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Binomial Random Variable

Consider an experiment: n independent trials of Ber(p) random variables.
def A Binomial random variable X is the number of successes in n trials.

PMF k=01,..n

X~Bin(n,p) PKX = k) =p() = () p*(1 = p)
Expectation E[X] = np
Support: {0,1,...,n}  Vvariance Var(X) = np(1 — p)

Examples:
# heads in n coin flips
# of 1's in randomly generated length n bit string

# of disk drives crashed in 1000 computer cluster
(assuming disks crash independently)
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Reiterating notation

1. The random
variable

X ~ Bin(n, p)
3. Binomial @h param@

2. is distributed

as da

The parameters of a Binomial random variable:
* n: number of independent trials

* p: probability of success on each trial
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Reiterating notation

X ~ Bin(n,p)

If X is a binomial with parameters n and p, the PMF of X is

n
PX=k)=(,)p“(Q—-p)""
k
\ } \ }
Y !
Probability that X Probability Mass Function for a Binomial

takes on the value k
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Three coin tlips X~Bin(n,p) p(k) = () p*(1 —p)n

Three fair (“heads” with p = 0.5) coins are flipped.

X is number of heads
«  X~Bin(3,0.5)

Compute the following event probabilities:

P(X =0)
P(X=1)
P(X =2)
P(X = 3)

P(X =7)

P(eve nt) Lisa Yan, C$109, 2020 Stanford University 7




Three coin flips X~Bin(n,p) p(k) = () p*(1 —p)n

Three fair (“heads” with p = 0.5) coins are flipped.

X is number of heads
X~Bin(3,0.5)

Compute the following event probabil3ities:
P(x=0) =p(0) (0) p°(1—-p)° =

p'(1-p)? =

p*(1-p)' =

PX=1) =p)

Olw ©Olw

Extra math note:

By Binomial Theorem,
3(1 _ 0 1 we can prove

p>(1—=p)° = g P?X—k)—l

k=0 = —

P(Xx=2) =p(2)

vvv

P(X=3) =p@3)

¢
¢
¢

PX=7) =p()
P(eveﬂt) PMF Lisa Yan, C$109, 2020 Stanford University s




Binomial Random Variable

n independent trials of Ber(p) random variables
X is the number of successes in n trials
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Binomial RV is sum of Bernoulli RVs

Bernoulli
X~Ber(p)

Binomial
Y~Bin(n,p)

The sum of n independent
Bernoulli RVs

n
Y = ZXl-, Xi ~Ber(p)
=1

Ber(p) = Bin(1,p)
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Binomial Random Variable

n independent trials of Ber(p) random variables
X is the number of successes in n trials.

Expectation E[X] =np

Proof:
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Binomial Random Variable

n independent trials of Ber(p) random variables
X is the number of successes in n trials

Variance Var(X) = np(1 — p) %
We'll prove

this later in
the course
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No, give me the variance proof right now

To simplify the algebra a bit, letg =1 —p,sop+ g = 1.

So:
- 2 R —
E(X?) =) k‘(k)p*q . Definition of Binomial Distribution: p + g = 1
k=0
o n=1%\ , .. . . n n—1
= 2 kn g Factors of Binomial Coefficient: k =n
k=0 k-1 k k-1
- =1\ 1 eelimike
= np Z k(k l)pk 1gn-b-tk=1) Change of limit: term is zerowhen k — 1 = 0
k=1
i ) m .
=HPZU+1)(j)P’q ! puting j =k — l.m=n—1
i=0
oo (my Sofm\
= np 2 j( .)P’Q’" T+ 2 ( .)P’!im ! splitting sum up into two
J=0 / =0 J
m _ l . . m . —_ l
= np E m(m )p’q”‘_’ + Z (n?)qu’"” Factors of Binomial Coefficient: j(m) = m(m )
=0 J=1 j=o 5 J J=1
m m— ]_ 5 e m m . B
= HP((H— L)p Z (j— I)PJ fgm=-u=b 4 2 (J.)P’G‘m ”) Change of limit: term is zerowhen j — 1 = 0
i=1 =0
= np((n—Diplp+ ™" +(p+ ") Binomial Theorem
= np(ln—1)p+1) aspt+g=1
= nzpz + np(1 — p) by algebra
Then:
var (X) = E (X?) - (E(X))?
=np(l —p)+ nlpz - |[np)2 Expectation of Binomial Distribution: E (X) = np

= np(l —p)

as required.
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Before we start

A n
The natural exponent e: lim (1 — —) e

n—oo n

https://en.wikipedia.org/wiki/E_(mathematical constant)

Jacob Bernoulli
while studying
compound interest
in 1683
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Algorithmic ride sharing

) By : ' ' _ : ucie Stern ¢
i : > : Caommunity Cen 4
1 - = o I
re— “{ i X '3 S »
a?)

9 ﬁ : #_Hﬁmﬁ%j S PROFESSOR VILLE
’ Q=0 [oF(0! “

Probability of k requests from this area in the next 1 minute?

Suppose we know: On average, A = 5 requests per minute
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Algorithmic ride sharing, approximately

Probability of k requests from this area in the next 1 minute?

On average, A = 5 requests per minute

Break a minute down into 60 seconds:

0O/0|1 0|1 0O/ 0|0 |01
1 2 3 4 ) 60
At each second: X ~Bin(n = 60, p = 5/60)

Independent trial
You get a request (1) or you don’t (O).

60 c k c n—k
Let X = # of requests in minute. P =k) = ( k ) (@) (1 N @)

E|X]=2=5 But what if there are two
9 requests in the same second?
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Algorithmic ride sharing, approximately

Probability of k requests from this area in the next 1 minute?

On average, A = 5 requests per minute

Break a minute down into 60,000 milliseconds:

1 60,000

At each millisecond: X ~ Bin(n = 60000, p = 1/n)
Independent trial

You get a request (1) or you don’t (O). A "y k . 2\ K
Let X = # of requests in minute. (X =k)= (k) n n

E|X]=2=5 But what if there are two
9 requests in the same

Lisa Yan, C$109, 2020 millisecond? Stanford University 18




Algorithmic ride sharing, approximately

Probability of k requests from this area in the next 1 minute?

On average, A = 5 requests per minute

Break a minute down into infinitely small buckets:

OMG so small
1 0o
For each time bucket: X ~Bin(n, p = 1/n)
Independent trial '
You get a request (1) or you don’t (O). P(X — k)

_ _ k n—k
Let X = # of requests in minute. i (n) g{) (“ A
E[X]=A=5 \/A(}howar{{tst Tk some coolmath?
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: . 1 - . A\"
Binomial in the limit i (1-5) = e
n
P=10 K n—k 002" n! ) (1 _%)
_ _
= lim (") A (A R Il =Tl 7k 1 30\ F
n—->00 k n n a“)(a\ (1 — H)
¢C n {0 B
‘?\ea“a(\ n! k|1 — A Dee%\DOV\e: : n! Ak e
= lim e lim 7 — ! k! k
n-onk(n — k)! k! (1_&)k et (n )k (1—%)
n
o}
S _ nn—1)-Mm—-k+1) (n—k)!1*x 4
" noo nk (n—k)! k! (1 ;L)k
. (\6\95‘\5 & "
uet® kgl oo S0
)(03006: i n* A% e ' Ak

n-conk k! 1 =Ee
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Algorithmic ride sharing

i N | -~ N S| V |
) .' : s I VI . ' o Srar ﬂ
¢ S ] . .- " Lo SO
COMETIUNNIY Lenss
—_ S .g ,
=

‘ 1 ﬁmﬁh 2 PROFESSORVILLE
A ; J‘ 5 “ i.
e 0 .

Probablllty of k requests from this area in the next 1 minute?

On average, A = 5 requests per minute
/1k

P(X =k)=-7e” 4
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Simeon-Denis Poisson

French mathematician (1781 - 1840)

* Published his first paper at age 18

* Professor at age 21

* Published over 300 papers

“Life is only good for two things: doing mathematics and teaching it.”
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http://upload.wikimedia.org/wikipedia/commons/b/b7/Simeon_Poisson.jpg

Poisson Random Variable

Consider an experiment that lasts a fixed interval of time.
def A Poisson random variable X is the number of successes over the
experiment duration.

PMF Ak
X~Poi(4) PX =k)=e"-7

Expectation E[X] = A

Support: {0,1,2, ...} Variance ~ Var(X) = A1
Examples:
# earthquakes per year
# server hits per second Yes, expectation == variance

# of emails per day for Poisson RV! More later.

Lisa Yan, C$109, 2020 Stanford University 23




X ~Poi(A Ak
Earthquakes N I O

There are an average of 2.79 major earthquakes in the world each year.
What is the probability of 3 major earthquakes happening next year?

1. Define RVs >3]

0.25 1
0.2 -
%)
Il 0.15 -
2. Solve =
0.1 A

0.05 A

O 1 2 3 4 5 6 7 8 9 10
Number of earthquakes, k
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Are earthquakes really Poissonian?

Bulletin of the
Seismological Society of America

Vol. 64 October 1974 No. 5

IS THE SEQUENCE OF EARTHQUAKES IN SOUTHERN CALIFORNIA,
WITH AFTERSHOCKS REMOVED, POISSONIAN?

By J. K. GARDNER and L. KNOPOFF

ABSTRACT

Yes.
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DNA

Lisa Yan, CS109, 2020

All the movies, images,
emails and other digital
data from more than
600 smartphones
(10,000 GB) can be
stored in the faint pink
smear of DNA at the end
of this test tube.

What is the probability

that DNA storage stays
uncorrupted?

Stanford University 27



DNA

What is the probability that DNA storage stays uncorrupted?

In DNA (and real networks), we store large strings.

Let string length be long, e.g., n = 10

Probability of corruption of each base pair is very small, e.g., p = 107°
Let X = # of corruptions.

What is P(DNA storage is uncorrupted) = P(X = 0)?

Approach 1: Approach 2:

X~Bin(n = 10%,p = 1076) X~Poi(1 = 10%- 1076 = 0.01)
P(X k) ) k(l )n—k P(X _ k) _ —lﬁ — ,—0.01 0010
B I TR 0!

—0.01

_ 10~-69(1 — 10~ 10%4-0 =e
unwieldy! A g ) ( ) 2 go0d

99049829 ~ (0.99049834 approximation!
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The Poisson Paradigm, part 1 e
Poisson approximates Binomial 0.3 -
when n is large, p is small, and 0.25 - " Bin(10,0.3)
A = np is “moderate.” . Sin(100,0.03)
s © Bin(1000,0.003)
Different interpretations of ~ 0151 mrol
“moderate”: ~ o1
*n>20andp < 0.05 0.05 -
- n>100andp < 0.1 o-JH. A0l R0 W .|H.-H. -
o 1 2 3 4 5 6 7 8 9 10
X=k

Poisson Is Binomial in the limit;
* A =np,wheren — co,p - 0

Poisson can approximate Binomial.

Lisa Yan, C$109, 2020 Stanford University 29




Poisson Random Variable

Expectation E[X] = A
Variance Var(X) = 4

Time to show intuition for why
expectation == variance!
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Properties of Poi(4) with the Poisson paradigm

Recall the Binomial:

Y~Bin(n,p)

Expectation E[Y] = np
Variance Var(Y) = np(1 — p)

Consider X~Poi(1), where A =np (n = oo,p — 0):

X ~Poi(A Expectation E[X] = A
( ) Variance Var(X) = A

Proof:
E[X]=np=1
Var(X) =np(1—p) > A(1-0) =1

Lisa Yan, C$109, 2020 Stanford University 31




A Real License Plate Seen at Stanford

No, it's not mine...
but | kind of wish it was.

Lisa Yan, CS109, 2020 Stanford University




Poisson Paradigm, part 2

Poisson can still provide a good approximation of the Binomial,
even when assumptions are “mildly” violated.

You can apply the Poisson approximation when:

"Successes” in trials are not entirely independent
e.g.: # entries in each bucket in large hash table. %

Probability of “Success” in each trial varies (slightly),
like a small relative change in a very small p

e.g.: Average # requests to web server/sec may fluctuate
slightly due to load on network

We won’t explore this too much,
but | want you to know it exists.
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Grid of random variables

Number of Time until
SuUccesses SUCCesS
One trial Ber(p) One success
{}
S ln=1 S
everal . everal
trials Bin (n' p) SUCCEeSSeS
Interval : Interval of time to
of time Pol (/1) (tomorrow) first success

Focus on understanding how and when to use RVs, not on memorizing PMFs.
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Geometric RV

Consider an experiment: independent trials of Ber(p) random variables.
def A Geometric random variable X is the # of trials until the first success.

PMF PX=k=1-p)*'p
XNGeO(p) Expectation E[X] = %
Support: {1,2, ...} VRIS Var(X) = 1p—_2p
Examples:

Flipping a coin (P(heads) = p) until first heads appears
Generate bits with P(bit = 1) = p until first 1 generated
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Negative Binomial RV

Consider an experiment: independent trials of Ber(p) random variables.

def A Negative Binomial random variable X is the # of trials until
r SUCCESSES.
(fixed lecture error)

— — k k—r r
X~NegBin(r, p) " P(X‘k)‘(r—1)(1 P)

r

Expectation E [X ] —

P ra-p)
Support: {r,7 + 1, ...} variance  var(X) = = -

Examples:
Flipping a coin until rt* heads appears
# of strings to hash into table until bucket 1 has r entries

Geo(p) = NegBin(1,p)
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Grid of random variables

Number of Time until
successes SUCCEeSS
One trial Ber(p) Geo(p)
0 f
S | |_| n=1 L r=1
evera . .
trials Bin(n,p) NegBin(r,p)
Int I :
Qf fi?r/\i Pol (/1) (tomorrow)

an, CS109, 2020

One success

Several
successes

Interval of time to
first success

Stanford University 3s



Catching Pokemon

Wild Pokemon are captured by throwing Pokeballs at them.

* Each ball has probability p = 0.1 of capturing the Pokemon.
* Each ball is an independent trial.

What is the probability that you catch the Pokemon on the 5t try?

1. Define events/

RVs & state goal
X~Bin(5,0.1)
X~Poi(0.5)

A
X ~some distribution B.
C. X~NegBin(5,0.1)
D
E.
F.

Want: P(X = 5) X~NegBin(1,0.1)

X~Geo(0.1)

None/other
T
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Catching Pokemon

Wild Pokemon are captured by throwing Pokeballs at them.

* Each ball has probability p = 0.1 of capturing the Pokemon.
* Each ball is an independent trial.

What is the probability that you catch the Pokemon on the 5t try?

1. Define events/

RVs & state goal
X~Bin(5,0.1)
X~Poi(0.5)

A
X ~some distribution B.
C. X~NegBin(5,0.1)
D
E.
F.

Want: P(X = 5) X~NegBin(1,0.1)

X~Geo(0.1)
None/other
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Catching Pokemon X~Geo(p) p(k) = (1-p)*"p

Wild Pokemon are captured by throwing Pokeballs at them.

* Each ball has probability p = 0.1 of capturing the Pokemon.
* Each ball is an independent trial.

What is the probability that you catch the Pokemon on the 5 try?

1. Define events/ 2. Solve
RVs & state goal

X~Geo(0.1)
Want: P(X = 5)

Lisa Yan, C$109, 2020 Stanford University 41
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Our first common RVs Review

1. The random
variable

Example: Heads in one coin flip,
X Ber(p) P(heads) =0.8=p

3. Bernoulli Eh param@

E le: # head 40 fli
Y Bln(n p) xample: O;a spln coin flips,

P(heads) =

2. is distributed

dS a

otherwise |dentify PMF, or
identify as a function of an
existing random variable
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Think

The next slide has a matching question to go

over by yourself. We'll go over it together
afterwards.

Post any clarifications here!

https://us.edstem.org/courses/667/discussion/84212
Think by yourself: 2 min

44
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E[X] =np
Visualizing Binomial PMFs X~Bin(n,p) @ = (})p*A —p)"

P(X = k)

012 3 456 7 8 910

k
C.
Match the distribution =
to the graph: JL
1. Bin(10,0.5) <

01 2 3 456 7 8 910

Bin(10,0.3)

2. _ #] /1 /A | £ i W
3. Bin(10,0.7) k @
4. Bin(5,0.5) S )
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E[X] =np

Visualizing Binomial PMFs X~Bin(n,p) @ = (})p*A —p)"

P(X = k)

012 3 456 7 8 910

k
C.
Match the distribution =
to the graph: JL
1. Bin(10,0.5) =
2. Bin(10,0.3) 0123456789010
3. Bin(10,0.7) k
4. Bin(5,0.5)
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Binomial RV is sum of Bernoulli RVs Review

Bernoulli
- X~Ber(p)

Binomial
* Y~Bin(n,p)

* The sum of n independent
Bernoulli RVs

n
Y = le , Xi ~Ber(p)
i=1
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NBA Finals and genetics

N - ot
? . .." ’l‘ s o'-' ‘
e ge = )

v
L
. .

I
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Think
) Check out the questions on the next slide.
then Post any clarifications here!

https://us.edstem.org/courses/667/discussion/84212
Breakout

By yourself: 2 min

Rooms

Breakout rooms: 5 min.
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NBA Finals and genetics

The Golden State Warriors are going to play the Toronto Raptors in a
7-game series during the 2019 NBA finals.

The Warriors have a probability of 58% of winning each game, independently.

A team wins the series if they win at least 4 games (we play all 7 games).

What is P(Warriors winning)?

Each person has 2 genes per trait (e.g., eye color).
Child receives 1 gene (equally likely) from each parent
Brown is “dominant”, blue is "recessive”:

Child has brown eyes if either (or both) genes are brown

Blue eyes only if both genes are blue.
Parents each have 1 brown and 1 blue gene.

A family has 4 children. What is P(exactly 3 children with brown eyes)?
T
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NBA Finals x~Bin(n,p) p(k) = (7)p*@ - p)n*

The Golden State Warriors are going to play the Toronto
Raptors in a 7-game series during the 2019 NBA finals.

* The Warriors have a probability of 58% of
winning each game, independently.

* A team wins the series if they win at least 4 games
(we play all 7 games).

What is P(Warriors winning)?

1. Define events/ —> Desired probability? (select all that apply)
RVs & state goal A. P(X > 4)
B. P(X = 4)

X: # games Warriors win
X~Bin(7,0.58) C. P(X >3)

D. 1-PX <3)

Want. £ 1—-P(X <3)
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NBA Finals x~Bin(n,p) p(k) = (7)p*@ - p)n*

The Golden State Warriors are going to play the Toronto ;
Raptors in a 7-game series during the 2019 NBA finals.

* The Warriors have a probability of 58% of
winning each game, independently.

* A team wins the series if they win at least 4 games
(we play all 7 games).

What is P(Warriors winning)?

1. Define events/ —> Desired probability? (select all that apply)
RVs & state goal A. P(X > 4)
X: # games Warriors win g P(X = 4)
X~Bin(7,0.58) o) P(X > 3)
D) 1-P(X <3)
Want:

F. 1—-PX <3)
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X~Bin(n,p) p(k) = () p*(1 —p)""

NBA Finals

The Golden State Warriors are going to play the Toronto R
game series during the 2019 NBA finals. g

* The Warriors have a probability of 58% of
winning each game, independently.

* A team wins the series if they win at least 4 games
(we play all 7 games).

What is P(Warriors winning)?
2. Solve

7 7
PXz4)= ) PX=k)= 7Y 0.58%(0.42)7*
2, 2. (i)

Want: P(X = 4) Cool Algebra/Probability Fact: this is identical to the probability

of winning if we define winning = first to win 4 games
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.. . | o .
Genetic inheritance X~Bin(n,p) plk) = () p*(1—p)"

Each person has 2 genes per trait (e.g., eye color).
Child receives 1 gene (equally likely) from each parent
Brown is “dominant”, blue is "recessive”:

Child has brown eyes if either (or both) genes are brown
Blue eyes only if both genes are blue.
Parents each have 1 brown and 1 blue gene.

A family has 4 children. What is P(exactly 3 children with brown eyes)?
Subset Product of 4 independent events

of ideas: Probability tree

Bernoulli, success p = 3 children
with brown eyes

Binomial, n = 3 trials, success

p = brown-eyed child

Binomial, n = 4 trials, success

p = brown-eyed child

Lisa Yan, CS109, 2020 Stanford University 54




.. . | o .
Genetic inheritance X~Bin(n,p) plk) = () p*(1—p)"

Each person has 2 genes per trait (e.g., eye color).
* Child receives 1 gene (equally likely) from each parent
*  Brown is “dominant”, blue is "recessive”:
*  Child has brown eyes if either (or both) genes are brown

* Blue eyes only if both genes are blue.
* Parents each have 1 brown and 1 blue gene.

A family has 4 children. What is P(exactly 3 children with brown eyes)?

1. Define events/ 2. ldentify known 3. Solve
RVs & goal probabilities

X: # brown-eyed children,
X~Bin(4,p)

p: P(brown—eyed child)
Want: P(X = 3)
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Interlude for
jokes/announcements




Announcements

/I\/Iidterm Quiz \

Time frame: Mon-Tues, July 20-21 5pm-5pm PT

Covers: Up to and including Lecture 11
Info and practice:
http://web.stanford.edu/class/archive/cs/cs109/¢s109.1208/exams/quizzes.ht

\Z /
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Interesting probability news

https://theconversation.com/p
olly-knows-probability-this-
parrot-can-predict-the-chances-
of-something-happening-
132767

Polly knows probability: this parrot

can predict the chancesif-

something happening

Lisa Yan, C$109, 2020 Stanford University 59



https://theconversation.com/polly-knows-probability-this-parrot-can-predict-the-chances-of-something-happening-132767

LIVE

Discrete RVs

The hardest part of problem-solving is
determining what is a random variable .

60




Grid of random variables

Review

Number of
SUccesses
One trial Ber(p)
{}
S I U n=1
evera :
trials Bm(n’ p)
Interval :
of time POI(A)

Lisa Yan, CS109, 2020
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Grid of random variables

Review

Time until
SUCCeSSs

Geo(p)
ﬁ

U r=1

NegBin(r,p)

(today!)

Lisa Yan, CS109, 2020

One success

Several
successes

Interval of time to
first success

Stanford University 62



Check out the question on the next slide.

Breakout Post any clarifications here!

https://us.edstem.org/courses/667/discussion/84212

Rooms

Breakout rooms: 5 min. Introduce yourself!
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Choose from: Poi(1)

An RV Tour Ber(p) Geo(p)
Bin(n, p) NegBin(r, p)

How would you model the following?
# of snapchats you receive in a day

# of children until the first one with
brown eyes (same parents)

Whether stock went up or down in a day

# of probability problems you try until you
get b correct (if you are randomly correct)

# of years in some decade with at least 6

Atlantic hurricanes
&
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Choose from: Poi(A1)

An RV Tour Ber(p) Geo(p)
Bin(n, NegBin(r,
How would you model the following? n(n,p) °gBin(r, p)
# of snapchats you receive in a day Poi(1)
# of children until the first one with Geo(p) or E. NegBin(1, p)

brown eyes (same parents)
Whether stock went up or down in a day Ber(p) or B. Bin(1,p)

# of probability problems you try until you NegBin(r = 5,p)
get 5 correct (if you are randomly correct)

# of years in some decade with at least 6 Bin(n = 10,p), where
Atlantic hurricanes p = P(= 6 hurricanes in a year)

calculated from C. Poi(1)
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S109 Learning Goal: Use new RVs

@ @ W Borel distribution - Wikipedia X +

Let’s say you are learning about T CETTeT—— -y -

servers/networks.
You read about the M/D/1 queue:

Wi

The Free Encyclopedia

Main page
;. ! Contents
Featured content
Current events
Random article
Donate to Wikipedia
Wikipedia store

A —

\'1\(7:'1.].. ‘t i 1 g S orv i ce Interaction
Area Node o

About Wikipedia
Community portal

“The service time busy period is

Contact page

distributed as a Borel with parameter

What links here

11 Related changes
H — O 2 Upload file
| ] | | -
Special pages
Permanent link
Page information
Wikidata item

Cite this page

Print/export

Goal: You can recognize terminology

Languages o]

and understand experiment setup.

# Edit links
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Borel distribution

From Wikipedia, the free encyclopedia

The Borel distribution is a discrete
probability distribution, arising in contexts
including branching processes and
queueing theory. It is named after the
French mathematician Emile Borel.

Borel distribution \
Parameters pe[0,1]
Support ne{l,2,3,...}
pmf e (un)" !
n!

If the number of offspring that an organism  |y.an 1

has is Poisson-distributed, and if the 1-pu

average number of offspring of each Variance K

organism is no bigger than 1, then the (1= p)?

descendants of each individual will

ultimately become extinct. The number of descendants that an individual ultimately has in that
situation is a random variable distributed according to a Borel distribution.

Contents [hide]
Definition
Derivation and branching process interpretation
Queueing theory interpretation
Properties
Borel-Tanner distribution

References

~N @ v W N =

External links

Definition | edi]

Adiscrete random variable X is said to have a Borel distribution" ) with parameter y = [0,1] if
the probability mass function of X is given by

e ml{lun)u 1

P,(n)=Pr(X =n) = -

forn=1,2,3 ...
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Poisson Random Variable

PMF yLi
X~Poi(4) PX =k)=e™ -~

Expectation E[X] = A |
Support: {0,1,2, ... } Variance Var(X) = A

In CS109, a Poisson RV X~Poi(4)most often models

* # of successes over a fixed interval of time.
A = E|X], average success/interval

Approximation of Y~Bin(n, p) where n is large and p is small.
A=E|Y]=np

Approximation of Binomial even when success
In trials are not entirely independent.
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Breakout

The next slide has two questions to go over
Rooms n groups.

Post any clarifications here!

https://us.edstem.org/courses/667/discussion/84212
Breakout rooms: 5 mins
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X~Poi(1) L
Web server load Ex] =2 PR =e’5

Consider requests to a web server in 1 second.

In the past, server load averages 2 hits/second.
Let X = # hits the server receives in a second. 0.1 -

Bin(100,0.5)

What is P(X < 5)? < 00s H H -

E/ 0 . . . ..JI”H . H“IJ...

0 10 20 30 40 50 60 70 80 90

Can the following Binomial 03 - .
RVs be approximated with Poisson? o 02 H e

o 0.1 4

E 0 ||‘ ‘hl.l ........ :

O 10 20 30 40 50 60 70 80 90

0.3 H

® Bin(100,0.96)

0.2 A

0.1 -
O T T T T T T T T I . Il I|I
r 0O 10 20 30 40 50 60 70 80 90
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X~Poi(1) L
1. Web server load Ex] =4 PO =e™4

Consider requests to a web server in 1 second.

* In the past, server load averages 2 hits/second.
* Let X = # hits the server receives in a second.

What is P(X < 5)7?

1. Define RVs 2. Solve
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Can these Binomial RVs be approximated?

Poisson approximates Binomial
when n is large, p is small, and
A =np is “moderate.”

Different interpretations of
“moderate”:

n>20andp < 0.05
n > 100and p < 0.1

0.1 -

—~

~ 0.05
Il

=
= O

Poi(50)

x| * Bin(100,0.5)
‘I.

o)

0.3

0.1

P(X =k)

10 20 30 40

50 60 70 80 90

® Bin(100,0.04)
Poi(4)

)
0]

o
w
|

(X
(@)
H

L
10 20 30 40

Can approximate
Bin(100,1-0.96)

50 60 70 80 90

A ® Bin(100,0.96) = Poi(4)
: ||| ‘II

0
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