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Linearity of Expectation is useful
Expectation is a linear mathematical operation. If 𝑋 = ∑!"#$ 𝑋! :

• Even if you don’t know the distribution of 𝑋 (e.g., because the joint 
distribution of 𝑋#, … , 𝑋$ is unknown), you can still compute 
expectation of 𝑋!! 

• Problem-solving key:
Define 𝑋! such that

4

𝐸 𝑋 = 𝐸 $
!"#

$

𝑋! =$
!"#

$

𝐸 𝑋!

𝑋 =#
!"#

$

𝑋!

Most common use cases:
• 𝐸 𝑋! easy to calculate
• Or sum of dependent RVs
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Expectations of common RVs: Binomial

5

𝑋~Bin(𝑛, 𝑝) 𝐸 𝑋 = 𝑛𝑝

Review

# of successes in 𝑛 independent trials
with probability of success 𝑝

𝑋 =$
!"#

$

𝑋!

Recall: Bin 1, 𝑝 = Ber 𝑝

𝐸 𝑋 = 𝐸 #
!"#

$

𝑋! =#
!"#

$

𝐸 𝑋! =#
!"#

$

𝑝 = 𝑛𝑝Let 𝑋! = 𝑖th trial is heads
𝑋!~Ber 𝑝 , 𝐸 𝑋! = 𝑝
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Expectations of common RVs: Negative Binomial

6

# of independent trials with probability
of success 𝑝 until 𝑟 successes𝑌~NegBin(𝑟, 𝑝) 𝐸 𝑌 = %

&

1. How should we define 𝑌!?

2. How many terms are in our summation?
𝑌 =$

!"#

?

𝑌!

🤔

Recall: NegBin 1, 𝑝 = Geo 𝑝
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Expectations of common RVs: Negative Binomial

7

# of independent trials with probability
of success 𝑝 until 𝑟 successes𝑌~NegBin(𝑟, 𝑝) 𝐸 𝑌 = %

&

Let 𝑌! = # trials to get 𝑖th success (after
𝑖 − 1 th success)

𝑌!~Geo 𝑝 , 𝐸 𝑌! = "
#

𝐸 𝑌 = 𝐸 #
!"#

%

𝑌! =#
!"#

%

𝐸 𝑌! =#
!"#

%
1
𝑝
=
𝑟
𝑝

𝑌 =$
!"#

?

𝑌!

Recall: NegBin 1, 𝑝 = Geo 𝑝



Coupon 
Collecting 
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Linearity of Expectation is useful
Expectation is a linear mathematical operation. If 𝑋 = ∑!"#$ 𝑋! :

• Even if you don’t know the distribution of 𝑋 (e.g., because the joint 
distribution of 𝑋#, … , 𝑋$ is unknown), you can still compute 
expectation of the sum!! 

• Problem-solving key:
Define 𝑋! such that

9

𝐸 𝑋 = 𝐸 $
!"#

$

𝑋! =$
!"#

$

𝐸 𝑋!

𝑋 =#
!"#

$

𝑋!

Most common use cases:
• 𝐸 𝑋! easy to calculate
• Or sum of dependent RVs
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Coupon collecting problems: Server requests
The coupon collector’s problem in probability theory:
• You buy boxes of cereal.
• There are 𝑘 different types of coupons
• For each box you buy, you ”collect”

a coupon of type 𝑖.
1. How many coupons do you expect

after buying 𝑛 boxes of cereal?

10

requests
𝑘 servers

Servers

request to
server 𝑖

* 52% of Amazon profits
** more profitable than Amazon’s

North America commerce operations
source

What is the expected number of 
utilized servers after 𝑛 requests?

http://www.zdnet.com/article/amazons-finds-its-profit-horse-in-aws-why-its-so-disruptive-to-its-old-guard/
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Computer cluster utilization
Consider a computer cluster with 𝑘 servers. We send 𝑛 requests.
• Requests independently go to server 𝑖 with probability 𝑝!
• Let 𝑋 = # servers that receive ≥ 1 request.

What is 𝐸 𝑋 ?

11

𝐸 '
!"#

$

𝑋! ='
!"#

$

𝐸 𝑋!

🤔
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Computer cluster utilization
Consider a computer cluster with 𝑘 servers. We send 𝑛 requests.
• Requests independently go to server 𝑖 with probability 𝑝!
• Let 𝑋 = # servers that receive ≥ 1 request.

What is 𝐸 𝑋 ?

12

1. Define additional
random variables.

2. Solve.

Let: 𝐴! = event that server 𝑖
receives ≥ 1 request

𝑋! = indicator for 𝐴! 𝐸 𝑋 = 𝐸 #
!"#

*

𝑋! =#
!"#

*

𝐸 𝑋! =#
!"#

*

1 − 1 − 𝑝! $

𝐸 𝑋! = 𝑃 𝐴! = 1 − 1 − 𝑝! $

=#
!"#

*

1 −#
!"#

*

1 − 𝑝! $
𝑃 𝐴! = 1 − 𝑃 no requests to 𝑖

= 1 − 1 − 𝑝! $ = 𝑘 −#
!"#

*

1 − 𝑝! $

𝐸 '
!"#

$

𝑋! ='
!"#

$

𝐸 𝑋!

Note: 𝐴! are dependent!
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Coupon collecting problems: Hash tables
The coupon collector’s problem in probability theory:
• You buy boxes of cereal.
• There are 𝑘 different types of coupons
• For each box you buy, you ”collect”

a coupon of type 𝑖.
1. How many coupons do you expect

after buying 𝑛 boxes of cereal?

2. How many boxes do you expect
to buy until you have one of
each coupon?

13

requests
𝑘 servers

Servers

request to
server 𝑖

strings
𝑘 buckets

Hash Tables

hashed to
bucket 𝑖

What is the expected number of 
utilized servers after 𝑛 requests?

What is the expected number of 
strings to hash until each bucket 
has ≥ 1 string?

Stay tuned for live lecture!



Covariance
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Statistics of sums of RVs

For any random variables 𝑋 and 𝑌,

𝐸 𝑋 + 𝑌 = 𝐸 𝑋 + 𝐸 𝑌

Var 𝑋 + 𝑌 = ?

15

But first…
a new statistic!
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Spot the difference
Compare/contrast the following two distributions:

16

Both distributions have the same 𝐸 𝑋 , 𝐸 𝑌 , Var 𝑋 , and Var 𝑌

Difference: how the two variables vary with each other.

Assume all points are 
equally likely.

𝑃 𝑋 = 𝑥, 𝑌 = 𝑦 =
1
𝑁
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Covariance
The covariance of two variables 𝑋 and 𝑌 is:

Cov 𝑋, 𝑌 = 𝐸 𝑋 − 𝐸 𝑋 𝑌 − 𝐸 𝑌
= 𝐸 𝑋𝑌 − 𝐸 𝑋 𝐸 𝑌

17

Cov 𝑋, 𝑌 = 𝐸 𝑋 − 𝐸 𝑋 𝑌 − 𝐸 𝑌
= 𝐸 𝑋𝑌 − 𝑋𝐸 𝑌 − 𝐸 𝑋 𝑌 + 𝐸 𝑋 𝐸 𝑌
= 𝐸 𝑋𝑌 − 𝐸 𝑋𝐸 𝑌 − 𝐸 𝐸 𝑋 𝑌 + 𝐸 𝐸 𝑋 𝐸 𝑌
= 𝐸 𝑋𝑌 − 𝐸 𝑋 𝐸 𝑌 − 𝐸 𝑋 𝐸 𝑌 + 𝐸 𝑋 𝐸 𝑌
= 𝐸 𝑋𝑌 − 𝐸 𝑋 𝐸 𝑌

Proof of second part:

(linearity of 
expectation)
(𝐸 𝑋 , 𝐸 𝑌 are 
scalars)
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Cov 𝑊,𝐻 = 𝐸 𝑊𝐻 − 𝐸 𝑊 𝐸 𝐻
= 3355.83 − 62.75 52.75
= 45.77

Covarying humans

What is the covariance of weight 𝑊 and 
height 𝐻?

18

Weight (kg) Height (in) W · H
64 57 3648
71 59 4189
53 49 2597
67 62 4154
55 51 2805
58 50 2900
77 55 4235
57 48 2736
56 42 2352
51 42 2142
76 61 4636
68 57 3876

(positive)

Cov 𝑋, 𝑌 = 𝐸 𝑋 − 𝐸 𝑋 𝑌 − 𝐸 𝑌
= 𝐸 𝑋𝑌 − 𝐸 𝑋 𝐸 𝑌

𝐸 𝑊
= 62.75

𝐸 𝐻
= 52.75

𝐸 𝑊𝐻
= 3355.83

40

50

60

70

45 55 65 75 85
He

ig
ht

 !
(in

ch
es

)
Weight " (kilograms)

Covariance > 0: one variable ↑,	other variable ↑
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Properties of Covariance
The covariance of two variables 𝑋 and 𝑌 is:

Cov 𝑋, 𝑌 = 𝐸 𝑋 − 𝐸 𝑋 𝑌 − 𝐸 𝑌
= 𝐸 𝑋𝑌 − 𝐸 𝑋 𝐸 𝑌

Properties:
1. Cov 𝑋, 𝑌 = Cov 𝑌, 𝑋
2. Var 𝑋 = 𝐸 𝑋1 − 𝐸 𝑋 1 = Cov 𝑋, 𝑋
3. Covariance of sums = sum of all pairwise covariances

Cov 𝑋# + 𝑋., 𝑌# + 𝑌. = Cov 𝑋#, 𝑌# + Cov 𝑋., 𝑌# + Cov 𝑋#, 𝑌. + Cov 𝑋., 𝑌.
4. Non-linearity

19

(to be discussed in live lecture)

(proof left to you)



Variance of 
sums of RVs

20

13d_variance_sum
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Statistics of sums of RVs
For any random variables 𝑋 and 𝑌,

𝐸 𝑋 + 𝑌 = 𝐸 𝑋 + 𝐸 𝑌
Var 𝑋 + 𝑌 = Var 𝑋 + 2 ⋅ Cov 𝑋, 𝑌 + Var 𝑌

21
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Variance of general sum of RVs
For any random variables 𝑋 and 𝑌,

Var 𝑋 + 𝑌 = Var 𝑋 + 2 ⋅ Cov 𝑋, 𝑌 + Var 𝑌

Proof:

Var 𝑋 + 𝑌 = Cov 𝑋 + 𝑌, 𝑋 + 𝑌

= Cov 𝑋, 𝑋 + Cov 𝑋, 𝑌 + Cov 𝑌, 𝑋 + Cov 𝑌, 𝑌

= Var 𝑋 + 2 ⋅ Cov 𝑋, 𝑌 + Var 𝑌

More generally: 

Var #
!"#

$

𝑋! =#
!"#

$

Var 𝑋! + 2#
!"#

$

#
/"01#

$

Cov 𝑋!, 𝑋/

22

covariance of
all pairs

Var 𝑋 = Cov 𝑋, 𝑋

Symmetry of covariance + 
Cov 𝑋, 𝑋 = Var 𝑋

(proof in extra slides)
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Statistics of sums of RVs
For any random variables 𝑋 and 𝑌,

𝐸 𝑋 + 𝑌 = 𝐸 𝑋 + 𝐸 𝑌
Var 𝑋 + 𝑌 = Var 𝑋 + 2 ⋅ Cov 𝑋, 𝑌 + Var 𝑌

For independent 𝑋 and 𝑌,
𝐸 𝑋𝑌 = 𝐸 𝑋 𝐸 𝑌

Var 𝑋 + 𝑌 = Var 𝑋 + Var 𝑌

23

(Lemma: proof in extra slides)
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Variance of sum of independent RVs
For independent 𝑋 and 𝑌,

Var 𝑋 + 𝑌 = Var 𝑋 + Var 𝑌

Proof:
1. Cov 𝑋, 𝑌 = 𝐸 𝑋𝑌 − 𝐸 𝑋 𝐸 𝑌

= 𝐸 𝑋 𝐸 𝑌 − 𝐸 𝑋 𝐸 𝑌
= 0

2. Var 𝑋 + 𝑌 = Var 𝑋 + 2 ⋅ Cov 𝑋, 𝑌 + Var 𝑌
= Var 𝑋 + Var 𝑌

24

𝑋 and 𝑌 are independent

def. of covariance

NOT bidirectional: 
Cov 𝑋, 𝑌 = 0 does NOT 
imply independence of 𝑋
and 𝑌! 
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Proving Variance of the Binomial

25

proofwiki.org

𝑋~Bin(𝑛, 𝑝) Var 𝑋 = 𝑛𝑝 1 − 𝑝

Let’s instead prove this using 
independence and variance!
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Proving Variance of the Binomial

26

𝑋~Bin(𝑛, 𝑝) Var 𝑋 = 𝑛𝑝 1 − 𝑝

Var 𝑋 = Var #
!"#

$

𝑋!𝑋 =2
!"#

$

𝑋!

Let 𝑋! = 𝑖th trial is heads
𝑋!~Ber 𝑝

Var 𝑋! = 𝑝 1 − 𝑝

=#
!"#

$

Var 𝑋!

Let

𝑋" are independent, 
therefore variance of sum 
= sum of variance

𝑋! are independent
(by definition)

=#
!"#

$

𝑝 1 − 𝑝

= 𝑛𝑝 1 − 𝑝

Variance of Bernoulli
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Where are we now? A roadmap of CS109

Last week: Joint 
distributions
𝑝2,3 𝑥, 𝑦

28

Today: Statistics of 
multiple RVs!
Var 𝑋 + 𝑌
𝐸 𝑋 + 𝑌
Cov 𝑋, 𝑌
𝜌 𝑋, 𝑌

Wednesday:
Conditional distributions

𝑝2|3 𝑥|𝑦
𝐸 𝑋|𝑌

Friday: Modeling with 
Bayesian Networks

such
model

wow

many
RVs

very sum



Lisa Yan, CS109, 2020

Don’t we already know linearity of expectation?
Expectation is a linear mathematical operation. If 𝑋 = ∑!"#$ 𝑋! :

𝐸 𝑋 = 𝐸 2
!"#

$

𝑋! =2
!"#

$

𝐸 𝑋!

We covered this back in Lecture 6 (when we first learned expectation)!
• Proved binomial: sum of 1s or 0s
• Hat check (section): sum of 1s or 0s
• We ignored (in)dependence of events.

Why are we learning this again???
• Now we can prove it!
• We can now ignore (in)dependence of random variables.
• Our approach is still the same!

29

Review
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Coupon collecting problems: Hash tables
The coupon collector’s problem in probability theory:
• You buy boxes of cereal.
• There are 𝑘 different types of coupons
• For each box you buy, you ”collect”

a coupon of type 𝑖.
1. How many coupons do you expect

after buying 𝑛 boxes of cereal?

2. How many boxes do you expect
to buy until you have one of
each coupon?

30

requests
𝑘 servers

Servers

request to
server 𝑖

strings
𝑘 buckets

Hash Tables

hashed to
bucket 𝑖

What is the expected number of 
utilized servers after 𝑛 requests?

What is the expected number of 
strings to hash until each bucket 
has ≥ 1 string?



Breakout 
Rooms

Check out the properties on the next slide 
(Slide 32). Post any clarifications here!

https://us.edstem.org/courses/109/discussion/54580

Breakout rooms: 4 min. Introduce yourself!

31

🤔

https://us.edstem.org/courses/109/discussion/54580
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Hash Tables
Consider a hash table with 𝑘 buckets.
• Strings are equally likely to get hashed into any bucket (independently).
• Let 𝑌 = # strings to hash until each bucket ≥ 1 string.

What is 𝐸 𝑌 ?

32

1. Define additional
random variables.

2. Solve.

How should we define 𝑌! such that                    ?

𝐸 '
!"#

$

𝑋! ='
!"#

$

𝐸 𝑋!

🤔

𝑌 =2
!

𝑌!



Lisa Yan, CS109, 2020

Hash Tables
Consider a hash table with 𝑘 buckets.
• Strings are equally likely to get hashed into any bucket (independently).
• Let 𝑌 = # strings to hash until each bucket ≥ 1 string.

What is 𝐸 𝑌 ?

33

1. Define additional
random variables.

2. Solve.

𝐸 '
!"#

$

𝑋! ='
!"#

$

𝐸 𝑋!

Let: 𝑌! = # of trials to get success after 𝑖-th success
• Success: hash string to previously empty bucket
• If 𝑖 non-empty buckets: 𝑃 success = *2!

*

𝑃 𝑌! = 𝑛 =
𝑖
𝑘

$2# 𝑘 − 𝑖
𝑘

Equivalently, 𝑌!~Geo 𝑝 = *2!
* 𝐸 𝑌! =

1
𝑝
=

𝑘
𝑘 − 𝑖
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Hash Tables
Consider a hash table with 𝑘 buckets.
• Strings are equally likely to get hashed into any bucket (independently).
• Let 𝑌 = # strings to hash until each bucket ≥ 1 string.

What is 𝐸 𝑌 ?

34

1. Define additional
random variables.

2. Solve.

𝐸 '
!"#

$

𝑋! ='
!"#

$

𝐸 𝑋!

Let: 𝑌! = # of trials to get success after 𝑖-th success

𝑌!~Geo 𝑝 =
𝑘 − 𝑖
𝑘 , 𝐸 𝑌! =

1
𝑝 =

𝑘
𝑘 − 𝑖

𝑌 = 𝑌3 + 𝑌# +⋯+ 𝑌*2#
𝐸 𝑌 = 𝐸 𝑌3 + 𝐸 𝑌* +⋯+ 𝐸 𝑌*2#

=
𝑘
𝑘
+

𝑘
𝑘 − 1

+
𝑘

𝑘 − 2
+⋯+

𝑘
1
= 𝑘

1
𝑘
+

1
𝑘 − 1

+⋯+ 1 = 𝑂 𝑘 log 𝑘

Errata (5/9): 𝑌! independent
Dependence of 𝑌! doesn’t affect expectation!
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Covariance
The covariance of two variables 𝑋 and 𝑌 is:

Cov 𝑋, 𝑌 = 𝐸 𝑋 − 𝐸 𝑋 𝑌 − 𝐸 𝑌
= 𝐸 𝑋𝑌 − 𝐸 𝑋 𝐸 𝑌

35

Review



Think
Slide 37 has a question to go over by 
yourself.

Post any clarifications here!
https://us.edstem.org/courses/109/discussion/54580

Think by yourself: 1 min

36

🤔(by yourself)

https://us.edstem.org/courses/109/discussion/54580
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Feel the covariance
Is the covariance positive, negative, or zero?

37

1. 3. 

𝑋 = 𝑥

𝑌
=
𝑦

𝐸[𝑋]

𝐸[𝑌]

2. 

𝑋 = 𝑥
𝑌
=
𝑦

𝐸[𝑋]

𝐸[𝑌]

𝑋 = 𝑥

𝑌
=
𝑦

𝐸[𝑋]

𝐸[𝑌]

Cov 𝑋, 𝑌 = 𝐸 𝑋 − 𝐸 𝑋 𝑌 − 𝐸 𝑌
= 𝐸 𝑋𝑌 − 𝐸 𝑋 𝐸 𝑌

🤔
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Feel the covariance
Is the covariance positive, negative, or zero?

38

1. 3. 

𝑋 = 𝑥

𝑌
=
𝑦

𝐸[𝑋]

𝐸[𝑌]

2. 

𝑋 = 𝑥
𝑌
=
𝑦

𝐸[𝑋]

𝐸[𝑌]

𝑋 = 𝑥

𝑌
=
𝑦

𝐸[𝑋]

𝐸[𝑌]

positive negative zero

Cov 𝑋, 𝑌 = 𝐸 𝑋 − 𝐸 𝑋 𝑌 − 𝐸 𝑌
= 𝐸 𝑋𝑌 − 𝐸 𝑋 𝐸 𝑌
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Properties of Covariance
The covariance of two variables 𝑋 and 𝑌 is:

Cov 𝑋, 𝑌 = 𝐸 𝑋 − 𝐸 𝑋 𝑌 − 𝐸 𝑌
= 𝐸 𝑋𝑌 − 𝐸 𝑋 𝐸 𝑌

Properties:
1. Cov 𝑋, 𝑌 = Cov 𝑌, 𝑋
2. Var 𝑋 = Cov 𝑋, 𝑋
3. Cov ∑! 𝑋! , ∑8 𝑌8 = ∑!∑8 Cov 𝑋! , 𝑌8
4. Cov 𝑎𝑋 + 𝑏, 𝑌 = 𝑎Cov 𝑋, 𝑌 + 𝑏 ?

Covariance is non-linear: Cov 𝑎𝑋 + 𝑏, 𝑌 = 𝑎Cov 𝑋, 𝑌
39
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Statistics of sums of RVs
For any random variables 𝑋 and 𝑌,

𝐸 𝑋 + 𝑌 = 𝐸 𝑋 + 𝐸 𝑌
Var 𝑋 + 𝑌 = Var 𝑋 + 2 ⋅ Cov 𝑋, 𝑌 + Var 𝑌

For independent 𝑋 and 𝑌,
𝐸 𝑋𝑌 = 𝐸 𝑋 𝐸 𝑌

Var 𝑋 + 𝑌 = Var 𝑋 + Var 𝑌

40

(Lemma: proof in extra slides)

Cov 𝑋, 𝑌 = 0 does NOT imply 
independence of 𝑋 and 𝑌! 

Review
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Zero covariance does not imply independence
Let 𝑋 take on values −1,0,1
with equal probability 1/3.

Define 𝑌 = =1 if 𝑋 = 0
0 otherwise

41

What is the joint PMF of 𝑋 and 𝑌?



Breakout 
Rooms

Check out the properties on the next slide 
(Slide 43). Post any clarifications here!

https://us.edstem.org/courses/109/discussion/54580

Breakout rooms: 4 min. Introduce yourself!

42

🤔

https://us.edstem.org/courses/109/discussion/54580
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Zero covariance does not imply independence
Let 𝑋 take on values −1,0,1
with equal probability 1/3.

Define 𝑌 = =1 if 𝑋 = 0
0 otherwise

43

-1 0 1

0 1/3 0 1/3 2/3

1 0 1/3 0 1/3

1/3 1/3 1/3

𝑋

𝑌

Marginal PMF
of 𝑋, 𝑝% 𝑥

Marginal 
PMF of 
𝑌, 𝑝& 𝑦

1. 𝐸 𝑋 = 𝐸 𝑌 =

3. Cov 𝑋, 𝑌 =

4. Are 𝑋 and 𝑌 independent?

2. 𝐸 𝑋𝑌 =

🤔
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Zero covariance does not imply independence
Let 𝑋 take on values −1,0,1
with equal probability 1/3.

Define 𝑌 = =1 if 𝑋 = 0
0 otherwise

44

-1 0 1

0 1/3 0 1/3 2/3

1 0 1/3 0 1/3

1/3 1/3 1/3

𝑋

𝑌

Marginal PMF
of 𝑋, 𝑝% 𝑥

Marginal 
PMF of 
𝑌, 𝑝& 𝑦

1. 𝐸 𝑋 = 𝐸 𝑌 =

3. Cov 𝑋, 𝑌 =

4. Are 𝑋 and 𝑌 independent?

−1
1
3
+ 0

1
3
+ 1

1
3
= 0 0

2
3
+ 1

1
3
= 1/3

2. 𝐸 𝑋𝑌 = −1 ⋅ 0
1
3
+ 0 ⋅ 1

1
3
+ 1 ⋅ 0

1
3

= 0

= 0 − 0 1/3 = 0

𝑃 𝑌 = 0|𝑋 = 1 = 1

𝐸 𝑋𝑌 − 𝐸 𝑋 𝐸 𝑌

≠ 𝑃 𝑌 = 0 = 2/3

⚠
does not imply 
independence!



Interlude for 
jokes/announcements

45
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Announcements

46

Problem Set 3

Due: Monday 5/8 10am
Covers: Up to and including Lecture 11
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Interesting probability news

47

CS109 Current Events Spreadsheet
https://www.wired.com/2012/04/probability-and-game-
theory-in-the-hunger-games/

“Suppose the parents in a given 
district gave birth to only…five girls, 
and that all of these kids were born at 
the same time.”
• Not a probability mass function
• Also duh? (P(you get chosen if you’re the 

only person) = 1)
• You now know enough Python/ probability 

to write a better simulation to model the 
Reaping!!!!

• (game theory part of the article is good)

Probability and Game Theory 
in The Hunger Games

https://docs.google.com/spreadsheets/d/1ijvvCoCKG86gITqSxYEPL_77U7VK__mn-ChvyDkhXX4/edit%3Fusp=sharing
https://www.wired.com/2012/04/probability-and-game-theory-in-the-hunger-games/


Correlation

48

LIVE
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Covarying humans

49

Cov 𝑋, 𝑌 = 𝐸 𝑋 − 𝐸 𝑋 𝑌 − 𝐸 𝑌
= 𝐸 𝑋𝑌 − 𝐸 𝑋 𝐸 𝑌

40

50

60

70

45 55 65 75 85

He
ig

ht
 !

(in
ch

es
)

Weight " (kilograms)

Cov 2.20𝑊, 2.54𝐻
= 𝐸 2.20𝑊 ⋅ 2.54𝐻 − 𝐸 2.20𝑊 𝐸 2.54𝐻
= 18752.38 − 138.05 133.99
= 255.06

What about weight (lb) and 
height (cm)?

Cov 𝑊,𝐻 = 𝐸 𝑊𝐻 − 𝐸 𝑊 𝐸 𝐻
= 3355.83 − 62.75 52.75
= 45.77

What is the covariance of 
weight 𝑊 and height 𝐻?

(positive)

100

120

140

160

180

100 120 140 160 180

He
ig

ht
 !

(c
m

)

Weight " (lb)
(positive)

⚠
Covariance depends
on units!

Sign of covariance (+/–) more 
meaningful than magnitude
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Correlation
The correlation of two variables 𝑋 and 𝑌 is:

𝜌 𝑋, 𝑌 =
Cov 𝑋, 𝑌
𝜎& 𝜎'

• Note: −1 ≤ 𝜌 𝑋, 𝑌 ≤ 1
• Correlation measures the linear relationship between 𝑋 and 𝑌:

50

𝜌 𝑋, 𝑌 = 1 ⟹ 𝑌 = 𝑎𝑋 + 𝑏,where 𝑎 = 𝜎3/𝜎2
𝜌 𝑋, 𝑌 = −1 ⟹ 𝑌 = 𝑎𝑋 + 𝑏,where 𝑎 = −𝜎3/𝜎2
𝜌 𝑋, 𝑌 = 0 ⟹ “uncorrelated” (absence of linear relationship)

𝜎#$ = Var 𝑋 ,
𝜎%$ = Var 𝑌



Think
Slide 52 has a question to go over by 
yourself.

Post any clarifications here!
https://us.edstem.org/courses/109/discussion/54580

Think by yourself: 1 min

51

🤔(by yourself)

https://us.edstem.org/courses/109/discussion/54580
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Correlation reps
What is the correlation coefficient 𝜌 𝑋, 𝑌 ?

52

1. 2. 

3. 4. 

A. 𝜌 𝑋, 𝑌 = 1
B. 𝜌 𝑋, 𝑌 = −1
C. 𝜌 𝑋, 𝑌 = 0
D. Other

🤔
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Correlation reps
What is the correlation coefficient 𝜌 𝑋, 𝑌 ?

53

A. 𝜌 𝑋, 𝑌 = 1
B. 𝜌 𝑋, 𝑌 = −1
C. 𝜌 𝑋, 𝑌 = 0
D. Other

1. 2. 

3. 4. 

𝑌 = −𝑎𝑋 + 𝑏
𝑎 > 0

B. 𝜌 𝑋, 𝑌 = −1

“uncorrelated”
C. 𝜌 𝑋, 𝑌 = 0

𝑌 = 𝑎𝑋 + 𝑏
𝑎 > 0

A. 𝜌 𝑋, 𝑌 = 1

𝑌 = 𝑋.
C. 𝜌 𝑋, 𝑌 = 0

𝑋 and 𝑌 can be nonlinearly related even if 𝜌 𝑋, 𝑌 = 0.
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CS103: Conditional statements
Statement 𝑃 → 𝑄: Independence à No correlation

Contrapositive ¬𝑄 → ¬𝑃: Correlation à Dependence

Inverse ¬𝑃 → ¬𝑄: Dependence à Correlation

Converse 𝑄 → 𝑃: No correlation à Independence

“Correlation does not imply causation”
54

(logically
equivalent)

(not always)
𝑌 = 𝑋'
𝜌 𝑋, 𝑌 = 0

❌ (not always)
Slide 47
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Spurious Correlations

𝜌 𝑋, 𝑌 is used a lot to statistically quantify the relationship b/t X and Y.

55

Correlation: 
0.947091

Spurious correlations

https://www.tylervigen.com/spurious-correlations
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Spurious Correlations

𝜌 𝑋, 𝑌 is used a lot to statistically quantify the relationship b/t X and Y.

56

Correlation: 
0.947091

Spurious correlations

https://www.tylervigen.com/spurious-correlations
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http://www.bbc.com/news/magazine-27537142

Divorce vs. Butter

http://www.bbc.com/news/magazine-27537142
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Arcade revenue vs. CS PhDs

58

Correlation: 
0.947091

Spurious correlations

https://www.tylervigen.com/spurious-correlations


Extra

59

13e_extra
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Expectation of product of independent RVs

If 𝑋 and 𝑌 are 
independent, then

60

𝐸 𝑔 𝑋 ℎ 𝑌 (for continuous proof, replace 
summations with integrals)

𝐸 𝑋𝑌 = 𝐸 𝑋 𝐸 𝑌
𝐸 𝑔 𝑋 ℎ 𝑌 = 𝐸 𝑔 𝑋 𝐸 ℎ 𝑌

Proof:

𝑋 and 𝑌 are independent=#
9

#
:

𝑔 𝑥 ℎ 𝑦 𝑝; 𝑥 𝑝< 𝑦

=#
9

#
:

𝑔 𝑥 ℎ 𝑦 𝑝;,< 𝑥, 𝑦

=#
9

ℎ 𝑦 𝑝< 𝑦 #
:

𝑔 𝑥 𝑝; 𝑥 Terms dependent on 𝑦
are constant in integral of 𝑥

= #
:

𝑔 𝑥 𝑝; 𝑥 #
9

ℎ 𝑦 𝑝< 𝑦 Summations separate

= 𝐸 𝑔 𝑋 𝐸 ℎ 𝑌
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Variance of Sums of Variables

Var #
!"#

$

𝑋! =#
!"#

$

Var 𝑋! + 2#
!"#

$

#
/"01#

$

Cov 𝑋!, 𝑋/

61

Proof: covariance of 

all pairsVar 𝑋

= Cov 𝑋,
𝑋

Symmetry of covariance 
Cov 𝑋, 𝑋 = Var 𝑋

Var A
!&'

(

𝑋! =A
!&'

(

A
)&'

(

Cov 𝑋!, 𝑋)

=A
!&'

(

Var 𝑋! + A
!&'

(

A
)&',)+!

(

Cov 𝑋!, 𝑋)

=A
!&'

(

Var 𝑋! + 2 A
!&'

(

A
)&",'

(

Cov 𝑋!, 𝑋)

= Cov A
!&'

(

𝑋! ,A
!&'

(

𝑋!

Adjust summation bounds


