we determine K ? Stay tuned in 6 weeks' time!

 $E_1E_2E_3E_4$ are dependent

$E_1E_2E_3E_4$ are conditionally independent given K

Dependent events can become conditionally independent. And vice versa: Independent events can become conditionally dependent.

Lisa Yan, CS109, 2020

(live) 05: Independence

Oishi Banerjee and Cooper Raterink Adapted from Lisa Yan July 1, 2020

Review

Two events E and F are defined as independent if: $P(EF) = P(E)P(F)$

Equivalently, for independent events E and F , • $P(E|F) = P(E)$

Think Slide 24 has two questions to think over by
yourself. We'll go over it together afterwards.

Post any clarifications here!

<https://us.edstem.org/courses/667/discussion/84208> Think by yourself: 2 min

Independence?

- 1. Two events E and F are independent if:
	- A. Knowing that F happens means that E can't happen.
- Knowing that F happens doesn't change probability that E happened. ✅
- 2. Are E and F independent in the following pictures (not to scale)?

Be careful:

- Independence is NOT mutual exclusion.
- Independence is difficult to visualize graphically.

Two events E and F are defined as independent if:

$$
P(EF) = P(E)P(F)
$$

For independent events E and F ,

- $P(E|F) = P(E)$
- E and F^C are independent.

new

Statement:

If E and F are independent, then E and F^C are independent.

Proof:

 $P(EF^{C}) = P(E) - P(EF)$ $= P(E) - P(E)P(F)$ $= P(E)P(F^C)$ $= P(E)[1 - P(F)]$

 E and $F^{\mathcal{C}}$ are independent

Intersection

Independence of E and F

Factoring

Complement

Definition of independence

Knowing that F did or didn't happen does not change our belief that E happened.

Review

Two events E and F are defined as independent if:

$$
P(EF) = P(E)P(F)
$$

For independent events E and F ,

- $P(E|F) = P(E)$
- E and F^C are independent

Independent trials are when we observe independent sub-experiments, each of which has the same set of possible outcomes.

Breakout Rooms

Check out the questions on the next slide (Slide 30). Post any clarifications here!

<https://us.edstem.org/courses/667/discussion/84208>

Breakout rooms: 5 min. Introduce yourself!

(biased) Coin Flips

Suppose we flip a coin n times. Each coin flip is an **independent trial** with probability p of coming up heads. Write an expression for the following:

- $P(n \text{ heads on } n \text{ coin flips})$
- 2. $P(n \text{ tails on } n \text{ coin flips})$
- 3. P(first k heads, then $n k$ tails)
- P (exactly k heads on n coin flips)

(biased) Coin Flips

Suppose we flip a coin n times. Each coin flip is an **independent trial** with probability p of coming up heads. Write an expression for the following:

- $P(n \text{ heads on } n \text{ coin flips})$
- 2. $P(n \text{ tails on } n \text{ coin flips})$
- 3. P(first k heads, then $n k$ tails)
- P(exactly k heads on n coin flips)

$$
\binom{n}{k} p^k (1-p)^{n-k}
$$

of mutually exclusive outcomes P (a particular outcome's k heads on n coin flips)

Make sure you understand #4! It will come up again.

Lisa Yan, CS109, 2020

Interlude for announcements

Announcements

Sections start tomorrow!

Live on Zoom: 12:30-1:30 PT Thursday (recorded)

Problem Set 1

due: 1pm PT Wednesday 1 st late due date: 1pm PT **Monday** (because Friday is a holiday)

Problem Set 2

due: 1pm Friday July 10

Partial answer checkers for psets 1 and 2 available on Gradescope!

Probability of events

Probability of events

Probability of events

Augustus De Morgan

Augustus De Morgan (1806–1871):

British mathematician who wrote the book *Formal Logic* (1847).

He looked remarkably similar to Jason Alexander (George from Seinfeld) (but that's not important right now)

Lisa Yan, CS109, 2020

De Morgan's Laws

In probability:
\n
$$
P(E_1 E_2 \cdots E_n)
$$
\n
$$
= 1 - P((E_1 E_2 \cdots E_n)^c)
$$
\n
$$
= 1 - P(E_1^c \cup E_2^c \cup \cdots \cup E_n^c)
$$
\nGreat if E_i^c mutually exclusive!

$$
(E \cup F)^{C} = E^{C} \cap F^{C}
$$

$$
\left(\bigcup_{i=1}^{n} E_{i}\right)^{C} = \bigcap_{i=1}^{n} E_{i}^{C}
$$

Great if E_i independent! **Stanford University** 49 In probability: $P(E_1 \cup E_2 \cup \cdots \cup E_n)$ $= 1 - P((E_1 \cup E_2 \cup \dots \cup E_n)^C)$ $= 1 - P(E_1^c E_2^c \cdots E_n^c)$

Think, then Breakout Rooms

Check out the questions on the next slide (Slide 40). These are challenging problems. Post any clarifications here!

<https://us.edstem.org/courses/667/discussion/84208>

Think by yourself: 2 min

Breakout rooms: 5 min

Hash table fun

- m strings are hashed (unequally) into a hash table with n buckets.
- Each string hashed is an *independent trial* w.p. p_i of getting hashed into bucket j.

What is $P(E)$ if 1. $E =$ bucket 1 has ≥ 1 string hashed into it?

2. $E =$ at least 1 of buckets 1 to k has ≥ 1 string hashed into it?

Hash table fun

- m strings are hashed (unequally) into a hash table with n buckets.
- Each string hashed is an *independent trial* w.p. p_i of getting hashed into bucket j.

What is $P(E)$ if 1. $E =$ bucket 1 has ≥ 1 string hashed into it?

Define S_i = string *i* is hashed into bucket 1 $S_i^{\mathcal{C}}$ = string i is <u>not</u> hashed into bucket 1 $P(S_i) = p_1$ $P(S_i^C) = 1 - p_1$

Hash table fun

- m strings are hashed (unequally) into a hash table with n buckets.
- Each string hashed is an *independent trial* w.p. p_i of getting hashed into bucket j.

What is $P(E)$ if 1. $E =$ bucket 1 has ≥ 1 string hashed into it?

 $P(E) = P(S_1 \cup S_2 \cup \cdots \cup S_m)$ $= 1 - P((S_1 \cup S_2 \cup \cdots \cup S_m)^c)$ Complement $= 1 - P(S_1^C S_2^C \cdots S_m^C)$ De Morgan's Law $= 1 - P(S_1^C)P(S_2^C) \cdots P(S_m^C) = 1 - \left(P(S_1^C) \right)$ \overline{m} $\mathit{S}_{\textit{i}}$ independent trials $= 1 - (1 - p_1)^m$ hashed into bucket 1 $S_i^{\mathcal{C}}$ = string i is <u>not</u> hashed into bucket 1 $P(S_i) = p_1$ $P(S_i^C) = 1 - p_1$ WTF (not-real acronym for Want To Find):

Define S_i = string *i* is

More hash table fun: Possible approach?

- m strings are hashed (unequally) into a hash table with n buckets.
- Each string hashed is an *independent trial* w.p. p_i of getting hashed into bucket j.

Lisa Yan, CS109, 2020

What is $P(E)$ if 1. $E =$ bucket 1 has ≥ 1 string hashed into it? 2. $E =$ at least 1 of buckets 1 to k has ≥ 1 string hashed into it?

$$
P(E) = P(F_1 \cup F_2 \cup \cdots \cup F_k)
$$

= 1 - P((F_1 \cup F_2 \cup \cdots \cup F_k)^c)
= 1 - P(F_1^c F_2^c \cdots F_k^c)
? = 1 - P(F_1^c)P(F_2^c) \cdots P(F_k^c)

Define F_i = bucket j has at least one string in it

⚠️ bucket events are *dependent*! So we cannot approach with complement.

More hash table fun

- m strings are hashed (unequally) into a hash table with n buckets.
- Each string hashed is an *independent trial* w.p. p_i of getting hashed into bucket j.

What is $P(E)$ if 1. $E =$ bucket 1 has ≥ 1 string hashed into it? 2. $E =$ at least 1 of buckets 1 to k has ≥ 1 string hashed into it?

$$
P(E) = P(F_1 \cup F_2 \cup \dots \cup F_k)
$$

\n
$$
= 1 - P((F_1 \cup F_2 \cup \dots \cup F_k)^c)
$$

\n
$$
= 1 - \frac{P(F_1^c F_2^c \cdots F_k^c)}{P(F_1^c F_2^c \cdots F_k^c)}
$$

\n
$$
= P(\text{no strings hashed to buckets 1 to } k)
$$

\n
$$
= \frac{P(\text{string hashed outside bkts 1 to } k)}{P(\text{string hashed outside bkts 1 to } k)}
$$

\n
$$
= 1 - (1 - p_1 - p_2 \cdots - p_k)^m
$$

The fun never stops with hash tables

- m strings are hashed (unequally) into a hash table with n buckets.
- Each string hashed is an *independent trial* w.p. p_i of getting hashed into bucket i.
- 1. $E =$ bucket 1 has ≥ 1 string hashed into it. 2. $E =$ at least 1 of buckets 1 to k has ≥ 1 string hashed into it. 3. $E =$ each of the buckets 1 to k has ≥ 1 string hashed into it. What is $P(E)$? See the lecture notes for the solution!

- Each roll of a 6-sided die is an independent trial.
- Two rolls: D_1 and D_2 .
	- Let event E : $D_1 = 1$ event F : $D_2 = 6$ event *G*: $D_1 + D_2 = 7$ event *H*: $D_1 + D_2 = 2$

 $G = \{(1,6), (2,5), (3,4), (4,3), (5,2), (6,1)\}\$ $H = \{(1,1)\}\$

Are E and F independent? \vee Are E and F \vee Are F and G \vee

 $P(E) = 1/6$ $P(F) = 1/6$ $P(EF) = 1/36 =$ $1/6 \cdot 1/6$

independent?

 \times Are F and H independent?

 $P(F) = 1/6$ $P(G) = 1/6$ $P(FG) = 1/36 =$ $1/6 \cdot 1/6$

$$
P(F) = 1/6
$$

$$
P(H) = 1/36
$$

$$
P(FH) = 0 \neq 1/6 \cdot 1/36
$$

- Each roll of a 6-sided die is an independent trial.
- Two rolls: D_1 and D_2 .
- Let event $E: D_1 = 1$ event F : $D_2 = 6$ event *G*: $D_1 + D_2 = 7$ $G = \{(1,6), (2,5), (3,4), (4,3), (5,2), (6,1)\}\$

Are E and F independent?

 $P(E) = 1/6$ $P(F) = 1/6$ $P(EF) = 1/36$ Are E and F independent, when conditioning on G?

X
\n
$$
P(E | G) = 1/6
$$

\n $P(F | G) = 1/6$
\n $P(EF | G) = 1/6 \neq 1/6 \cdot 1/6$

Independence doesn't imply conditional independence!

- Each roll of a 6-sided die is an independent trial.
- Two rolls: D_1 and D_2 .
- Let event $G: D_1 + D_2 = 7$ event *H*: $D_1 + D_2 = 2$ event *j*: $D_1 + D_2 > 2$

 \times Are H and J independent?

 \bigtimes Are *H* and *J* independent? \bigtimes Are *H* and *J* independent, when conditioning on G?

 $P(H) = 1/36$ $P(I) = 1 - \frac{1}{36} = \frac{35}{36}$ $P(HJ) = 0 \neq 1/36 \cdot 35/36$

 $P(H | G) = 0$ $P(J | G) = 1$ $P(H | G) = 0 = 0 \cdot 1$

Conditional independence doesn't imply independence either!

Lisa Yan, CS109, 2020

Happy 4th of July!

(P.S. Next week's recordings are a bit heavier than usual, so get started early!)