
07: Random Variables II
Lisa Yan

April 22, 2020

1



Binomial RV
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Consider an experiment: 𝑛 independent trials of Ber(𝑝) random variables.

def A Binomial random variable 𝑋 is the number of successes in 𝑛 trials.

Examples:
• # heads in n coin flips

• # of 1’s in randomly generated length n bit string

• # of disk drives crashed in 1000 computer cluster
(assuming disks crash independently)

Binomial Random Variable

3

𝑘 = 0, 1,… , 𝑛:

𝑃 𝑋 = 𝑘 = 𝑝 𝑘 =
𝑛
𝑘

𝑝𝑘 1 − 𝑝 𝑛−𝑘𝑋~Bin(𝑛, 𝑝)

Support: {0,1,… , 𝑛}

PMF

𝐸 𝑋 = 𝑛𝑝
Var 𝑋 = 𝑛𝑝(1 − 𝑝)Variance

Expectation
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Reiterating notation

The parameters of a Binomial random variable:

• 𝑛: number of independent trials

• 𝑝: probability of success on each trial

5

1. The random 

variable

2. is distributed 

as a
3. Binomial 4. with parameters

𝑋 ~ Bin(𝑛, 𝑝)
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Reiterating notation

If 𝑋 is a binomial with parameters 𝑛 and 𝑝, the PMF of 𝑋 is
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𝑋 ~ Bin(𝑛, 𝑝)

𝑃 𝑋 = 𝑘 =
𝑛
𝑘

𝑝𝑘 1 − 𝑝 𝑛−𝑘

Probability Mass Function for a BinomialProbability that 𝑋
takes on the value 𝑘
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Three coin flips

Three fair (“heads” with 𝑝 = 0.5) coins are flipped.

• 𝑋 is number of heads

• 𝑋~Bin 3, 0.5

Compute the following event probabilities:
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𝑋~Bin(𝑛, 𝑝) 𝑝 𝑘 =
𝑛
𝑘

𝑝𝑘 1 − 𝑝 𝑛−𝑘

𝑃 𝑋 = 0

𝑃 𝑋 = 1

𝑃 𝑋 = 2

𝑃 𝑋 = 3

𝑃 𝑋 = 7

P(event)
🤔
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Three coin flips

Three fair (“heads” with 𝑝 = 0.5) coins are flipped.

• 𝑋 is number of heads

• 𝑋~Bin 3, 0.5

Compute the following event probabilities:
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𝑋~Bin(𝑛, 𝑝) 𝑝 𝑘 =
𝑛
𝑘

𝑝𝑘 1 − 𝑝 𝑛−𝑘

𝑃 𝑋 = 0 = 𝑝 0 =
3
0

𝑝0 1 − 𝑝 3 =
1

8

𝑃 𝑋 = 1

𝑃 𝑋 = 2

𝑃 𝑋 = 3

𝑃 𝑋 = 7

= 𝑝 1 =
3
1

𝑝1 1 − 𝑝 2 =
3

8

= 𝑝 2 =
3
2

𝑝2 1 − 𝑝 1 =
3

8

= 𝑝 3 =
3
3

𝑝3 1 − 𝑝 0 =
1

8

= 𝑝 7 = 0

P(event) PMF

Extra math note:

By Binomial Theorem,

we can prove

σ𝑘=0
𝑛 𝑃 𝑋 = 𝑘 = 1
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Consider an experiment: 𝑛 independent trials of Ber(𝑝) random variables.

def A Binomial random variable 𝑋 is the number of successes in 𝑛 trials.

Examples:
• # heads in n coin flips

• # of 1’s in randomly generated length n bit string

• # of disk drives crashed in 1000 computer cluster
(assuming disks crash independently)

Binomial Random Variable
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𝑋~Bin(𝑛, 𝑝)

Range: {0,1,… , 𝑛} Variance

Expectation

PMF

𝐸 𝑋 = 𝑛𝑝
Var 𝑋 = 𝑛𝑝(1 − 𝑝)

𝑘 = 0, 1,… , 𝑛:

𝑃 𝑋 = 𝑘 = 𝑝 𝑘 =
𝑛
𝑘

𝑝𝑘 1 − 𝑝 𝑛−𝑘
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Ber 𝑝 = Bin(1, 𝑝)

Binomial RV is sum of Bernoulli RVs

Bernoulli

• 𝑋~Ber(𝑝)

Binomial

• 𝑌~Bin 𝑛, 𝑝

• The sum of 𝑛 independent 
Bernoulli RVs

10

𝑌 =

𝑖=1

𝑛

𝑋𝑖 , 𝑋𝑖 ~Ber(𝑝)

+

+

+
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Consider an experiment: 𝑛 independent trials of Ber(𝑝) random variables.

def A Binomial random variable 𝑋 is the number of successes in 𝑛 trials.

Examples:
• # heads in n coin flips

• # of 1’s in randomly generated length n bit string

• # of disk drives crashed in 1000 computer cluster
(assuming disks crash independently)

Binomial Random Variable
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𝑋~Bin(𝑛, 𝑝)

Range: {0,1,… , 𝑛}

𝐸 𝑋 = 𝑛𝑝
Var 𝑋 = 𝑛𝑝(1 − 𝑝)Variance

Expectation

PMF 𝑘 = 0, 1,… , 𝑛:

𝑃 𝑋 = 𝑘 = 𝑝 𝑘 =
𝑛
𝑘

𝑝𝑘 1 − 𝑝 𝑛−𝑘

Proof:
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Consider an experiment: 𝑛 independent trials of Ber(𝑝) random variables.

def A Binomial random variable 𝑋 is the number of successes in 𝑛 trials.

Examples:
• # heads in n coin flips

• # of 1’s in randomly generated length n bit string

• # of disk drives crashed in 1000 computer cluster
(assuming disks crash independently)

Binomial Random Variable

12

𝑋~Bin(𝑛, 𝑝)

Range: {0,1,… , 𝑛}

PMF

𝐸 𝑋 = 𝑛𝑝
Var 𝑋 = 𝑛𝑝(1 − 𝑝)

We’ll prove 

this later in 

the course

Variance

Expectation

𝑘 = 0, 1,… , 𝑛:

𝑃 𝑋 = 𝑘 = 𝑝 𝑘 =
𝑛
𝑘

𝑝𝑘 1 − 𝑝 𝑛−𝑘
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No, give me the variance proof right now
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proofwiki.org



Poisson

14

08a_poisson
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Before we start

The natural exponent 𝑒:

https://en.wikipedia.org/wiki/E_(mathematical_constant)
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lim
𝑛→∞

1 −
𝜆

𝑛

𝑛

= 𝑒−𝜆

Jacob Bernoulli

while studying 

compound interest 

in 1683

https://en.wikipedia.org/wiki/E_(mathematical_constant)
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Algorithmic ride sharing

16

🙋♀️

🙋♀️

🙋♂️

🙋♂️
🙋♂️

Probability of 𝑘 requests from this area in the next 1 minute?

On average, 𝜆 = 5 requests per minuteSuppose we know:
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Algorithmic ride sharing, approximately

At each second:
• Independent trial

• You get a request (1) or you don’t (0).

Let 𝑋 = # of requests in minute.

𝐸 𝑋 = 𝜆 = 5

17

Probability of 𝑘 requests from this area in the next 1 minute?

On average, 𝜆 = 5 requests per minute

0 0 1 0 1 … 0 0 0 0 1

1 2 3 4 5 60

𝑋 ~ Bin 𝑛 = 60, 𝑝 = 5/60

Break a minute down into 60 seconds:

𝑃 𝑋 = 𝑘 =
60
𝑘

5

60

𝑘

1 −
5

60

𝑛−𝑘

But what if there are two
requests in the same second?🤔
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Algorithmic ride sharing, approximately

At each millisecond:
• Independent trial

• You get a request (1) or you don’t (0).

Let 𝑋 = # of requests in minute.

𝐸 𝑋 = 𝜆 = 5

18

Probability of 𝑘 requests from this area in the next 1 minute?

On average, 𝜆 = 5 requests per minute

Break a minute down into 60,000 milliseconds:

𝑃 𝑋 = 𝑘 =
𝑛
𝑘

𝜆

𝑛

𝑘

1 −
𝜆

𝑛

𝑛−𝑘

…

1 60,000

𝑋 ~ Bin 𝑛 = 60000, 𝑝 = 𝜆/𝑛

But what if there are two
requests in the same 
millisecond?

🤔



Lisa Yan, CS109, 2020

Algorithmic ride sharing, approximately

For each time bucket:
• Independent trial

• You get a request (1) or you don’t (0).

Let 𝑋 = # of requests in minute.

𝐸 𝑋 = 𝜆 = 5
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Probability of 𝑘 requests from this area in the next 1 minute?

On average, 𝜆 = 5 requests per minute

Break a minute down into infinitely small buckets:

𝑃 𝑋 = 𝑘

= lim
𝑛→∞

𝑛
𝑘

𝜆

𝑛

𝑘

1 −
𝜆

𝑛

𝑛−𝑘

Who wants to see some cool math?

OMG so small

1 ∞

𝑋 ~ Bin 𝑛, 𝑝 = 𝜆/𝑛
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Binomial in the limit

20

𝑃 𝑋 = 𝑘

= lim
𝑛→∞

𝑛
𝑘

𝜆

𝑛

𝑘

1 −
𝜆

𝑛

𝑛−𝑘 = lim
𝑛→∞

𝑛!

𝑘!(𝑛 − 𝑘)!

𝜆𝑘

𝑛𝑘

1 −
l
𝑛

𝑛

1 −
l
𝑛

𝑘

lim
𝑛→∞

1 −
𝜆

𝑛

𝑛

= 𝑒−𝜆

= lim
𝑛→∞

𝑛!

𝑛𝑘(𝑛 − 𝑘)!

𝜆𝑘

𝑘!

1 −
l
𝑛

𝑛

1 −
l
𝑛

𝑘

= lim
𝑛→∞

𝑛!

𝑛𝑘(𝑛 − 𝑘)!

𝜆𝑘

𝑘!

𝑒−𝜆

1 −
l
𝑛

𝑘

= lim
𝑛→∞

𝑛 𝑛 − 1 ⋯ 𝑛 − 𝑘 + 1

𝑛𝑘
𝑛 − 𝑘 !

𝑛 − 𝑘 !

𝜆𝑘

𝑘!

𝑒−𝜆

1 −
l
𝑛

𝑘

= lim
𝑛→∞

𝑛𝑘

𝑛𝑘
𝜆𝑘

𝑘!

𝑒−𝜆

1
=
𝜆𝑘

𝑘!
𝑒−𝜆
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Algorithmic ride sharing

21

🙋♀️

🙋♀️

🙋♂️

🙋♂️
🙋♂️

Probability of 𝑘 requests from this area in the next 1 minute?

On average, 𝜆 = 5 requests per minute

𝑃 𝑋 = 𝑘 =
𝜆𝑘

𝑘!
𝑒−𝜆
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Simeon-Denis Poisson

French mathematician (1781 – 1840)

• Published his first paper at age 18

• Professor at age 21

• Published over 300 papers

“Life is only good for two things: doing mathematics and teaching it.”

22

http://upload.wikimedia.org/wikipedia/commons/b/b7/Simeon_Poisson.jpg
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Consider an experiment that lasts a fixed interval of time.

def A Poisson random variable 𝑋 is the number of successes over the 
experiment duration.

Examples:
• # earthquakes per year

• # server hits per second

• # of emails per day

Yes, expectation == variance 

for Poisson RV! More later.

Poisson Random Variable

23

𝑃 𝑋 = 𝑘 = 𝑒−𝜆
𝜆𝑘

𝑘!𝑋~Poi(𝜆)

Support: {0,1, 2, … }

PMF

𝐸 𝑋 = 𝜆
Var 𝑋 = 𝜆Variance

Expectation
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Earthquakes

There are an average of 2.79 major earthquakes in the world each year.

What is the probability of 3 major earthquakes happening next year?

24

𝑝 𝑘 = 𝑒−𝜆
𝜆𝑘

𝑘!

1. Define RVs

2. Solve

0

0.05

0.1

0.15

0.2

0.25

0.3

0 1 2 3 4 5 6 7 8 9 10

𝑃
(𝑋

=
 𝑘

)

Number of earthquakes, 𝑘

𝑋~Poi(𝜆)

𝐸 𝑋 = 𝜆
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Are earthquakes really Poissonian?

25



Poisson 
Paradigm

26

08b_poisson_paradigm
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DNA

27

All the movies, images, 

emails and other digital 

data from more than 

600 smartphones 

(10,000 GB) can be 

stored in the faint pink 

smear of DNA at the end 

of this test tube.

What is the probability 

that DNA storage stays 

uncorrupted? 
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DNA

What is the probability that DNA storage stays uncorrupted?
• In DNA (and real networks), we store large strings.
• Let string length be long, e.g., 𝑛 ≈ 104

• Probability of corruption of each base pair is very small, e.g., 𝑝 = 10−6

• Let 𝑋 = # of corruptions.

What is P(DNA storage is uncorrupted) = 𝑃 𝑋 = 0 ?

28

1. Approach 1:

𝑋~Bin 𝑛 = 104, 𝑝 = 10−6

𝑃 𝑋 = 𝑘 =
𝑛
𝑘

𝑝𝑘 1 − 𝑝 𝑛−𝑘

= 104

0
10−6⋅0 1 − 10−6 104−0

≈ 0.99049829

2. Approach 2:

𝑋~Poi 𝜆 = 104 ⋅ 10−6 = 0.01

𝑃 𝑋 = 𝑘 = 𝑒−𝜆
𝜆𝑘

𝑘!
= 𝑒−0.01

0.010

0!

= 𝑒−0.01

≈ 0.99049834

⚠️unwieldy!
a good 

approximation!

✅
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The Poisson Paradigm, part 1

Poisson approximates Binomial 
when 𝑛 is large, 𝑝 is small, and 
𝜆 = 𝑛𝑝 is “moderate.”

Different interpretations of 
“moderate”:

• 𝑛 > 20 and 𝑝 < 0.05

• 𝑛 > 100 and 𝑝 < 0.1

Poisson is Binomial in the limit:

• 𝜆 = 𝑛𝑝, where 𝑛 → ∞, 𝑝 → 0

29

Poisson can approximate Binomial.

0

0.05

0.1

0.15

0.2

0.25

0.3

0 1 2 3 4 5 6 7 8 9 10

𝑃
(𝑋

=
 𝑘

)

𝑋 = 𝑘

Bin(10,0.3)

Bin(100,0.03)

Bin(1000,0.003)

Poi(3)

𝑋~Poi(𝜆)

𝐸 𝑋 = 𝜆

𝑌~Bin(𝑛, 𝑝)

𝐸 𝑌 = 𝑛𝑝
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Consider an experiment that lasts a fixed interval of time.

def A Poisson random variable 𝑋 is the number of occurrences over the 
experiment duration.

Examples:
• # earthquakes per year

• # server hits per second

• # of emails per day

Time to show intuition for why 

expectation == variance!

Poisson Random Variable

30

𝑃 𝑋 = 𝑘 = 𝑒−𝜆
𝜆𝑘

𝑘!𝑋~Poi(𝜆)

Support: {0,1, 2, … } Variance

Expectation

PMF

𝐸 𝑋 = 𝜆
Var 𝑋 = 𝜆
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Properties of Poi(𝜆) with the Poisson paradigm

Recall the Binomial:

Consider 𝑋~Poi(𝜆), where 𝜆 = 𝑛𝑝 (𝑛 → ∞, 𝑝 → 0):

Proof:

𝐸 𝑋 = 𝑛𝑝 = 𝜆
Var 𝑋 = 𝑛𝑝 1 − 𝑝 → 𝜆 1 − 0 = 𝜆

31

𝑌~Bin(𝑛, 𝑝)
Variance

Expectation 𝐸 𝑌 = 𝑛𝑝
Var 𝑌 = 𝑛𝑝(1 − 𝑝)

Expectation 𝐸 𝑋 = 𝜆
Var 𝑋 = 𝜆

𝑋~Poi(𝜆)
Variance
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A Real License Plate Seen at Stanford

No, it’s not mine… 
but I kind of wish it was.
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Poisson Paradigm, part 2

Poisson can still provide a good approximation of the Binomial,
even when assumptions are “mildly” violated.

You can apply the Poisson approximation when:

• ”Successes” in trials are not entirely independent
e.g.: # entries in each bucket in large hash table.

• Probability of “Success” in each trial varies (slightly),
like a small relative change in a very small p
e.g.: Average # requests to web server/sec may fluctuate

slightly due to load on network

33

👈

We won’t explore this too much, 

but I want you to know it exists.



Other Discrete 
RVs

34

08c_other_discrete
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Grid of random variables

35

Number of 

successes

Ber(𝑝)One trial

Several

trials

Interval

of time

Bin(𝑛, 𝑝)

Poi(𝜆) (tomorrow)

One success

Several

successes

Interval of time to

first success

Time until 

success

𝑛 = 1

Focus on understanding how and when to use RVs, not on memorizing PMFs.
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Consider an experiment: independent trials of Ber(𝑝) random variables.

def A Geometric random variable 𝑋 is the # of trials until the first success.

Examples:
• Flipping a coin (𝑃 heads = 𝑝) until first heads appears

• Generate bits with 𝑃 bit = 1 = 𝑝 until first 1 generated

Geometric RV

36

𝑃 𝑋 = 𝑘 = 1 − 𝑝 𝑘−1𝑝
𝑋~Geo(𝑝)

Support: {1, 2, … }

PMF

𝐸 𝑋 =
1

𝑝

Var 𝑋 =
1−𝑝

𝑝2
Variance

Expectation
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Consider an experiment: independent trials of Ber(𝑝) random variables.

def A Negative Binomial random variable 𝑋 is the # of trials until 
𝑟 successes.

Examples:
• Flipping a coin until 𝑟𝑡ℎ heads appears

• # of strings to hash into table until bucket 1 has 𝑟 entries

Negative Binomial RV

37

𝑃 𝑋 = 𝑘 =
𝑘 − 1
𝑟 − 1

1 − 𝑝 𝑘−𝑟𝑝𝑟𝑋~NegBin(𝑟, 𝑝)

Support: {𝑟, 𝑟 + 1,… }

PMF

𝐸 𝑋 =
𝑟

𝑝

Var 𝑋 =
𝑟 1−𝑝

𝑝2
Variance

Expectation

(fixed lecture error)

Geo 𝑝 = NegBin(1, 𝑝)
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Grid of random variables

38

Number of 

successes

Ber(𝑝)One trial

Several

trials

Interval

of time

Bin(𝑛, 𝑝)

Poi(𝜆)

Geo(𝑝)

NegBin(𝑟, 𝑝)

(tomorrow)

One success

Several

successes

Interval of time to

first success

Time until 

success

𝑛 = 1 𝑟 = 1
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Catching Pokemon

Wild Pokemon are captured by throwing Pokeballs at them.

• Each ball has probability p = 0.1 of capturing the Pokemon.

• Each ball is an independent trial.

What is the probability that you catch the Pokemon on the 5th try?

39

1. Define events/ 
RVs & state goal

A. 𝑋~Bin 5, 0.1
B. 𝑋~Poi 0.5
C. 𝑋~NegBin 5, 0.1
D. 𝑋~NegBin 1, 0.1
E. 𝑋~Geo 0.1
F. None/other

2. Solve

𝑋~some distribution

Want: 𝑃 𝑋 = 5

🤔
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Wild Pokemon are captured by throwing Pokeballs at them.

• Each ball has probability p = 0.1 of capturing the Pokemon.

• Each ball is an independent trial.

What is the probability that you catch the Pokemon on the 5th try?

A. 𝑋~Bin 5, 0.1
B. 𝑋~Poi 0.5
C. 𝑋~NegBin 5, 0.1
D. 𝑋~NegBin 1, 0.1
E. 𝑋~Geo 0.1
F. None/other

Catching Pokemon

40

1. Define events/ 
RVs & state goal

2. Solve

𝑋~some distribution

Want: 𝑃 𝑋 = 5
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2. Solve

Catching Pokemon

Wild Pokemon are captured by throwing Pokeballs at them.

• Each ball has probability p = 0.1 of capturing the Pokemon.

• Each ball is an independent trial.

What is the probability that you catch the Pokemon on the 5th try?

41

1. Define events/ 
RVs & state goal

2. Solve

𝑋~Geo 0.1

Want: 𝑃 𝑋 = 5

𝑋~Geo(𝑝) 𝑝 𝑘 = 1 − 𝑝 𝑘−1𝑝



(live)
08: Random Variables II
II
Oishi Banerjee and Cooper Raterink
Adapted from Lisa Yan
July 8, 2020
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Our first common RVs

43

𝑋 ~ Ber(𝑝)

𝑌 ~ Bin(𝑛, 𝑝)

1. The random 

variable

2. is distributed 

as a
3. Bernoulli 4. with parameter

Example: Heads in one coin flip,

P(heads) = 0.8 = p

Example: # heads in 40 coin flips,

P(heads) = 0.8 = p

otherwise Identify PMF, or

identify as a function of an 

existing random variable

Review



Think
The next slide has a matching question to go 
over by yourself. We’ll go over it together 
afterwards.

Post any clarifications here!

https://us.edstem.org/courses/667/discussion/84212

Think by yourself: 2 min

44

🤔(by yourself)

https://us.edstem.org/courses/667/discussion/84212
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Visualizing Binomial PMFs
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C. D.

Match the distribution 

to the graph:

1. Bin 10,0.5

2. Bin 10,0.3

3. Bin 10,0.7

4. Bin 5,0.5
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🤔(by yourself)
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Visualizing Binomial PMFs
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Match the distribution 

to the graph:

1. Bin 10,0.5

2. Bin 10,0.3

3. Bin 10,0.7

4. Bin 5,0.5
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𝑛
𝑘

𝑝𝑘 1 − 𝑝 𝑛−𝑘

𝐸 𝑋 = 𝑛𝑝
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Binomial RV is sum of Bernoulli RVs

Bernoulli

• 𝑋~Ber(𝑝)

Binomial

• 𝑌~Bin 𝑛, 𝑝

• The sum of 𝑛 independent 
Bernoulli RVs

47

𝑌 =

𝑖=1

𝑛

𝑋𝑖 , 𝑋𝑖 ~Ber(𝑝)

+

+

+

Review
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NBA Finals and genetics
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Think, 
then
Breakout 
Rooms

Check out the questions on the next slide. 
Post any clarifications here!

https://us.edstem.org/courses/667/discussion/84212

By yourself: 2 min

Breakout rooms: 5 min. 

49

🤔

https://us.edstem.org/courses/667/discussion/84212
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NBA Finals and genetics

1. The Golden State Warriors are going to play the Toronto Raptors in a
7-game series during the 2019 NBA finals.

• The Warriors have a probability of 58% of winning each game, independently.

• A team wins the series if they win at least 4 games (we play all 7 games).

What is P(Warriors winning)?

2. Each person has 2 genes per trait (e.g., eye color).
• Child receives 1 gene (equally likely) from each parent

• Brown is “dominant”, blue is ”recessive”:

• Child has brown eyes if either (or both) genes are brown

• Blue eyes only if both genes are blue.

• Parents each have 1 brown and 1 blue gene.

A family has 4 children. What is P(exactly 3 children with brown eyes)?

50

🤔
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NBA Finals

The Golden State Warriors are going to play the Toronto
Raptors in a 7-game series during the 2019 NBA finals.
• The Warriors have a probability of 58% of

winning each game, independently.

• A team wins the series if they win at least 4 games
(we play all 7 games).

What is P(Warriors winning)?

51

1. Define events/ 
RVs & state goal

𝑋: # games Warriors win

𝑋~Bin(7, 0.58)

Want: 

Desired probability? (select all that apply)

A. 𝑃 𝑋 > 4
B. 𝑃 𝑋 ≥ 4
C. 𝑃 𝑋 > 3
D. 1 − 𝑃 𝑋 ≤ 3
E. 1 − 𝑃 𝑋 < 3

𝑋~Bin(𝑛, 𝑝) 𝑝 𝑘 =
𝑛
𝑘

𝑝𝑘 1 − 𝑝 𝑛−𝑘
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Desired probability? (select all that apply)

A. 𝑃 𝑋 > 4
B. 𝑃 𝑋 ≥ 4
C. 𝑃 𝑋 > 3
D. 1 − 𝑃 𝑋 ≤ 3
E. 1 − 𝑃 𝑋 < 3

NBA Finals

The Golden State Warriors are going to play the Toronto
Raptors in a 7-game series during the 2019 NBA finals.
• The Warriors have a probability of 58% of

winning each game, independently.

• A team wins the series if they win at least 4 games
(we play all 7 games).

What is P(Warriors winning)?
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1. Define events/ 
RVs & state goal

𝑋: # games Warriors win

𝑋~Bin(7, 0.58)

Want: 

𝑋~Bin(𝑛, 𝑝) 𝑝 𝑘 =
𝑛
𝑘

𝑝𝑘 1 − 𝑝 𝑛−𝑘
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NBA Finals

The Golden State Warriors are going to play the Toronto Raptors in a 7-
game series during the 2019 NBA finals.
• The Warriors have a probability of 58% of

winning each game, independently.

• A team wins the series if they win at least 4 games
(we play all 7 games).

What is P(Warriors winning)?

53

Cool Algebra/Probability Fact: this is identical to the probability 

of winning if we define winning = first to win 4 games

1. Define events/ 
RVs & state goal

2. Solve

𝑋: # games Warriors win

𝑋~Bin(7, 0.58)

Want: 𝑃 𝑋 ≥ 4

𝑃 𝑋 ≥ 4 = 

𝑘=4

7

𝑃 𝑋 = 𝑘 = 

𝑘=4

7

7
𝑘

0.58𝑘 0.42 7−𝑘

𝑋~Bin(𝑛, 𝑝) 𝑝 𝑘 =
𝑛
𝑘

𝑝𝑘 1 − 𝑝 𝑛−𝑘
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Genetic inheritance

Each person has 2 genes per trait (e.g., eye color).
• Child receives 1 gene (equally likely) from each parent

• Brown is “dominant”, blue is ”recessive”:

• Child has brown eyes if either (or both) genes are brown

• Blue eyes only if both genes are blue.

• Parents each have 1 brown and 1 blue gene.

A family has 4 children. What is P(exactly 3 children with brown eyes)?

54

𝑋~Bin(𝑛, 𝑝) 𝑝 𝑘 =
𝑛
𝑘

𝑝𝑘 1 − 𝑝 𝑛−𝑘

A. Product of 4 independent events

B. Probability tree

C. Bernoulli, success 𝑝 = 3 children 
with brown eyes

D. Binomial, 𝑛 = 3 trials, success 
𝑝 = brown-eyed child

E. Binomial, 𝑛 = 4 trials, success 
𝑝 = brown-eyed child

Subset 

of ideas:
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Each person has 2 genes per trait (e.g., eye color).
• Child receives 1 gene (equally likely) from each parent

• Brown is “dominant”, blue is ”recessive”:

• Child has brown eyes if either (or both) genes are brown

• Blue eyes only if both genes are blue.

• Parents each have 1 brown and 1 blue gene.

A family has 4 children. What is P(exactly 3 children with brown eyes)?
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Genetic inheritance

1. Define events/ 
RVs & goal

3. Solve

𝑋: # brown-eyed children,

𝑋~Bin(4, 𝑝)
𝑝: 𝑃 brown−eyed child

Want: 𝑃 𝑋 = 3

2. Identify known
probabilities

𝑋~Bin(𝑛, 𝑝) 𝑝 𝑘 =
𝑛
𝑘

𝑝𝑘 1 − 𝑝 𝑛−𝑘



Interlude for 
jokes/announcements

57
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Announcements
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Midterm Quiz

Time frame: Mon-Tues, July 20-21 5pm-5pm PT

Covers: Up to and including Lecture 11

Info and practice: 
http://web.stanford.edu/class/archive/cs/cs109/cs109.1208/exams/quizzes.ht

ml

http://web.stanford.edu/class/archive/cs/cs109/cs109.1208/exams/quizzes.html
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Interesting probability news

59

https://theconversation.com/p

olly-knows-probability-this-

parrot-can-predict-the-chances-

of-something-happening-

132767

https://theconversation.com/polly-knows-probability-this-parrot-can-predict-the-chances-of-something-happening-132767


Discrete RVs

60

LIVE

The hardest part of problem-solving is 

determining what is a random variable .
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Grid of random variables
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Number of 

successes

Ber(𝑝)One trial

Several

trials

Interval

of time

Bin(𝑛, 𝑝)

Poi(𝜆)

Geo(𝑝)

NegBin(𝑟, 𝑝)

(today!)

One success

Several

successes

Interval of time to

first success

Time until 

success

𝑛 = 1 𝑟 = 1

Review
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Grid of random variables
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Number of 

successes

Ber(𝑝)One trial

Several

trials

Interval

of time

Bin(𝑛, 𝑝)

Poi(𝜆)

Geo(𝑝)

NegBin(𝑟, 𝑝)

(today!)

One success

Several

successes

Interval of time to

first success

Time until 

success

𝑛 = 1 𝑟 = 1

Review



Breakout 
Rooms

Check out the question on the next slide. 
Post any clarifications here!

https://us.edstem.org/courses/667/discussion/84212

Breakout rooms: 5 min. Introduce yourself!

63

🤔

https://us.edstem.org/courses/667/discussion/84212
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An RV Tour

How would you model the following?

1. # of snapchats you receive in a day

2. # of children until the first one with
brown eyes (same parents)

3. Whether stock went up or down in a day

4. # of probability problems you try until you 
get 5 correct (if you are randomly correct)

5. # of years in some decade with at least 6 
Atlantic hurricanes

64

Choose from:

A. Ber 𝑝
B. Bin 𝑛, 𝑝

C. Poi 𝜆
D. Geo 𝑝
E. NegBin 𝑟, 𝑝

🤔
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An RV Tour

How would you model the following?

1. # of snapchats you receive in a day

2. # of children until the first one with
brown eyes (same parents)

3. Whether stock went up or down in a day

4. # of probability problems you try until you 
get 5 correct (if you are randomly correct)

5. # of years in some decade with at least 6 
Atlantic hurricanes
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E. NegBin 𝑟 = 5, 𝑝

Choose from:

A. Ber 𝑝
B. Bin 𝑛, 𝑝

A. Ber 𝑝 or B. Bin 1, 𝑝

D. Geo 𝑝 or E. NegBin 1, 𝑝

C. Poi 𝜆

B. Bin 𝑛 = 10, 𝑝 , where 

𝑝 = 𝑃 ≥ 6 hurricanes in a year

calculated from C. Poi 𝜆

C. Poi 𝜆
D. Geo 𝑝
E. NegBin 𝑟, 𝑝
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CS109 Learning Goal: Use new RVs

Let’s say you are learning about 
servers/networks.

You read about the M/D/1 queue:

“The service time busy period is 
distributed as a Borel with parameter
𝜇 = 0.2.”

Goal: You can recognize terminology 
and understand experiment setup.

66

😎



Poisson RV

67

LIVE
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Poisson Random Variable

In CS109, a Poisson RV 𝑋~Poi(𝜆)most often models

• # of successes over a fixed interval of time.
𝜆 = 𝐸[𝑋], average success/interval

• Approximation of 𝑌~Bin(𝑛, 𝑝) where 𝑛 is large and 𝑝 is small.
𝜆 = 𝐸 𝑌 = 𝑛𝑝

• Approximation of Binomial even when success
in trials are not entirely independent. 

68

𝑃 𝑋 = 𝑘 = 𝑒−𝜆
𝜆𝑘

𝑘!𝑋~Poi(𝜆)

Support: {0,1, 2,… }

PMF

𝐸 𝑋 = 𝜆
Var 𝑋 = 𝜆Variance

Expectation

Review

(explored in problem set 3)



Breakout 
Rooms The next slide has two questions to go over 

in groups.

Post any clarifications here!

https://us.edstem.org/courses/667/discussion/84212

Breakout rooms: 5 mins

69

🤔

https://us.edstem.org/courses/667/discussion/84212
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Web server load

1. Consider requests to a web server in 1 second.
• In the past, server load averages 2 hits/second.

• Let 𝑋 = # hits the server receives in a second.

What is 𝑃 𝑋 < 5 ?

2. Can the following Binomial
RVs be approximated with Poisson?

70

𝑋~Poi(𝜆)
𝑝 𝑘 = 𝑒−𝜆

𝜆𝑘

𝑘!𝐸 𝑋 = 𝜆

🤔
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1. Web server load

Consider requests to a web server in 1 second.
• In the past, server load averages 2 hits/second.

• Let 𝑋 = # hits the server receives in a second.

What is 𝑃 𝑋 < 5 ?

71

𝑋~Poi(𝜆)
𝑝 𝑘 = 𝑒−𝜆

𝜆𝑘

𝑘!

1. Define RVs 2. Solve

𝐸 𝑋 = 𝜆
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2. Can these Binomial RVs be approximated?
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✅

❌

⚠️Can approximate

Bin(100,1-0.96)

Poisson approximates Binomial 
when 𝑛 is large, 𝑝 is small, and 
𝜆 = 𝑛𝑝 is “moderate.”

Different interpretations of 
“moderate”:

• 𝑛 > 20 and 𝑝 < 0.05

• 𝑛 > 100 and 𝑝 < 0.1


