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Independent discrete RVs

Recall the definition of independent
events 𝐸 and 𝐹:

Two discrete random variables 𝑋 and 𝑌 are independent if:

𝑃 𝑋 = 𝑥, 𝑌 = 𝑦 = 𝑃 𝑋 = 𝑥 𝑃 𝑌 = 𝑦

𝑝𝑋,𝑌 𝑥, 𝑦 = 𝑝𝑋 𝑥 𝑝𝑌 𝑦

• Intuitively: knowing value of 𝑋 tells us nothing about
the distribution of 𝑌 (and vice versa)

• If two variables are not independent, they are called dependent.

4

for all 𝑥, 𝑦:

Different notation,

same idea:

𝑃 𝐸𝐹 = 𝑃 𝐸 𝑃 𝐹
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Dice (after all this time, still our friends)

Let: 𝐷1 and 𝐷2 be the outcomes of two rolls
𝑆 = 𝐷1 + 𝐷2, the sum of two rolls

• Each roll of a 6-sided die is an independent trial.
• Random variables 𝐷1 and 𝐷2 are independent.

1. Are events 𝐷1 = 1 and
𝑆 = 7 independent?

2. Are events 𝐷1 = 1 and
𝑆 = 5 independent?

3. Are random variables 𝐷1 and 𝑆 independent?

5

🤔
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Let: 𝐷1 and 𝐷2 be the outcomes of two rolls
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• Each roll of a 6-sided die is an independent trial.
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1. Are events 𝐷1 = 1 and
𝑆 = 7 independent?

2. Are events 𝐷1 = 1 and
𝑆 = 5 independent?

3. Are random variables 𝐷1 and 𝑆 independent?

6

❌

❌

✅

All events 𝑋 = 𝑥, 𝑌 = 𝑦 must be independent for 𝑋, 𝑌 to be independent RVs.
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What about continuous random variables?

Continuous random variables can also be independent! We’ll see this later.

Today’s goal:

How can we model sums of discrete random variables?

Big motivation: Model total successes observed over
multiple experiments

7



Sums of 
independent 
Binomial RVs
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Sum of independent Binomials

Intuition:

• Each trial in 𝑋 and 𝑌 is independent and has same success probability 𝑝

• Define 𝑍 =# successes in 𝑛1 + 𝑛2 independent trials, each with success 
probability 𝑝. 𝑍~Bin 𝑛1 + 𝑛2, 𝑝 , and also 𝑍 = 𝑋 + 𝑌

9

𝑋~Bin(𝑛1, 𝑝)

𝑌~Bin(𝑛2, 𝑝) 𝑋 + 𝑌 ~Bin(𝑛1 + 𝑛2, 𝑝)

If only it were 
always so 

simple…

𝑋, 𝑌 independent

𝑋𝑖~Bin(𝑛𝑖 , 𝑝)
𝑋𝑖 independent for 𝑖 = 1,… , 𝑛

෍

𝑖=1

𝑛

𝑋𝑖 ~Bin(෍

𝑖=1

𝑛

𝑛𝑖 , 𝑝)

Holds in general case:



Convolution: 
Sum of 
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Convolution: Sum of independent random variables

For any discrete random variables 𝑋 and 𝑌:

𝑃 𝑋 + 𝑌 = 𝑛 =෍

𝑘

𝑃 𝑋 = 𝑘, 𝑌 = 𝑛 − 𝑘

In particular, for independent discrete random variables 𝑋 and 𝑌:

𝑃 𝑋 + 𝑌 = 𝑛 =෍

𝑘

𝑃 𝑋 = 𝑘 𝑃 𝑌 = 𝑛 − 𝑘

11

the convolution of 𝑝𝑋 and 𝑝𝑌
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the convolution

of 𝑝𝑋 and 𝑝𝑌

Insight into convolution

For independent discrete random variables 𝑋 and 𝑌:

𝑃 𝑋 + 𝑌 = 𝑛 =෍

𝑘

𝑃 𝑋 = 𝑘 𝑃 𝑌 = 𝑛 − 𝑘

Suppose 𝑋 and 𝑌 are independent, both with support 0, 1, … , 𝑛, … :

12

𝑋

0 1 2 … 𝑛 𝑛 + 1 …

𝑌

0

…

𝑛 − 2

𝑛 − 1

𝑛

𝑛 + 1

…

✔️

✔️

✔️

✔️
…

• ✔️: event where 𝑋 + 𝑌 = 𝑛
• Each event has probability:

𝑃 𝑋 = 𝑘, 𝑌 = 𝑛 − 𝑘
= 𝑃 𝑋 = 𝑘 𝑃 𝑌 = 𝑛 − 𝑘

(because 𝑋, 𝑌 are independent)

• 𝑃 𝑋 + 𝑌 = 𝑛 = sum of

mutually exclusive events
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Sum of 2 dice rolls

13
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The distribution of a sum of 

2 dice rolls is a convolution 

of 2 PMFs.

Example:
𝑃 𝑋 + 𝑌 = 4 =

𝑃 𝑋 = 1 𝑃 𝑌 = 3
+ 𝑃 𝑋 = 2 𝑃 𝑌 = 2
+ 𝑃 𝑋 = 3 𝑃 𝑌 = 1
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Sum of 10 dice rolls (fun preview)

14

0
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0.08
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The distribution of a sum of 

10 dice rolls is a convolution 

10 PMFs.

𝑋1 + 𝑋2 +⋯+ 𝑋10 = 𝑛

𝑃
𝑋
1
+
𝑋
2
+
⋯
+
𝑋
1
0
=
𝑛

Looks kinda Normal…???

(more on this in Week 7)
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Sum of independent Poissons

15

𝑋~Poi 𝜆1 , 𝑌~Poi 𝜆2
𝑋, 𝑌 independent

𝑋 + 𝑌 ~Poi(𝜆1 + 𝜆2)

𝑃 𝑋 + 𝑌 = 𝑛 =෍

𝑘

𝑃 𝑋 = 𝑘 𝑃 𝑌 = 𝑛 − 𝑘 𝑋 and 𝑌 independent, 

convolution

= ෍

𝑘=0

𝑛

𝑒−𝜆1
𝜆1
𝑘

𝑘!
𝑒−𝜆2

𝜆2
𝑛−𝑘

(𝑛 − 𝑘)!
= 𝑒−(𝜆1+𝜆2)෍

𝑘=0

𝑛
𝜆1
𝑘 𝜆2

𝑛−𝑘

𝑘! (𝑛 − 𝑘)!
PMF of Poisson RVs

=
𝑒− 𝜆1+𝜆2

𝑛!
෍

𝑘=0

𝑛
𝑛!

𝑘! (𝑛 − 𝑘)!
𝜆1
𝑘 𝜆2

𝑛−𝑘 =
𝑒− 𝜆1+𝜆2

𝑛!
𝜆1 + 𝜆2

𝑛

Proof (just for reference):

𝑎 + 𝑏 𝑛 = ෍

𝑘=0

𝑛
𝑛
𝑘

𝑎𝑘𝑏𝑛−𝑘

Binomial Theorem:

Poi 𝜆1 + 𝜆2
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General sum of independent Poissons

16

Holds in general case:

𝑋𝑖~Poi 𝜆𝑖
𝑋𝑖 independent for 𝑖 = 1,… , 𝑛

෍

𝑖=1

𝑛

𝑋𝑖 ~Poi(෍

𝑖=1

𝑛

𝜆𝑖)
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Independent discrete RVs

Two discrete random variables 𝑋 and 𝑌 are independent if:

𝑃 𝑋 = 𝑥, 𝑌 = 𝑦 = 𝑃 𝑋 = 𝑥 𝑃 𝑌 = 𝑦

𝑝𝑋,𝑌 𝑥, 𝑦 = 𝑝𝑋 𝑥 𝑝𝑌 𝑦

18

for all 𝑥, 𝑦:

Review

Important: Joint PMF must decompose into 

product of marginal PMFs for ALL values of 𝑋
and 𝑌 for 𝑋, 𝑌 to be independent RVs.

The sum of 2 dice and

the outcome of 1st die

are dependent RVs.



Think Slide 22 has a question to go over by 
yourself.

Post any clarifications here!

https://us.edstem.org/courses/667/discussion/91824

Think by yourself: 2 min

19

🤔(by yourself)
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Coin flips

Flip a coin with probability 𝑝 of “heads” a total of 𝑛 +𝑚 times.

Let 𝑋 = number of heads in first 𝑛 flips. 𝑋~Bin(𝑛, 𝑝)
𝑌 = number of heads in next 𝑚 flips. 𝑌~Bin 𝑚, 𝑝
𝑍 = total number of heads in 𝑛 +𝑚 flips.

1. Are 𝑋 and 𝑍 independent?

2. Are 𝑋 and 𝑌 independent?

20

🤔(by yourself)
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Coin flips

Flip a coin with probability 𝑝 of “heads” a total of 𝑛 +𝑚 times.

Let 𝑋 = number of heads in first 𝑛 flips. 𝑋~Bin(𝑛, 𝑝)
𝑌 = number of heads in next 𝑚 flips. 𝑌~Bin(𝑚, 𝑝)
𝑍 = total number of heads in 𝑛 +𝑚 flips.

1. Are 𝑋 and 𝑍 independent?

2. Are 𝑋 and 𝑌 independent?

21

❌

𝑃 𝑋 = 𝑥, 𝑌 = 𝑦 = 𝑃
first 𝑛 flips have 𝑥 heads

and next 𝑚 flips have 𝑦 heads

# of mutually exclusive

outcomes in event
∶
𝑛
𝑥

𝑚
𝑦

𝑃 each outcome

= 𝑝𝑥 1 − 𝑝 𝑛−𝑥𝑝𝑦 1 − 𝑝 𝑚−𝑦

=
𝑛
𝑥

𝑝𝑥 1 − 𝑝 𝑛−𝑥
𝑚
𝑦 𝑝𝑦 1 − 𝑝 𝑚−𝑦

= 𝑃 𝑋 = 𝑥 𝑃 𝑌 = 𝑦

✅

Counterexample: What if 𝑍 = 0?

This probability (found through 

counting) is the product of the 

marginal PMFs.
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Sum of independent Poissons

• 𝑛 servers with independent number of requests/minute

• Server 𝑖’s requests each minute can be modeled as 𝑋𝑖~Poi 𝜆𝑖

What is the probability that none of the servers receive any requests in the 
next minute?

22

𝑋~Poi 𝜆1 , 𝑌~Poi 𝜆2
𝑋, 𝑌 independent

𝑋 + 𝑌 ~Poi(𝜆1 + 𝜆2)



Breakout 
Rooms

Slide 26 has two questions to go over in 
groups.

ODD breakout rooms: Try question 1

EVEN breakout rooms: Try question 2

Post any clarifications here!

https://us.edstem.org/courses/667/discussion/91824

Breakout rooms: 5 min. Introduce yourself!

23

🤔
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🤔
24

Independent questions

1. Let 𝑋~Bin 30, 0.01 and 𝑌~Bin 50, 0.02 be independent RVs.

• How do we compute 𝑃 𝑋 + 𝑌 = 2 using a Poisson approximation?

• How do we compute 𝑃 𝑋 + 𝑌 = 2 exactly?

2. Let 𝑁 = # of requests to a web server per day. Suppose 𝑁~Poi 𝜆 .

• Each request independently comes from a human (prob. 𝑝), or bot (1 − 𝑝).

• Let 𝑋 be # of human requests/day, and 𝑌 be # of bot requests/day.

Are 𝑋 and 𝑌 independent? What are their marginal PMFs?
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1. Approximating the sum of independent Binomial RVs

Let 𝑋~Bin 30, 0.01 and 𝑌~Bin 50, 0.02 be independent RVs.

• How do we compute 𝑃 𝑋 + 𝑌 = 2 using a Poisson approximation?

• How do we compute 𝑃 𝑋 + 𝑌 = 2 exactly?

25

𝑃 𝑋 + 𝑌 = 2 = ෍

𝑘=0

2

𝑃 𝑋 = 𝑘 𝑃 𝑌 = 2 − 𝑘

= ෍

𝑘=0

2

30
𝑘

0.01𝑘 0.99 30−𝑘 50
2 − 𝑘

0.022−𝑘0.9850−(2−𝑘)≈ 0.2327
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2. Web server requests

Let 𝑁 = # of requests to a web server per day. Suppose 𝑁~Poi 𝜆 .
• Each request independently comes from a human (prob. 𝑝), or bot (1 − 𝑝).
• Let 𝑋 be # of human requests/day, and 𝑌 be # of bot requests/day.

Are 𝑋 and 𝑌 independent? What are their marginal PMFs?

𝑃 𝑋 = 𝑛, 𝑌 = 𝑚 = 𝑃 𝑋 = 𝑛, 𝑌 = 𝑚 𝑁 = 𝑛 +𝑚 𝑃 𝑁 = 𝑛 +𝑚
+𝑃 𝑋 = 𝑛, 𝑌 = 𝑚 𝑁 ≠ 𝑛 +𝑚 𝑃 𝑁 ≠ 𝑛 +𝑚

= 𝑃 𝑋 = 𝑛 𝑁 = 𝑛 +𝑚 𝑃 𝑌 = 𝑚| 𝑋 = 𝑛,𝑁 = 𝑛 +𝑚 𝑃 𝑁 = 𝑛 +𝑚

=
𝑛 +𝑚
𝑛

𝑝𝑛 1 − 𝑝 𝑚 ⋅ 1 ⋅ 𝑒−𝜆
𝜆𝑛+𝑚

𝑛 +𝑚 !

=
𝑛 +𝑚 !

𝑛!𝑚!
𝑒−𝜆

𝜆𝑝 𝑛 𝜆 1 − 𝑝
𝑚

𝑛 +𝑚 !
= 𝑒−𝜆𝑝

𝜆𝑝 𝑛

𝑛!
⋅ 𝑒−𝜆 1−𝑝

𝜆 1 − 𝑝
𝑚

𝑚!

= 𝑃 𝑋 = 𝑛 𝑃 𝑌 = 𝑚
26

Given 𝑁 = 𝑛 +𝑚 indep. trials, 

𝑋|𝑁 = 𝑛 +𝑚~Bin 𝑛 +𝑚, 𝑝

where 𝑋~Poi 𝜆𝑝 , 𝑌~Poi 𝜆 1 − 𝑝
Yes, 𝑋 and 𝑌 are 

independent!

Law of Total 

Probability

Chain Rule



Interlude for 
jokes/announcements

27
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Announcements

28

Quiz #1

24 hours, starting on Monday, 5pm PST

See Ed and the OH calendar for study help!

Credit: https://xkcd.com/605/
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Interesting probability news

29

https://www.latimes.com/business/story/2020-02-

27/astros-cheating-analysis

”…new analyses of the Astros’ 

2017 season by baseball’s corps 

of unofficial statisticians —

“sabermetricians,” to the sport —

indicate that the Astros didn’t 

gain anything from their cheating; 

in fact, it may have hurt them.”

https://www.latimes.com/business/story/2020-02-27/astros-cheating-analysis
https://en.wikipedia.org/wiki/Sabermetrics
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Independence of multiple random variables

Recall independence of
𝑛 events 𝐸1, 𝐸2, … , 𝐸𝑛:

We have independence of 𝑛 discrete random variables 𝑋1, 𝑋2, … , 𝑋𝑛 if

for all 𝑥1, 𝑥2, … , 𝑥𝑛:

𝑃 𝑋1 = 𝑥1, 𝑋2 = 𝑥2, … , 𝑋𝑛 = 𝑥𝑛 =ෑ

𝑖=1

𝑛

𝑃 𝑋𝑖 = 𝑥𝑖

30

for 𝑟 = 1,… , 𝑛:

for every subset 𝐸1, 𝐸2, … , 𝐸𝑟: 

𝑃 𝐸1, 𝐸2, … , 𝐸𝑟 = 𝑃 𝐸1 𝑃 𝐸2 ⋯𝑃 𝐸𝑟
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Independence is symmetric

If 𝑋 and 𝑌 are independent random variables, then
𝑋 is independent of 𝑌, and 𝑌 is independent of 𝑋

Let 𝑁 be the number of times you roll 2 dice repeatedly until a 4 is rolled 
(the player wins), or a 7 is rolled (the player loses).

Let 𝑋 be the value (4 or 7) of the final throw’s sum.

• Is 𝑁 independent of 𝑋? 𝑃 𝑁 = 𝑛|𝑋 = 7 = 𝑃 𝑁 = 𝑛 ?

𝑃 𝑁 = 𝑛|𝑋 = 4 = 𝑃 𝑁 = 𝑛 ?

• Is 𝑋 independent of 𝑁? 𝑃 𝑋 = 4|𝑁 = 𝑛 = 𝑃 𝑋 = 4 ?

𝑃 𝑋 = 7|𝑁 = 𝑛 = 𝑃 𝑋 = 7 ?

In short: Independence is not always intuitive, but it is symmetric.

31

(yes, easier

to intuit)



Statistics of 
Two RVs

32

LIVE
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Expectation and Covariance

In real life, we often have many RVs interacting at once.

• We’ve seen some simpler cases (e.g., sum of independent Poissons).

• Computing joint PMFs in general is hard!

• But often you don’t need to model joint RVs completely. 

Instead, we’ll focus next on reporting statistics of multiple RVs:

• Expectation of sums (you’ve seen some of this)

• Covariance: a measure of how two RVs vary with each other 

33
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Properties of Expectation, extended to two RVs

34

(we’ve seen this; 

we’ll prove this next)

True for both independent 

and dependent random 

variables!

1. Linearity:

𝐸 𝑎𝑋 + 𝑏𝑌 + 𝑐 = 𝑎𝐸 𝑋 + 𝑏𝐸 𝑌 + 𝑐

2. Expectation of a sum = sum of expectation:

𝐸 𝑋 + 𝑌 = 𝐸 𝑋 + 𝐸 𝑌

3. Unconscious statistician:

𝐸 𝑔 𝑋, 𝑌 =෍

𝑥

෍

𝑦

𝑔 𝑥, 𝑦 𝑝𝑋,𝑌(𝑥, 𝑦)
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Proof of expectation of a sum of RVs

35

𝐸 𝑋 + 𝑌 = 𝐸 𝑋 + 𝐸 𝑌

෍

𝑥

෍

𝑦

𝑥 + 𝑦 𝑝𝑋,𝑌 𝑥, 𝑦 LOTUS,

𝑔 𝑋, 𝑌 = 𝑋 + 𝑌

=෍

𝑥

෍

𝑦

𝑥𝑝𝑋,𝑌 𝑥, 𝑦 +෍

𝑥

෍

𝑦

𝑦𝑝𝑋,𝑌 𝑥, 𝑦

Linearity of summations

(cont. case: linearity of integrals)

=෍

𝑥

𝑥෍

𝑦

𝑝𝑋,𝑌 𝑥, 𝑦 +෍

𝑦

𝑦෍

𝑥

𝑝𝑋,𝑌 𝑥, 𝑦

Marginal PMFs for 𝑋 and 𝑌=෍

𝑥

𝑥𝑝𝑋 𝑥 +෍

𝑦

𝑦𝑝𝑌 𝑦

= 𝐸 𝑋 + 𝐸[𝑌]

𝐸 𝑋 + 𝑌 =
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Expectations of common RVs: Binomial

36

𝑋~Bin(𝑛, 𝑝) 𝐸 𝑋 = 𝑛𝑝

Review

# of successes in 𝑛 independent trials

with probability of success 𝑝

𝑋 =෍

𝑖=1

𝑛

𝑋𝑖

Recall: Bin 1, 𝑝 = Ber 𝑝

𝐸 𝑋 = 𝐸 ෍

𝑖=1

𝑛

𝑋𝑖 =෍

𝑖=1

𝑛

𝐸 𝑋𝑖 =෍

𝑖=1

𝑛

𝑝 = 𝑛𝑝
Let 𝑋𝑖 = 𝑖th trial is heads

𝑋𝑖~Ber 𝑝 , 𝐸 𝑋𝑖 = 𝑝



Think
Slide 40 has a question to go over by 
yourself.

Post any clarifications here!

https://us.edstem.org/courses/667/discussion/91824

Think by yourself: 2 min

37

🤔(by yourself)
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# of independent trials with probability

of success 𝑝 until 𝑟 successes
𝑌~NegBin(𝑟, 𝑝) 𝐸 𝑌 =

𝑟

𝑝

1. How should we define 𝑌𝑖?

2. How many terms are in our summation?
𝑌 =෍

𝑖=1

?

𝑌𝑖

🤔

Recall: NegBin 1, 𝑝 = Geo 𝑝

(by yourself)



Lisa Yan, CS109, 2020

Expectations of common RVs: Negative Binomial

39

# of independent trials with probability

of success 𝑝 until 𝑟 successes
𝑌~NegBin(𝑟, 𝑝) 𝐸 𝑌 =

𝑟

𝑝

Let 𝑌𝑖 = # trials to get 𝑖th success (after

𝑖 − 1 th success)

𝑌𝑖~Geo 𝑝 , 𝐸 𝑌𝑖 =
1

𝑝

𝐸 𝑌 = 𝐸 ෍

𝑖=1

𝑟

𝑌𝑖 =෍

𝑖=1

𝑟

𝐸 𝑌𝑖 =෍

𝑖=1

𝑟
1

𝑝
=
𝑟

𝑝

𝑌 =෍

𝑖=1

?

𝑌𝑖

Recall: NegBin 1, 𝑝 = Geo 𝑝



Good luck!

40

🤔(by yourself)


