07: Random Variables II

Lisa Yan April 22, 2020

07d_binomial

Binomial RV

Consider an experiment: n independent trials of Ber(p) random variables. <u>def</u> A Binomial random variable X is the number of successes in n trials.

$$X \sim Bin(n,p)$$
PMF $k = 0, 1, \dots, n$:
 $P(X = k) = p(k) = {n \choose k} p^k (1-p)^{n-k}$
ExpectationSupport: $\{0, 1, \dots, n\}$ Variance $Var(X) = np(1-p)$

Examples:

- # heads in n coin flips
- # of 1's in randomly generated length n bit string
- # of disk drives crashed in 1000 computer cluster (assuming disks crash independently)

Reiterating notation

The parameters of a Binomial random variable:

- *n*: number of independent trials
- *p*: probability of success on each trial

 $X \sim \operatorname{Bin}(n,p)$

If X is a binomial with parameters n and p, the PMF of X is

$$P(X = k) = \binom{n}{k} p^k (1-p)^{n-k}$$

Probability that *X* takes on the value *k*

Probability Mass Function for a Binomial

Lisa Yan, CS109, 2020

Three coin flips

$$X \sim \mathsf{Bin}(n, p) \quad p(k) = \binom{n}{k} p^k (1-p)^{n-k}$$

Three fair ("heads" with p = 0.5) coins are flipped.

- X is number of heads
- $X \sim Bin(3, 0.5)$

Compute the following event probabilities:

P(X=0)P(X=1)P(X = 2)P(X = 3)P(X = 7)P(event)

Three coin flips

$$X \sim \operatorname{Bin}(n, p) \quad p(k) = \binom{n}{k} p^k (1-p)^{n-k}$$

Three fair ("heads" with p = 0.5) coins are flipped.

- X is number of heads
- *X*~Bin(3, 0.5)

Compute the following event probabilities:

$$P(X = 0) = p(0) = \binom{3}{0} p^{0} (1 - p)^{3} = \frac{1}{8}$$

$$P(X = 1) = p(1) = \binom{3}{1} p^{1} (1 - p)^{2} = \frac{3}{8}$$

$$P(X = 2) = p(2) = \binom{3}{2} p^{2} (1 - p)^{1} = \frac{3}{8}$$

$$P(X = 3) = p(3) = \binom{3}{3} p^{3} (1 - p)^{0} = \frac{1}{8}$$

$$P(X = 7) = p(7) = 0$$

$$P(event) = PMF$$

$$Lise Yan, CS109, 2020$$

Lisa Yan, CS109, 2020

Extra math note: By Binomial Theorem, we can prove $\sum_{k=0}^{n} P(X = k) = 1$

Binomial Random Variable

Consider an experiment: n independent trials of Ber(p) random variables. <u>def</u> A **Binomial** random variable X is the number of successes in n trials.

$$X \sim Bin(n,p)$$
PMF $k = 0, 1, ..., n$:
 $P(X = k) = p(k) = {n \choose k} p^k (1-p)^{n-k}$
ExpectationRange: $\{0,1,...,n\}$ Variance $Var(X) = np(1-p)$

Examples:

- # heads in n coin flips
- # of 1's in randomly generated length n bit string
- # of disk drives crashed in 1000 computer cluster (assuming disks crash independently)

Binomial RV is sum of Bernoulli RVs

Bernoulli

• *X*~Ber(*p*)

Binomial

- *Y*~Bin(*n*, *p*)
- The sum of *n* independent Bernoulli RVs

$$Y = \sum_{i=1}^{n} X_i, \qquad X_i \sim \text{Ber}(p)$$

Ber(p) = Bin(1, p)

Binomial Random Variable

Consider an experiment: n independent trials of Ber(p) random variables. <u>def</u> A **Binomial** random variable X is the number of successes in n trials.

$$X \sim Bin(n,p)$$
PMF $k = 0, 1, ..., n$:
 $P(X = k) = p(k) = {n \choose k} p^k (1-p)^{n-k}$
ExpectationRange: $\{0,1,...,n\}$ Variance $Var(X) = np(1-p)$

Examples:

Proof:

- # heads in n coin flips
- # of 1's in randomly generated length n bit string
- # of disk drives crashed in 1000 computer cluster (assuming disks crash independently)

Binomial Random Variable

Consider an experiment: n independent trials of Ber(p) random variables. <u>def</u> A **Binomial** random variable X is the number of successes in n trials.

$$X \sim Bin(n,p)$$
PMF $k = 0, 1, ..., n$:
 $P(X = k) = p(k) = {n \choose k} p^k (1-p)^{n-k}$ Range: $\{0,1,...,n\}$ Expectation $E[X] = np$ Variance $Var(X) = np(1-p)$

Examples:

- # heads in n coin flips
- # of 1's in randomly generated length n bit string
- # of disk drives crashed in 1000 computer cluster (assuming disks crash independently)

We'll prove this later in the course

No, give me the variance proof right now

To simplify the algebra a bit, let q = 1 - p, so p + q = 1.

So:

E (

$$\begin{aligned} X^{2} \end{pmatrix} &= \sum_{k \ge 0}^{n} k^{2} \binom{n}{k} p^{k} q^{n-k} \\ &= \sum_{k=0}^{n} kn \binom{n-1}{k-1} p^{k} q^{n-k} \\ &= np \sum_{k=1}^{n} k \binom{n-1}{k-1} p^{k-1} q^{(n-1)-(k-1)} \\ &= np \sum_{j=0}^{m} (j+1) \binom{m}{j} p^{j} q^{m-j} \\ &= np \left(\sum_{j=0}^{m} j\binom{m}{j} p^{j} q^{m-j} + \sum_{j=0}^{m} \binom{m}{j} p^{j} q^{m-j} \right) \\ &= np \left(\sum_{j=0}^{m} m\binom{m-1}{j-1} p^{j} q^{m-j} + \sum_{j=0}^{m} \binom{m}{j} p^{j} q^{m-j} \right) \\ &= np \left((n-1)p \sum_{j=1}^{m} \binom{m-1}{j-1} p^{j-1} q^{(m-1)-(j-1)} + \sum_{j=0}^{m} \binom{m}{j} p^{j} q^{m-j} \right) \\ &= np ((n-1)p(p+q)^{m-1} + (p+q)^{m}) \\ &= np((n-1)p+1) \\ &= n^{2}p^{2} + np(1-p) \end{aligned}$$

Definition of Binomial Distribution: p + q = 1

Factors of Binomial Coefficient:
$$k \binom{n}{k} = n \binom{n-1}{k-1}$$

Change of limit: term is zero when k-1=0

putting j = k - 1, m = n - 1

splitting sum up into two

Factors of Binomial Coefficient:
$$j\binom{m}{j} = m\binom{m-1}{j-1}$$

Change of limit: term is zero when j - 1 = 0

Binomial Theorem

as p + q = 1

by algebra

Then:

$$\operatorname{var}(X) = \operatorname{E}(X^{2}) - (\operatorname{E}(X))^{2}$$
$$= np(1-p) + n^{2}p^{2} - (np)^{2}$$
Expectation of Binomial Distribution: $\operatorname{E}(X) = np$
$$= np(1-p)$$

as required.

proofwiki.org Stanford University 13

08a_poisson

Poisson

The natural exponent *e*:

$$\lim_{n \to \infty} \left(1 - \frac{\lambda}{n} \right)^n = e^{-\lambda}$$

https://en.wikipedia.org/wiki/E_(mathematical_constant)

Jacob Bernoulli while studying compound interest in 1683

Algorithmic ride sharing

Probability of k requests from this area in the next 1 minute?

Suppose we know:

On average, $\lambda = 5$ requests per minute

Algorithmic ride sharing, approximately

Probability of k requests from this area in the next 1 minute?

On average, $\lambda = 5$ requests per minute

Break a minute down into 60 seconds:

	0	0	1	0	1		•••	0	0	0	0	1	
	1	2	3	4	5							60	
At each second:Independent trial				$X \sim Bin(n = 60, p = 5/60)$									
• You get a request (1) or you don't (0).)	(60	$\sqrt{5}$	$\left\{ \right\} ^{k}$	$\left(\right)$	$5 \rangle^{n-k}$		
Let $X = #$ of requests in minute.					$P(X = k) = \binom{k}{60} \binom{1 - \overline{60}}{60}$				$\overline{60}$				
$E[X] = \lambda = 5$					Ē	Bu	ıt wh	at if t	here	are tv	VO		

quests in the same second?

Stanford University 17

Algorithmic ride sharing, approximately

Probability of k requests from this area in the next 1 minute?

On average, $\lambda = 5$ requests per minute

Break a minute down into 60,000 milliseconds:

Lisa Yan, CS109, 2020

At each millisecond:

- Independent trial
- You get a request (1) or you don't (0).

Let X = # of requests in minute. $E[X] = \lambda = 5$

$$X \sim \text{Bin}(n = 60000, \ p = \lambda/n)$$

$$P(X = k) = {\binom{n}{k}} \left(\frac{\lambda}{n}\right)^k \left(1 - \frac{\lambda}{n}\right)^{n-k}$$

But what if there are *two* requests in the same millisecond? Stanford University 18

Algorithmic ride sharing, approximately

Probability of k requests from this area in the next 1 minute?

On average, $\lambda = 5$ requests per minute

Break a minute down into infinitely small buckets:

OMG so small

1

For each time bucket:

- Independent trial
- You get a request (1) or you don't (0).
- Let X = # of requests in minute.

 $E[X] = \lambda = 5$

$$X \sim \text{Bin}(n, \ p = \lambda/n)$$
$$P(X = k)$$
$$= \lim_{\substack{n \to \infty \\ \text{who wants to see some cool}} \left(\frac{\lambda}{n}\right)^{k} \left(1 - \frac{\lambda}{n}\right)^{n-k}$$

 ∞

 $\lim_{n\to\infty} \left(1-\frac{\lambda}{n}\right)^n = e^{-\lambda}$

Algorithmic ride sharing

Probability of k requests from this area in the next 1 minute?

On average, $\lambda = 5$ requests per minute

$$P(X = k) = \frac{\lambda^k}{k!} e^{-\lambda}$$

Lisa Yan, CS109, 2020

Stanford University 21

Simeon-Denis Poisson

French mathematician (1781 – 1840)

- Published his first paper at age 18
- Professor at age 21
- Published over 300 papers

"Life is only good for two things: doing mathematics and teaching it."

Consider an experiment that lasts a fixed interval of time.

<u>def</u> A Poisson random variable *X* is the number of successes over the experiment duration.

$X \sim \text{Poi}(\lambda)$	PMF	$P(X = k) = e^{-\lambda} \frac{\lambda^k}{k!}$
	Expectation	$E[X] = \lambda$
Support: {0,1,2,}	Variance	$Var(X) = \lambda$

Examples:

- # earthquakes per year
- # server hits per second
- # of emails per day

Yes, expectation == variance for Poisson RV! More later.

Earthquakes

$$\begin{array}{ll} X \sim \operatorname{Poi}(\lambda) \\ E[X] = \lambda \end{array} \quad p(k) = e^{-\lambda} \frac{\lambda^k}{k!} \end{array}$$

There are an average of 2.79 major earthquakes in the world each year. What is the probability of 3 major earthquakes happening next year?

1. Define RVs

2. Solve

Are earthquakes really Poissonian?

Bulletin of the Seismological Society of America

Vol. 64

October 1974

No. 5

IS THE SEQUENCE OF EARTHQUAKES IN SOUTHERN CALIFORNIA, WITH AFTERSHOCKS REMOVED, POISSONIAN?

By J. K. GARDNER and L. KNOPOFF

Abstract

Yes.

08b_poisson_paradigm

Poisson Paradigm

All the movies, images, emails and other digital data from more than 600 smartphones (10,000 GB) can be stored in the faint pink smear of DNA at the end of this test tube.

What is the probability that DNA storage stays uncorrupted?

DNA

What is the probability that DNA storage stays uncorrupted?

- In DNA (and real networks), we store large strings.
- Let string length be long, e.g., $n \approx 10^4$
- Probability of corruption of each base pair is very small, e.g., $p = 10^{-6}$
- Let X = # of corruptions.

What is P(DNA storage is uncorrupted) = P(X = 0)?

1. Approach 1:

$$X \sim \text{Bin}(n = 10^4, p = 10^{-6})$$

 $P(X = k) = {n \choose k} p^k (1 - p)^{n-k}$

unwieldy!
$$\bigwedge_{\approx} = {\binom{10^4}{0}} 10^{-6 \cdot 0} (1 - 10^{-6})^{10^4 - 0}$$
$$\approx 0.99049829$$

Approach 2:

$$X \sim \text{Poi}(\lambda = 10^4 \cdot 10^{-6} = 0.01)$$

 $P(X = k) = e^{-\lambda} \frac{\lambda^k}{k!} = e^{-0.01} \frac{0.01^0}{0!}$
 $= e^{-0.01}$
 ≈ 0.99049834 approximation

Stanford University

Poisson approximates Binomial when n is large, p is small, and $\lambda = np$ is "moderate."

Different interpretations of "moderate":

- n > 20 and p < 0.05
- n > 100 and p < 0.1

Poisson is Binomial in the limit:

• $\lambda = np$, where $n \to \infty, p \to 0$

 $X \sim \text{Poi}(\lambda)$

 $E[X] = \lambda$

Poisson can approximate Binomial.

 $Y \sim Bin(n, p)$

E[Y] = np

Consider an experiment that lasts a fixed interval of time.

<u>def</u> A **Poisson** random variable *X* is the number of occurrences over the experiment duration.

$X \sim Poi(\lambda)$	PMF	$P(X = k) = e^{-\lambda} \frac{\lambda^k}{k}$
	Expectation	$E[X] = \lambda \qquad \qquad k!$
Support: {0,1, 2, }	Variance	$Var(X) = \lambda$

Examples:

- # earthquakes per year
- # server hits per second
- # of emails per day

Time to show intuition for why expectation == variance!

Properties of $Poi(\lambda)$ with the Poisson paradigm

Recall the Binomial:

V = Din(n = n)	Expectation	E[Y] = np
$I \sim \text{Diff}(n, p)$	Variance	Var(Y) = np(1-p)

Consider *X*~Poi(λ), where $\lambda = np$ ($n \rightarrow \infty, p \rightarrow 0$):

$X \sim Poi(\lambda)$	Expectation	$E[X] = \lambda$		
	Variance	$Var(X) = \lambda$		

Proof:

$$E[X] = np = \lambda$$

Var(X) = $np(1-p) \rightarrow \lambda(1-0) = \lambda$

A Real License Plate Seen at Stanford

No, it's not mine... but I kind of wish it was.

Lisa Yan, CS109, 2020

Stanford University

Poisson Paradigm, part 2

Poisson can still provide a good approximation of the Binomial, even when assumptions are "mildly" violated.

You can apply the Poisson approximation when:

 "Successes" in trials are <u>not entirely independent</u> e.g.: # entries in each bucket in large hash table.

 Probability of "Success" in each trial varies (slightly), like a small relative change in a very small p e.g.: Average # requests to web server/sec may fluctuate slightly due to load on network

> We won't explore this too much, but I want you to know it exists.

08c_other_discrete

Other Discrete RVs

Grid of random variables

	Number of successes	Time until success	
One trial	Ber(p)		One success
Several trials	n = 1 Bin(n, p)		Several successes
Interval of time	Poi(λ)	(tomorrow)	Interval of time to first success
Focus o	n understanding <u>how</u> and	d <u>when</u> to use RVs, not or	n memorizing PMFs.

Lisa Yan, CS109, 2020

Geometric RV

Consider an experiment: independent trials of Ber(p) random variables. <u>def</u> A **Geometric** random variable *X* is the # of trials until the <u>first</u> success.

X~Geo(p)PMF
$$P(X = k) = (1 - p)^{k-1}p$$
Support: {1, 2, ...}Expectation $E[X] = \frac{1}{p}$ Variance $Var(X) = \frac{1-p}{p^2}$

Examples:

- Flipping a coin (P(heads) = p) until first heads appears
- Generate bits with P(bit = 1) = p until first 1 generated

Negative Binomial RV

Consider an experiment: independent trials of Ber(p) random variables. <u>def</u> A Negative Binomial random variable X is the # of trials until r successes.

$$X \sim \text{NegBin}(r,p) \qquad \text{PMF} \qquad P(X = k) = \binom{k-1}{r-1}(1-p)^{k-r}p^r$$

Support: $\{r, r+1, ...\} \qquad \text{PMF} \qquad E[X] = \frac{r}{p}$
Variance $Var(X) = \frac{r(1-p)}{p^2}$

Examples:

- Flipping a coin until r^{th} heads appears
- # of strings to hash into table until bucket 1 has r entries

$$Geo(p) = NegBin(1, p)$$

(five of least we away)

Grid of random variables

	Number of successes	Time until success	
One trial	Ber(p)	Geo(p)	One success
Several trials	n = 1 Bin(n, p)	r = 1 NegBin(r, p)	Several successes
Interval of time	Poi(λ)	(tomorrow)	Interval of time to first success

Catching Pokemon

Wild Pokemon are captured by throwing Pokeballs at them.

- Each ball has probability p = 0.1 of capturing the Pokemon.
- Each ball is an independent trial.

What is the probability that you catch the Pokemon on the 5th try?

1. Define events/ RVs & state goal

> $X \sim$ some distribution Want: P(X = 5)

- 2. Solve
 - A. X~Bin(5,0.1)
 B. X~Poi(0.5)
 C. X~NegBin(5,0.1)
 D. X~NegBin(1,0.1)
 - E. $X \sim \text{Geo}(0.1)$
 - F. None/other

Catching Pokemon

Wild Pokemon are captured by throwing Pokeballs at them.

- Each ball has probability p = 0.1 of capturing the Pokemon.
- Each ball is an independent trial.

What is the probability that you catch the Pokemon on the 5th try?

1. Define events/ RVs & state goal

> $X \sim$ some distribution Want: P(X = 5)

- 2. Solve
 - A. $X \sim Bin(5, 0.1)$ B. $X \sim Poi(0.5)$
 - **C.** *X*~NegBin(5,0.1)
 - D. $X \sim \text{NegBin}(1, 0.1)$
 - **E.** *X*~Geo(0.1)
 - F. None/other

Catching Pokemon

 $X \sim \text{Geo}(p) \quad p(k) = (1-p)^{k-1}p$

Wild Pokemon are captured by throwing Pokeballs at them.

- Each ball has probability p = 0.1 of capturing the Pokemon.
- Each ball is an independent trial.

What is the probability that you catch the Pokemon on the 5th try?

1. Define events/
RVs & state goal2. Solve

X~Geo(0.1)

Want: P(X = 5)

(live) o8: Random Variables II II

Oishi Banerjee and Cooper Raterink Adapted from Lisa Yan July 8, 2020

Our first common RVs

Review

 $Y \sim Bin(n, p)$ Example: # heads in 40 coin flips, P(heads) = 0.8 = p

otherwise

Identify PMF, or identify as a function of an existing random variable

Lisa Yan, CS109, 2020

Think

The next slide has a matching question to go over by yourself. We'll go over it together afterwards.

Post any clarifications here!

https://us.edstem.org/courses/667/discussion/84212 Think by yourself: 2 min

Visualizing Binomial PMFs

E[X] = np $p(i) = \binom{n}{k} p^k (1-p)^{n-k}$ $X \sim Bin(n, p)$

Visualizing Binomial PMFs

$$E[X] = np$$

X~Bin(n,p) $p(i) = \binom{n}{k} p^k (1-p)^{n-k}$

Binomial RV is sum of Bernoulli RVs

Bernoulli

• *X*~Ber(*p*)

Binomial

- *Y*~Bin(*n*, *p*)
- The sum of *n* independent Bernoulli RVs

$$Y = \sum_{i=1}^{n} X_i, \qquad X_i \sim \text{Ber}(p)$$

Review

NBA Finals and genetics

Lisa Yan, CS109, 2020

Think, then Breakout Rooms

Check out the questions on the next slide. Post any clarifications here!

https://us.edstem.org/courses/667/discussion/84212

By yourself: 2 min

Breakout rooms: 5 min.

NBA Finals and genetics

- The Golden State Warriors are going to play the Toronto Raptors in a 7-game series during the 2019 NBA finals.
 - The Warriors have a probability of 58% of winning each game, independently.
 - A team wins the series if they win at least 4 games (we play all 7 games).

What is P(Warriors winning)?

- 2. Each person has 2 genes per trait (e.g., eye color).
- Child receives 1 gene (equally likely) from each parent
- Brown is "dominant", blue is "recessive":
 - Child has brown eyes if either (or both) genes are brown
 - Blue eyes only if both genes are blue.
- Parents each have 1 brown and 1 blue gene.

A family has 4 children. What is P(exactly 3 children with brown eyes)?

NBA Finals

The Golden State Warriors are going to play the Toronto Raptors in a 7-game series during the 2019 NBA finals.

- The Warriors have a probability of 58% of winning each game, independently.
- A team wins the series if they win at least 4 games (we play all 7 games).

What is P(Warriors winning)?

- 1. Define events/ RVs & state goal
- X: # games Warriors win $X \sim Bin(7, 0.58)$

Want:

Desired probability? (select all that apply)

Lisa Y

A. P(X > 4)

B. $P(X \ge 4)$

C. P(X > 3)

D. $1 - P(X \le 3)$

E. 1 - P(X < 3)

NBA Finals

The Golden State Warriors are going to play the Toronto Raptors in a 7-game series during the 2019 NBA finals.

- The Warriors have a probability of 58% of winning each game, independently.
- A team wins the series if they win at least 4 games (we play all 7 games).

What is P(Warriors winning)?

- 1. Define events/ RVs & state goal
- X: # games Warriors win $X \sim Bin(7, 0.58)$

Want:

A.
$$P(X > 4)$$

B. $P(X \ge 4)$
C. $P(X > 3)$
D. $1 - P(X \le 3)$
E. $1 - P(X \le 3)$

NBA Finals

$$X \sim \mathsf{Bin}(n, p) \quad p(k) = \binom{n}{k} p^k (1-p)^{n-k}$$

The Golden State Warriors are going to play the Toronto I game series during the 2019 NBA finals.

- The Warriors have a probability of 58% of winning each game, independently.
- A team wins the series if they win at least 4 games (we play all 7 games).

What is P(Warriors winning)?

1. Define events/
RVs & state goal2. Solve

X: # games Warriors win $X \sim Bin(7, 0.58)$

Want: $P(X \ge 4)$

$$P(X \ge 4) = \sum_{k=4}^{7} P(X = k) = \sum_{k=4}^{7} {\binom{7}{k}} \, 0.58^k (0.42)^{7-k}$$

Cool Algebra/Probability Fact: this is identical to the probability of winning if we define winning = first to win 4 games

Lisa Yan, CS109, 2020

Genetic inheritance

Each person has 2 genes per trait (e.g., eye color).

- Child receives 1 gene (equally likely) from each parent
- Brown is "dominant", blue is "recessive":
 - Child has brown eyes if either (or both) genes are brown
 - Blue eyes only if both genes are blue.
- Parents each have 1 brown and 1 blue gene.

A family has 4 children. What is P(exactly 3 children with brown eyes)?

- Subset A. Product of 4 independent events
- of ideas: B. Probability tree
 - C. Bernoulli, success p = 3 children with brown eyes
 - D. Binomial, n = 3 trials, success p = brown-eyed child
 - E. Binomial, n = 4 trials, success p = brown-eyed child

Genetic inheritance

Each person has 2 genes per trait (e.g., eye color).

- Child receives 1 gene (equally likely) from each parent
- Brown is "dominant", blue is "recessive":
 - Child has brown eyes if either (or both) genes are brown
 - Blue eyes only if both genes are blue.
- Parents each have 1 brown and 1 blue gene.
- A family has 4 children. What is P(exactly 3 children with brown eyes)?
- 1. Define events/
RVs & goal2. Identify known
probabilities3. Solve
- X: # brown-eyed children, X~Bin(4,p) p: P(brown-eyed child)

Want: P(X = 3)

Interlude for jokes/announcements

Announcements

Midterm Quiz

Time frame:Mon-Tues, July 20-21 5pm-5pm PTCovers:Up to and including Lecture 11Info and practice:http://web.stanford.edu/class/archive/cs/cs109/cs109.1208/exams/quizzes.html

Interesting probability news

https://theconversation.com/p olly-knows-probability-thisparrot-can-predict-the-chancesof-something-happening-132767

LIVE

Discrete RVs

The hardest part of problem-solving is determining what is a random variable .

Grid of random variables

Review

	Number of successes	Time until success	
One trial	Ber(p)	Geo(p)	One success
Several trials	n = 1 Bin(n, p)	NegBin (r, p)	Several successes
Interval of time	Poi(λ)	(today!)	Interval of time to first success

Grid of random variables

Review

	Number of successes	Time until success	
One trial	Ber(p)	Geo(p)	One success
Several trials	n = 1 $Bin(n, p)$	NegBin (r, p)	Several successes
Interval of time	$Poi(\lambda)$	(today!)	Interval of time to first success

Breakout Rooms

Check out the question on the next slide. Post any clarifications here!

https://us.edstem.org/courses/667/discussion/84212

Breakout rooms: 5 min. Introduce yourself!

An RV Tour

How would you model the following?

- **1.** *#* of snapchats you receive in a day
- 2. # of children until the first one with brown eyes (same parents)
- 3. Whether stock went up or down in a day
- 4. # of probability problems you try until you get 5 correct (if you are randomly correct)
- 5. # of years in some decade with at least 6 Atlantic hurricanes

Choose from:C. $Poi(\lambda)$ A.Ber(p)D.Geo(p)B.Bin(n,p)E.NegBin(r,p)

An RV Tour

How would you model the following?

- 1. # of snapchats you receive in a day
- 2. # of children until the first one with brown eyes (same parents)
- 3. Whether stock went up or down in a day
- 4. # of probability problems you try until you get 5 correct (if you are randomly correct)
- 5. # of years in some decade with at least 6
 Atlantic hurricanes

Choose from: C. $Poi(\lambda)$ A. Ber(p) D. Geo(p)B. Bin(n,p) E. NegBin(r,p)

C. Poi (λ)

D. Geo(p) or E. NegBin(1, p)

A. Ber(p) or B. Bin(1, p)

E. NegBin(r = 5, p)

B. Bin(n = 10, p), where $p = P(\geq 6 \text{ hurricanes in a year})$ calculated from C. $Poi(\lambda)$

CS109 Learning Goal: Use new RVs

Let's say you are learning about servers/networks.

You read about the M/D/1 queue:

"The service time busy period is distributed as a Borel with parameter $\mu = 0.2$."

Goal: You can recognize terminology and understand experiment setup.

	wikipedia.org/wiki/Borel distribution			ভিন্থ	☆	Incognito	8	
Plan a		💄 Not	logged	in Talk Contrib	utions	Create account	Log in	
AU II	Article Talk	Read	Edit	View history	Sear	rch Wikipedia	Q	
WIKKEDI A	Borel distribution							
lhe Free Encyclopedia	From Wikipedia, the free encyclopedia							
fain page	The Borel distribution is a discrete	~		Borel dis	tribu	tion		
eatured content	including branching processes and	Parameters $\mu \in [0, \infty)$			[0, 1]	0,1]		
Current events	queueing theory. It is named after the French mathematician Émile Borel.		Support n		$\{1, 2, 3, \ldots\}$			
onate to Wikipedia					<u>(µn)</u> <u>n!</u>			
Vikipedia store	If the number of offspring that an organism	Mean 1		_				
nteraction	average number of offspring of each	Variance /		u ı				
Help About Wikipedia	organism is no bigger than 1, then the	· and	(1 -		$\mu)^3$			
Community portal	descendants of each individual will ultimately become extinct. The number of descendants that an individual ultimately has in that situation is a random variable distributed according to a Borel distribution.						at	
Recent changes Contact page							al	
Tools	Contents [hide]							
What links here	1 Definition							
Related changes	2 Derivation and branching process interpre	ation						
Special pages	3 Queueing theory interpretation							
Permanent link Page information	5 Borel–Tanner distribution							
Wikidata item	6 References							
Cite this page	7 External links							
Print/export								
Create a book Download as PDF	Definition [edit]							
Printable version	A discrete random variable X is said to hav	e a Bor	el distr	ibution ^{[1][2]} wit	h para	meter $\mu \in [0, 1]$] if	
Languages 🔅	the probability mass function of X is given b	-1						
Português	$P_\mu(n)=\Pr(X=n)=rac{e^{-\mu n}(\mu n)^n}{n!}$	_						
	for <i>n</i> = 1, 2, 3							

Stanford University 66

Lisa Yan, CS109, 2020

LIVE

Poisson RV

	PMF	λ^k
$X \sim POI(\lambda)$		$P(X = k) = e^{-\kappa} \frac{1}{k!}$
	Expectation	$E[X] = \lambda$
Support: {0,1,2, }	Variance	$Var(X) = \lambda$

In CS109, a Poisson RV $X \sim Poi(\lambda)$ most often models

- # of successes over a fixed interval of time. $\lambda = E[X]$, average success/interval
- Approximation of $Y \sim Bin(n, p)$ where *n* is large and *p* is small. $\lambda = E[Y] = np$
- Approximation of Binomial even when success in trials are not entirely independent.

(explored in problem set 3)

Breakout Rooms

The next slide has two questions to go over in groups.

Post any clarifications here!

https://us.edstem.org/courses/667/discussion/84212 Breakout rooms: 5 mins

Web server load

 $X \sim \text{Poi}(\lambda)$ $p(k) = e^{-\lambda}$ $E[X] = \lambda$

- 1. Consider requests to a web server in 1 second.
 - In the past, server load averages 2 hits/second.
 - Let X = # hits the server receives in a second.
 What is P(X < 5)?

2. Can the following Binomial RVs be approximated with Poisson?

1. Web server load

 $\begin{array}{ll} X \sim \operatorname{Poi}(\lambda) \\ E[X] = \lambda \end{array} \quad p(k) = e^{-\lambda} \frac{\lambda^k}{k!} \end{array}$

Consider requests to a web server in 1 second.

- In the past, server load averages 2 hits/second.
- Let *X* = # hits the server receives in a second.

What is P(X < 5)?

1. Define RVs2. Solve

2. Can these Binomial RVs be approximated?

Poisson approximates Binomial when n is large, p is small, and $\lambda = np$ is "moderate."

Different interpretations of "moderate":

- n > 20 and p < 0.05
- n > 100 and p < 0.1

