12: Independent RVs

Lisa Yan May 1, 2020 3 Independent discrete RVs 12a_independent_rvs

- 8 Sums of Independent Binomial RVs 12b_sum_binomial
- 10 Convolution: Sum of independent Poisson RVs 12c_discrete_conv
- 17 Exercises LIVE

12a_independent_rvs

Independent Discrete RVs

Independent discrete RVs

Recall the definition of independent events E and F :

$$
P(EF) = P(E)P(F)
$$

Two discrete random variables X and Y are **independent** if:

 $P(X = x, Y = y) = P(X = x)P(Y = y)$ for all x, y :

Different notation, same idea:

$$
p_{X,Y}(x,y)=p_X(x)p_Y(y)
$$

- Intuitively: knowing value of X tells us nothing about the distribution of Y (and vice versa)
- If two variables are not independent, they are called **dependent**.

Dice (after all this time, still our friends)

- Let: D_1 and D_2 be the outcomes of two rolls $S = D_1 + D_2$, the sum of two rolls
- Each roll of a 6-sided die is an independent trial.
- Random variables D_1 and D_2 are independent.

- 1. Are events $(D_1 = 1)$ and $(S = 7)$ independent?
- 2. Are events $(D_1 = 1)$ and $(S = 5)$ independent?
- 3. Are random variables D_1 and S independent?

Lisa Yan, CS109, 2020

Dice (after all this time, still our friends)

- Let: D_1 and D_2 be the outcomes of two rolls $S = D_1 + D_2$, the sum of two rolls
- Each roll of a 6-sided die is an independent trial.
- Random variables D_1 and D_2 are independent.

- 1. Are events $(D_1 = 1)$ and \blacktriangleright $(S = 7)$ independent?
- 2. Are events $(D_1 = 1)$ and X $(S = 5)$ independent?
- 3. Are random variables D_1 and S independent?

All events $(X = x, Y = y)$ must be independent for X, Y to be independent RVs.

 $\boldsymbol{\mathsf{X}}$

What about continuous random variables?

Continuous random variables can also be independent! We'll see this later.

Today's goal:

How can we model sums of discrete random variables?

Big motivation: Model total successes observed over multiple experiments

12b_sum_binomial

Sums of independent Binomial RVs

Sum of independent Binomials

$$
X \sim Bin(n_1, p)
$$

\n
$$
Y \sim Bin(n_2, p)
$$

\n
$$
X + Y \sim Bin(n_1 + n_2, p)
$$

\n
$$
X, Y \text{ independent}
$$

Intuition:

- Each trial in X and Y is independent and has same success probability p
- Define $Z = #$ successes in $n_1 + n_2$ independent trials, each with success probability p. $Z \sim Bin(n_1 + n_2, p)$, and also $Z = X + Y$

12c_discrete_conv

Convolution: Sum of independent Poisson RVs

Convolution: Sum of independent random variables

For any discrete random variables X and Y :

$$
P(X+Y=n)=\sum_{k}P(X=k,Y=n-k)
$$

In particular, for independent discrete random variables X and Y :

$$
P(X + Y = n) = \sum_{k} P(X = k)P(Y = n - k)
$$

the convolution of p_X and p_Y

Insight into convolution

For independent discrete random variables X and Y :

$$
P(X+Y=n) = \sum_{k} P(X=k)P(Y=n-k)
$$

the convolution of p_X and p_Y

Suppose X and Y are independent, both with support $\{0, 1, ..., n, ... \}$:

Sum of 2 dice rolls

The distribution of a sum of 2 dice rolls is a convolution of 2 PMFs.

Example: $P(X + Y = 4) =$ $P(X = 1)P(Y = 3)$ $+ P(X = 2)P(Y = 2)$ $+ P(X = 3)P(Y = 1)$

Sum of 10 dice rolls (fun preview)

Sum of independent Poissons

 $X \sim \text{Poi}(\lambda_1)$, $Y \sim \text{Poi}(\lambda_2)$

 X, Y independent $X + Y \sim \text{Poi}(\lambda_1 + \lambda_2)$

Lisa Yan, CS109 Stanford University 15 $P(X + Y = n) = \sum_{n=1}^{\infty}$ \boldsymbol{k} $P(X = k)P(Y = n - k)$ X and Y independent, convolution $=$ \sum $k=0$ \overline{n} $e^{-\lambda_1} \frac{\lambda_1^k}{l_1!}$ $k!$ $e^{-\lambda_2} \frac{\lambda_2^{n-k}}{(\lambda_2 - \lambda_1)}$ $(n - k)!$ $= e^{-(\lambda_1+\lambda_2)}$ $k=0$ \boldsymbol{n} λ_1^k λ_2^{n-k} $k! (n - k)!$ PMF of Poisson RVs = $e^{-(\lambda_1+\lambda_2)}$ $n!$ \sum $k=0$ \boldsymbol{n} $n!$ $k! (n - k)!$ $\lambda_1^k \lambda_2^{n-k} =$ $e^{-(\lambda_1+\lambda_2)}$ $n!$ $\lambda_1 + \lambda_2$ ⁿ Proof (just for reference): $(a + b)^n = \sum$ $k=0$ \boldsymbol{n} \overline{n} \boldsymbol{k} $a^k b^{n-k}$ Binomial Theorem: Poi $(\lambda_1 + \lambda_2)$

General sum of independent Poissons

Holds in general case:

 $X_i \sim \text{Poi}(\lambda_i)$ X_i independent for $i = 1, ..., n$

$$
\sum_{i=1}^{n} X_i \sim \text{Poi}(\sum_{i=1}^{n} \lambda_i)
$$

Lisa Yan, CS109, 2020

(live) 12: Independent RVs

Lisa Yan May 1, 2020

Independent discrete RVs

Two discrete random variables X and Y are independent if:

 $P(X = x, Y = y) = P(X = x)P(Y = y)$ $p_{X,Y}(x, y) = p_X(x)p_Y(y)$ for all x, y :

The sum of 2 dice and the outcome of 1st die are dependent RVs.

Important: Joint PMF must decompose into product of marginal PMFs for ALL values of X and Y for X , Y to be independent RVs.

Review

 $\sum_{n=1}^{\infty}$ Slide 22 has a question to go over by yourself.

Post any clarifications here!

https://us.edstem.org/courses/667/discussion/91824 Think by yourself: 2 min

Coin flips

Flip a coin with probability p of "heads" a total of $n + m$ times.

- Let $X =$ number of heads in first *n* flips. $X \sim \text{Bin}(n, p)$ $Y =$ number of heads in next m flips. $Y \sim Bin(m, p)$ $Z =$ total number of heads in $n + m$ flips.
- 1. Are X and Z independent?
- 2. Are X and Y independent?

Coin flips

Flip a coin with probability p of "heads" a total of $n + m$ times.

- Let $X =$ number of heads in first *n* flips. $X \sim \text{Bin}(n, p)$ $Y =$ number of heads in next m flips. $Y \sim Bin(m, p)$ $Z =$ total number of heads in $n + m$ flips.
- 1. Are X and Z independent? \bigtimes

2. Are X and Y independent? \blacktriangleright

 $P(X = x, Y = y) = P$ first n flips have x heads and next m flips have y heads

$$
= {n \choose x} p^{x} (1-p)^{n-x} {m \choose y} p^{y} (1-p)^{m-y}
$$

 $= P(X = x)P(Y = y)$

Counterexample: What if $Z = 0$?

of mutually exclusive outcomes in event ∶ \overline{n} χ \overline{m} \hat{y} P (each outcome) $= p^{x}(1-p)^{n-x}p^{y}(1-p)^{m-y}$

This probability (found through counting) is the product of the marginal PMFs.

Sum of independent Poissons

 $X \sim \text{Poi}(\lambda_1)$, $Y \sim \text{Poi}(\lambda_2)$

 X, Y independent $X + Y \sim \text{Poi}(\lambda_1 + \lambda_2)$

- n servers with independent number of requests/minute
- Server *i*'s requests each minute can be modeled as $X_i \sim \text{Poi}(\lambda_i)$

What is the probability that none of the servers receive any requests in the next minute?

Breakout Rooms

Slide 26 has two questions to go over in groups.

ODD breakout rooms: Try question 1 EVEN breakout rooms: Try question 2

Post any clarifications here!

https://us.edstem.org/courses/667/discussion/91824 Breakout rooms: 5 min. Introduce yourself!

- 1. Let $X \sim Bin(30, 0.01)$ and $Y \sim Bin(50, 0.02)$ be independent RVs.
	- How do we compute $P(X + Y = 2)$ using a Poisson approximation?
	- How do we compute $P(X + Y = 2)$ exactly?
- 2. Let $N = #$ of requests to a web server per day. Suppose $N \sim \text{Poi}(\lambda)$.
	- Each request independently comes from a human (prob. p), or bot $(1 p)$.
	- Let X be $\#$ of human requests/day, and Y be $\#$ of bot requests/day.

Are X and Y independent? What are their marginal PMFs?

1. Approximating the sum of independent Binomial RVs

Let $X \sim Bin(30, 0.01)$ and $Y \sim Bin(50, 0.02)$ be independent RVs.

• How do we compute $P(X + Y = 2)$ using a Poisson approximation?

• How do we compute
$$
P(X + Y = 2)
$$
 exactly?
\n
$$
P(X + Y = 2) = \sum_{k=0}^{2} P(X = k)P(Y = 2 - k)
$$
\n
$$
= \sum_{k=0}^{2} {30 \choose k} 0.01^{k} (0.99)^{30-k} {50 \choose 2-k} 0.02^{2-k} 0.98^{50-(2-k)} \approx 0.2327
$$

Stanford University 25

2. Web server requests

Let $N = #$ of requests to a web server per day. Suppose $N \sim \text{Poi}(\lambda)$.

- Each request independently comes from a human (prob. p), or bot $(1 p)$.
- Let X be $\#$ of human requests/day, and Y be $\#$ of bot requests/day.

Are X and Y independent? What are their marginal PMFs?

$$
P(X = n, Y = m) = P(X = n, Y = m | N = n + m)P(N = n + m)
$$
Law of Total
+
$$
P(X = n, Y = m | N \neq n + m)P(N \neq n + m)
$$
Probability

=
$$
P(X = n | N = n + m)P(Y = m | X = n, N = n + m)P(N = n + m)
$$
 Chain Rule

$$
= {n+m \choose n} p^n (1-p)^m
$$

\n
$$
= {n+m! \choose n} e^{-\lambda} \frac{(\lambda p)^n (\lambda (1-p))^m}{(n+m)!}
$$

\n
$$
= \frac{(n+m)!}{n! m!} e^{-\lambda} \frac{(\lambda p)^n (\lambda (1-p))^m}{(n+m)!}
$$

\n
$$
= P(X = n)P(Y = m)
$$

\n
$$
= P(X = n)P(Y = m)
$$

\n
$$
= \frac{(n+m)!}{(n+m)!} e^{-\lambda} \frac{(\lambda p)^n}{n!} e^{-\lambda (1-p)} \frac{(\lambda (1-p))^m}{m!}
$$

\n
$$
= \frac{(n+m)!}{(n+m)!} e^{-\lambda} \frac{(\lambda p)^n (\lambda (1-p))^m}{n!}
$$

\n
$$
= \frac{(n+m)!}{(n+m)!} e^{-\lambda} \frac{(\lambda p)^n (\lambda (1-p))^m}{n!}
$$

\n
$$
= \frac{(n+m)!}{(n+m)!} e^{-\lambda} \frac{(\lambda p)^n (\lambda (1-p))^m}{n!}
$$

\n
$$
= \frac{(n+m)!}{(n+m)!} e^{-\lambda} \frac{(\lambda p)^n (\lambda (1-p))^m}{n!}
$$

\n
$$
= \frac{(n+m)!}{(n+m)!} e^{-\lambda} \frac{(\lambda p)^n (\lambda (1-p))^m}{n!}
$$

Interlude for jokes/announcements

Quiz #1

24 hours, starting on Monday, 5pm PST See Ed and the OH calendar for study help!

MY HOBBY: EXTRAPOLATING

Credit: https://xkcd.com/605/

Interesting probability news

Column: Did Astros beat the Dodgers by cheating? The numbers say no

"…new analyses of the Astros' 2017 season by baseball's corps of unofficial statisticians — ["sabermetricians,](https://en.wikipedia.org/wiki/Sabermetrics)" to the sport indicate that the Astros didn't gain anything from their cheating; in fact, it may have hurt them."

[https://www.latimes.com/business/story/2020-02-](https://www.latimes.com/business/story/2020-02-27/astros-cheating-analysis) 27/astros-cheating-analysis

Independence of multiple random variables

Recall independence of *n* events $E_1, E_2, ..., E_n$:

for
$$
r = 1, ..., n
$$
:
for every subset $E_1, E_2, ..., E_r$:
 $P(E_1, E_2, ..., E_r) = P(E_1)P(E_2) \cdots P(E_r)$

We have independence of *n* discrete random variables $X_1, X_2, ..., X_n$ if for all $x_1, x_2, ..., x_n$: \boldsymbol{n}

$$
P(X_1 = x_1, X_2 = x_2, ..., X_n = x_n) = \prod_{i=1}^{n} P(X_i = x_i)
$$

Independence is symmetric

If X and Y are independent random variables, then X is independent of Y, and Y is independent of X

Let N be the number of times you roll 2 dice repeatedly until a 4 is rolled (the player wins), or a 7 is rolled (the player loses).

Let X be the value (4 or 7) of the final throw's sum.

• Is N independent of X ? $P(N = n | X = 7) = P(N = n)$? $P(N = n | X = 4) = P(N = n)$? Is X independent of N? $P(X = 4|N = n) = P(X = 4)$? $P(X = 7 | N = n) = P(X = 7)$? (yes, easier to intuit)

In short: Independence is not always intuitive, but it is symmetric.

LIVE

Statistics of Two RVs

Expectation and Covariance

In real life, we often have many RVs interacting at once.

- We've seen some simpler cases (e.g., sum of independent Poissons).
- Computing joint PMFs in general is hard!
- But often you don't need to model joint RVs completely.

Instead, we'll focus next on reporting *statistics* of multiple RVs:

- Expectation of sums (you've seen some of this)
- Covariance: a measure of how two RVs vary with *each other*

Properties of Expectation, extended to two RVs

1. Linearity: $E[aX + bY + c] = aE[X] + bE[Y] + c$

2. Expectation of a sum = sum of expectation: $E[X + Y] = E[X] + E[Y]$

(we've seen this; we'll prove this next)

3. Unconscious statistician:

$$
E[g(X, Y)] = \sum_{x} \sum_{y} g(x, y) p_{X,Y}(x, y)
$$

True for both independent and dependent random variables!

$$
E[X + Y] = \sum_{x} \sum_{y} (x + y) p_{X,Y}(x, y)
$$

\n
$$
= \sum_{x} \sum_{y} x p_{X,Y}(x, y) + \sum_{x} \sum_{y} y p_{X,Y}(x, y)
$$

\n
$$
= \sum_{x} x \sum_{y} p_{X,Y}(x, y) + \sum_{y} y \sum_{x} p_{X,Y}(x, y)
$$

\n
$$
= \sum_{x} x p_{X}(x) + \sum_{y} y p_{Y}(y)
$$

\n
$$
= E[X] + E[Y]
$$

\n
$$
= E[X] + E[Y]
$$

\n
$$
= \sum_{y} x p_{Y}(x) + \sum_{y} y p_{Y}(y)
$$

\n
$$
= \sum_{y} x p_{Y}(x) + \sum_{y} y p_{Y}(y)
$$

\n
$$
= \sum_{y} x p_{Y}(x) + \sum_{y} y p_{Y}(y)
$$

\n
$$
= E[X] + E[Y]
$$

Expectations of common RVs: Binomial

$$
X \sim \text{Bin}(n, p) \quad E[X] = np
$$

 $#$ of successes in n independent trials with probability of success p

Recall: $\text{Bin}(1, p) = \text{Ber}(p)$

$$
X = \sum_{i=1}^{n} X_i
$$

 $E[X] = E \mid \sum$ $i=1$ \overline{n} X_i = \sum $i=1$ \overline{n} $E[X_i] = \sum$ $i=1$ \overline{n} $p = np$ Let $X_i = i$ th trial is heads $X_i \sim \text{Ber}(p)$, $E[X_i] = p$

Review

Think

Slide 40 has a question to go over by yourself.

Post any clarifications here!

https://us.edstem.org/courses/667/discussion/91824

Think by yourself: 2 min

Expectations of common RVs: Negative Binomial

$$
Y \sim \text{NegBin}(r, p) \quad E[Y] = \frac{r}{p}
$$

Recall: NegBin $(1, p)$ = Geo (p)

$$
Y = \sum_{i=1}^{?} Y_i
$$

of independent trials with probability of success p until r successes

1. How should we define Y_i ?

2. How many terms are in our summation?

Expectations of common RVs: Negative Binomial

$$
Y \sim \text{NegBin}(r, p) \quad E[Y] = \frac{r}{p}
$$

Recall: NegBin $(1, p)$ = Geo (p)

 $Y = \sum$ $i=1$? Y_i

Let $Y_i = #$ trials to get *i*th success (after $(i - 1)$ th success) $Y_i \sim \text{Geo}(p)$, $E[Y_i] = \frac{1}{n}$ \overline{p} $E[Y] = E \mid \sum$ $i=1$ \boldsymbol{r} Y_i = \sum $i=1$ \boldsymbol{r} $E[Y_i] = \sum$ $i=1$ \boldsymbol{r} 1 \overline{p}

of independent trials with probability of success p until r successes

=

 \boldsymbol{r}

 \overline{p}

Good luck!

