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13a_expectation_sum

Expectation of
Common RVs




Linearity of Expectation is useful

Expectation is a linear mathematical operation. If X = ", X :

E[X]=E Zn: Xl-- = zn: E[X;]

Even if you don’t know the distribution of X (e.g., because the joint
distribution of (X4, ..., X,,) is unknown), you can still compute
expectation of X!!

Most common use cases:
Problem-solving key: - $ « E[X;] easy to calculate
Define X; such that X = ZXL' « Or sum of dependent RVs
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Expectations of common RVs: Binomial

X~BIn (n’ p) E[X] = np #.of success_gs in n independent trials
with probability of success p

Recall: Bin(1,p) = Ber(p)

X= Xi

s

o~
Il
p—

Let X; = ith trial is heads
X;~Ber(p),E[X;] =p
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Expectations of common RVs: Negative Binomial

_ - . . . .

Y~NegB| n (7", p) E[Y] _r # of mdependenjc trials with probability
p of success p until r successes

Recall: NegBin(1,p) = Geo(p)

How should we define Y;?

?
Y = E Y,
i—1 How many terms are in our summation?
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Expectations of common RVs: Negative Binomial

. T : . - .p
Y~NegB| N (7", p) E[Y] =- # of mdependenjc trials with probability
p of success p until r successes

Recall: NegBin(1, p) = Geo(p) Y4 Yz 1z

?
Y=2Yi
=1

Let Y; = # trials to get ith success (after
(i — 1)th success) E[Y] = E
Yi~Geo(p), EIY;] =

r

= |-
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13b_coupon_collecting

Coupon
Collecting
Problems




Linearity of Expectation is useful

Expectation is a linear mathematical operation. If X = ", X :

E[X]=E Zn: Xl-- = zn: E[X;]

Even if you don’t know the distribution of X (e.g., because the joint
distribution of (X4, ..., X,,) is unknown), you can still compute
expectation of the sum!!

Most common use cases:
* FE|X;] easy to calculate
$ e Or sum of dependent RVs

Problem-solving key: -
Define X; suchthat % = ZXi
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Coupon collecting problems: Server requests

The coupon collector’s problem in probability theory: ~ Servers

You buy boxes of cereal.
There are k different types of coupons
For each box you buy, you "collect”
a coupon of type i.
N Eer et

How many,coupons do you expect
after buying n boxes of cereal?

| \’7 \ lf‘A

a amaZon
webservices™

Lisa Yan, CS109, 2020

-

requests
k servers

request to
server i

What is the expected number of
utilized servers after n requests?

*  52% of Amazon profits

** more profitable than Amazon’s
North America commerce operations

source

Stanford University 10


http://www.zdnet.com/article/amazons-finds-its-profit-horse-in-aws-why-its-so-disruptive-to-its-old-guard/

Computer cluster utilization

Consider a computer cluster with k servers. We send n requests.
Requests independently go to server i with probability p; 292 =1L

Let X = # servers that receive = 1 request. -
What is E[X]?

&
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Computer cluster utilization

Consider a computer cluster with k servers. We send n requests.
Requests independently go to server © with probability p;
Let X = # servers that receive = 1 request.

What is E[X]?

Define additional Solve.
random variables.
Let: A; = event that server i ElX;] = P(A )=1—-(1-p)"

receives = 1 request
X; = indicator for A4; % éﬂ“‘WwE
©

O

k k
EX = ) ElX]= ) (1= (1=p)™
i=1 i=1
P(4;) =1—P(norequeststoi)

=1—(1—-p)" =21—Z<l—m>"=k—i(1—pi>"
=1 =1 ;

Note: 4; are dependent! Lisa Yan, CS109, 2020 " Stanford University 12



Coupon collecting problems: Hash tables

The coupon collector’s problem in probability theory: Hash Tables
You buy boxes of cereal. strings
There are k different types of coupons ke buckets
For each box you buy, you "collect” hashed to
a coupon of type i. oucket L
How many boxes do you expect What is the expected number of
to buy until you have one of strings to hash until each bucket

each coupon? has > 1 string?

Stay tuned for live lecture!
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13c_covariance

Covariance




Statistics of sums of RVs

For any random variables X and Y,

EIX+Y]|=E|X]|+ E|Y]

Var(X+Y)= ?

But first...
a hew statistic!

Lisa Yan, €$109, 2020 Stanford University 15




Spot the difference

Compare/contrast the following two distributions: Assume all points are
() equally likely.

$ P(X=xY =)=
° ) x' — —_ —
y ° . o y o.. . o o y N
4 T I ORT L

‘\p" °®

-. Rk -.i-:- J‘ : —’% 3 ?gﬁ‘. /\\

’~*~--¢. AR
o o oo %S ~o-
o.o \.o . Ny .:. .: . ;g TZQ:I
0 e X 0 ,‘ ‘. —> X
0 2 4 6 0 2 - 6

Both distributions have the same E|X], E|Y], Var(X), and Var(Y)

Difference: how the two variables vary with each other.
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Covariance

_ Y (~ 2
The covariance of two variables X and Y is: Vo () = Tb [ (X |

Cov(X,Y) =E[(X - E[X]D(Y —E|Y]]
= E|XY] — E|X]|E|[Y]

Proof of second part:

Cov(X,Y) = E[(X — E[X]D(Y — E[Y])]
= E|XY — XE[Y] — E[X]Y + E[X]E[Y]] o
= E[XY] — E[XE[Y1] - E[EX]Y] + E[EXIE[Y]] expectation
= E[XY] — E[X]|E[Y] — E[X]E[Y] + E[X]E[Y] ;ﬁgj;];s’j [¥]are
= E[XY]| - E|X]E|Y]

Lisa Yan, €$109, 2020 Stanford University 17




Covarying humans

Cov(X,Y) = E[(X — E[X]D(Y — E[Y])]
= E[XY]| — E[X]E[Y]

Weight (kg) | Height (in) W-H
— 64 57 3648
Qﬁf$b 71 59 4189
Wed g3 49 2597
P’“O’
67 62 4154
55 51 2805
58 50 2900
77 55 4235
57 48 2736
56 42 2352
51 42 21472
76 61 4636
68 57 3876
E[W]  E[H]  E[WH]
= 62.75 =52.75 = 3355.83

What is the covariance of weight W and
height H?

Cov(W,H) = E[WH]| — E|W]E|[H]
= 3355.83 — (62.75)(52.75)
(positive) = 4577

70 -

n

o

S

S 60 /0\

E <

= 50 31' —_

a0

L 40 . . . .
45 55 65 75 85

Weight W (kilograms)

Covariance > O: one variable T, other variable T

Lisa Yan, C$109, 2020 Stanford University 18



Properties of Covariance

Properties:
Cov(X,Y) = Cov(Y, X) Seyminghry
Var(X) = E[XZ] — (E[X])2 = Cov(X, X)

Covariance of sums = sum of all pairwise covariances
COV(X]_ + Xz, Yl + Yz) = COV(Xl, Yl) + COV(Xz, Yl) + COV(Xl, Yz) + COV(Xz, Yz)

E] X- %] - EDLIELR]

Non-linearity (to be discussed in live lecture)

Lisa Yan, C$109, 2020 Stanford University 19




13d_variance_sum

Variance of
sums of RVs




Statistics of sums of RVs

For any random variables X and Y,
E[X + Y] = E[X] + E[Y]
Var(X +Y) = Var(X) + 2 - Cov(X,Y) + Var(Y)

Lisa Yan, €$109, 2020 Stanford University 21




Variance of general sum of RVs

For any random variables X and Y,

Var(X +Y) =Var(X) + 2 - Cov(X,Y) + Var(Y)

Proof:

Var(X+Y)=Cov(X+Y,X+Y) Var(X) = Cov(X, X)
= Cov(X, X) + Cov(X,Y)+ Cov(Y, X)+ Cov(Y,Y) Cova”;pggg
= Var(X) + 2 - Cov(X,Y) + Var(Y) , Symmetry of covariance +

) Nl - Cov(X, X) = Var(X)
.4_
More generally: . l

Var<;)(i> 2Var(X)+ZZ Z Cov(Xl,X)

=1 j=i+1

Lisa Yan, C$109, 2020 Stanford University 22



Statistics of sums of RVs

For independent X and Y,
E|XY] = E|X]|E|Y]

Var(X +Y) = Var(X)+ Var(Y)

Stanford University 23




Variance of sum of independent RVs

For independent X and Y,

Var(X +Y) = Var(X)+ Var(Y)

Proof:
Cov(X,Y) = E|XY]| — E|X]E|Y] def. ofﬁcgjvariance
= Elxy1=ERIE
= E|X]E|Y] — E[X]E[Y] X and[Y are independentl
=0
O
NOT bidirectional:
Var(X+Y)=Var(X) + 2 - CMY} + Var(Y) Cov(X,Y) = 0 does NOT
= Var(X)+ Var(Y) imply independence of X
and Y!

Lisa Yan, CS109, 2020 Stanford University 24




Proving Variance of the Binomial

X~Bin(n,p) var(X) =np(1 —p)

To simplify the algebra a bit,letg =1 —p,sop+¢g= 1.

So:
S o (n\ k oa
E(X?) = Z k= <k)PAlI x Definition of Binomial Distribution: p + g = 1
k=0
C n—1 n n—1
= Z k"( )qun_k Factors of Binomial Coefficient: k( ) = n( )
k=0 k-1 k k-1
- -1\ , .
= np z k<: I)Pk'q(k“*“*” Change of limit: term is zerowhen k — 1 = 0
k=1
m m
=np2(j+l)<j)p'q"'"’ putting j =k —1,m=n—1
j=o
m m ‘ m m ‘
= np z j( A)p’q"’” + Z ( _)p’q”‘” splitting sum up into two
j=o0 \J j=o \J
m 1 om , _1
= np Z m(m )p’q’"’/ + Z <"f)p’q'"” Factors of Binomial Coefﬁcient:j(",') = m(m )
=0 \i-l j=o \J J j-1
5 (M=1\ i men-gon . X (M o - ) )
=np| (n—1)p Z . P e U+ 2 g™ Change of limit: term is zero when j — 1 = 0
=Y 1 j=o \J
=np((n—Dpp+ ™" +(p+9") Binomial Theorem
=np((n—1p+1) asp+q=1
= n*p* +np(l - p) by algebra
Let’'s instead prove this using
Then:

() = E (%) - ©007 Independence and variance!

= np(l —p)+ nzp2 - (np)2 Expectation of Binomial Distribution: E (X) = np

= np(1 - p) prOOfWiki.Org

as required.
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Proving Variance of the Binomial

X~Bin(n,p) var(X) =np(1 —p)

Let X = iXi Var(X) = Var(i Xi)

i=1 1=1
/l s I X; are independent,
Let X; = ith trial is heads ) = 2 Var(X;) therefore variance of sum
X;~Ber(p) (0 o¥verwsaL — = sum of variance

Var(X;) = p(1 —p)

-

I
[

p(1—p)  Variance of Bernoulli

X; are independent '
(by definition)

=np(1—p)

Lisa Yan, C$109, 2020 Stanford University 26




(live)
13: Statistics of
Multlple RVs

aaaaaa




Where are we now? A roadmap of CSi09

Today: Statistics of Friday: Modeling with
multiple RVs! Bayesian Networks
Var(X +Y)
E[X +Y]
Cov(X,Y)
p(X,Y)
Wednesday:
Conditional distributions Bany A @
pxy (x|y) ?‘?; ‘%’Qmodel
"o #2
E[X|Y] wow S

Lisa Yan, C$109, 2020 Stanford University 28




Don’t we already know linearity of expectation?

Expectation is a linear mathematmal operatlon IfX ="
E[X] = E ZX ZE
i=1

We covered this back in Lecture 6 (when we first learned expectation)!
Proved binomial: sum of 1s or Os

Hat check (section): sum of 1s or Os

We ignored (in)dependence of €vents.
Why are we learning this again???

Now we can prove it!

We can now ignore (in)dependence of Ms.

Our approach is still the same!

Lisa Yan, C$109, 2020 Stanford University 29




Coupon collecting problems: Hash tables

The coupon collector’s problem in probability theory: Hash Tables
You buy boxes of cereal. strings
There are k different types of coupons ke buckets
For each box you buy, you "collect” hashed to
a coupon of type i. bucket ¢
How many boxes do you expect What is the expected number of
to buy until you have one of strings to hash until each bucket

each coupon? has > 1 string?

Lisa Yan, CS109, 2020 Stanford University 30




Check out the properties on the next slide
(Slide 32). Post any clarifications here!

B I'eak() Ut https://us.edstem.org/courses/109/discussion/54580
Rooms

Breakout rooms: 4 min. Introduce yourself!

31



https://us.edstem.org/courses/109/discussion/54580

X;

n n
= Z E[X;]
i=1 i=1

Hash Tables g

Consider a hash table with k buckets.
Strings are equally likely to get hashed into any bucket (independently).

Let Y = # strings to hash until each bucket = 1 string.
What is E[Y]?

Define additional
random variables.  How should we define Y; such that Y = z Y, ?
i

)

Lisa Yan, C$109, 2020 Stanford University 32



=Zn:E[Xi]

i=1

n
E in

i=1

Hash Tables

Consider a hash table with k buckets.
Strings are equally likely to get hashed into any bucket (independently).

Let Y = # strings to hash untll each bucket = 1 string.

\(1 \(
What is E[Y]? wm% e s
Qo F
: . 4 nomt Z[/Lovx—LW-f \3"“0‘0*6’")
Define additional  Let: Y; = # of trials to get success after i-th success
random variables. Success: hash string to previously empty bucket

If i non-empty buckets: P(success) = k-t

k
ror=n =) ()

Equivalently, Y;~Geo (p = —) ElY;] = ; =73

Lisa Yan, CS109, 2020 Stanford University 33




X;

=Zn:E[Xi]

n
i=1 i=

Hash Tables g

Consider a hash table with k buckets.
Strings are equally likely to get hashed into any bucket (independently).

Let Y = # strings to hash until each bucket = 1 string.
What is E[Y]?

Solve. Y=Yy+Yi+- 4V Errata (5/9): Y; independent
E[Y] = E[Yo] + E[Yi] + -+ E[Y—1] Dependenceof¥ doesn'taffectexpectation!
k k k k 1 1
=E_|_k_1_|_k_2_|_..._|_I =k E+m+---+1 = 0(klogk)

Lisa Yan, CS109, 2020 Stanford University 34




Covariance Review

The covariance of two variables X and Y is:

Cov(X,Y) =E[(X - E[X]D(Y —E|Y]]
= E|XY] — E|X]|E|[Y]

Lisa Yan, CS109, 2020 Stanford University 35




Slide 37 has a question to go over by

Think yourself.

Post any clarifications here!

https://us.edstem.org/courses/109/discussion/54580

Think by yourself: 1 min

(b @ I

A

36


https://us.edstem.org/courses/109/discussion/54580

. Cov(X, ¥) = E[(X — EIXD(Y — E[YD]
Feel the covariance _ E[XY] - E[XIE[Y]

Is the covariance positive, negative, or zero?

1. E[X]| ... 2. .. | EIX]
AL w-EX)
Syl
i '%3} ‘ﬂ = -
I NSRS I Pl
= ’\\r 1 T ETY] = f r. .
.:.;GX'LI%'LB —2 o C
%7 -ELXCY
\jL-ITZL\GX — X =x

Lisa Yan, CS109, 2020 Stanford University 37




. Cov(X, ¥) = E[(X — EIXD(Y — E[YD]
Feel the covariance _ E[XY] - E[XIE[Y]

Is the covariance positive, negative, or zero?

1. EX]| .- 2. .. | EIX]
. . i
I [ 7 7
ol I Ely] > -y
X =x X =x
positive negative ZEro

Lisa Yan, CS109, 2020 Stanford University 38




Properties of Covariance

Properties:

= ~cwl CoV
1. Cov(X,Y) = Cov(Y,X) o (SMS} - s SWM S
2. Var(X) = Cov(X, X) b b

3. Cov(Zig(i,ng/j) =3 % Cov(X;, Y, )= "Eﬂ"‘*‘f@\(] _E|axeb) BLC)
4, COVaX+ ) =TCovEE+b ? g0 twECO)-a EDOENCUEK

Covariance is non-linear: Cov(aX + b,Y) = aCov(X, 1>)

Lisa Yan, CS109, 2020 Stanford University 39




Statistics of sums of RVs

For any random variables X and Y,

Var(X +Y) =Var(X) + 2 - Cov(X,Y) + Var(Y)
For independent X and Y,

Var(X +Y) = Var(X)+ Var(Y)

(Cov [ 0) = WCov(X, Y) = 0 does NOT imply
independence of X and Y'!

Lisa Yan, €$109, 2020 Stanford University 40




Zero covariance does not imply independence

Let X take on values {—1,0,1}
with equal probability 1/3.

. 11 fX =20
Define ¥ = {O otherwise
What is the joint PMF of X and Y?
>
—( O \
o | /2 O =

X 1| O (2, O

Lisa Yan, C$109, 2020 Stanford University 41




Check out the properties on the next slide
(Slide 43). Post any clarifications here!

Bl'eakOUt https://us.edstem.org/courses/109/discussion/54580
Rooms

Breakout rooms: 4 min. Introduce yourself!

42



https://us.edstem.org/courses/109/discussion/54580

Zero covariance does not imply independence

Let X take on values {—1,0,1} 1 E[x] = E[Y] =
with equal probability 1/3.
Define Y = {(1) tlr]:X N 0
otnerwise 23 E[XY] _
1 0 1
| 3. Cov(X,Y) =
S O (1/3 0 1/3|2/3 Marginal
PMF of
0 1/3 0 [1/3 y , ()
1/3 1/3 1/3 4. Are X and Y independent?
Marginal PMF A
of X, px(x) K\“.J

Lisa Yan, CS109, 2020 Stanford University 43




Zero covariance does not imply independence

Let X take on values {—1,0,1} E[X] = —
with equal probability 1/3. 1 1 1\ 7
— ‘1<§)+0(§)“(§)—° §> 1(3)=1/3
. 11 ifX =0
Define ¥ = 0 otherwise 1 1
E[XY] = (—1-0)(§)+(o-1)(§)+(1 0)( )
=0
- ° ¢ Cov(X,Y) = E[XY] — E[X]E[Y]
) oV , = —
.. 0 |13 0 1/3|2/3 IF\>/||3|nglor:‘al —0-0(1/3)=0 / does notimply'
0 1/3 0O [1/3 Y, py () independence!
1/3 1/3 1/3 Are X and Y independent?
Marginal PMF PY=0|X=1)=1
of X, px (%) + P(Y=0)=2/3

Lisa Yan, CS109, 2020 Stanford University 44




American and European Bison Cape and Water Buffalo

Native to North America and Europe Native to Asia and Africa

tinctive large hump on back No hump
Horns are small, sharp and point ard | Horns can span up to 6ft tip to tip!
Thick woolly fur adapted to handle cold Thin fur adapted for warm climates
Weigh 700 0 Lbs Weigh 1870-2650 lbs
Can live up to 19 years Can live up to 30 years

Products you might buy: steak, ground ucts you might buy: water buffalo

bison ozzarella

jokes/announcements




Announcements

/
Problem Set 3

Due:

\_

Covers: Up to and including Lecture 11/

~

Feide,

Morday 5/8 10am

Lisa Yan, CS109, 2020
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Interesting probability news

Probability and Game Theory
in The Hunger Games

Probability of being chosen for the Games by Age
1.00

“Suppose the parents in a given
district gave birth to only...five girls,

and that all of these kids were born at
the same time.”

Not a probability mass function
Also duh? (P(you get chosen if you're the
8 oo only person) = 1)

(o]
0.20 o

You now know enough Python/ probability
to write a better simulation to model the

Reaping!!!!
| | | | (game theory part of the article is good)
2 time
1= 12yrs. old; 2 = 13yrs. old; 3 = 14yrs. old; 4 = 15yrs. old; 5 = 16yrs. old
https://www.wired.com/2012/04/probability-and-game-
theory-in-the-hunger-games/

Lisa Yan, CS109, 2020

CS109 Current Events Spreadsheet
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https://docs.google.com/spreadsheets/d/1ijvvCoCKG86gITqSxYEPL_77U7VK__mn-ChvyDkhXX4/edit%3Fusp=sharing
https://www.wired.com/2012/04/probability-and-game-theory-in-the-hunger-games/

LIVE

Correlation




Cov(X,Y) = E[(X — E[X]D(Y — E[Y])]

Covarying humans = E[XY] — E[X]E[Y]
What is the covariance of 7]
weight W and height H? 5 60 -
Cov(W,H) = E[WH] — E[W]E[H] =
= 3355.83 — (62.75)(52.75) %40
= 45.77 (positive) T s 55 65 75 85
Weight W (kilograms)
What about weight (Ib) and =07
height (cm)? S 160 7 ¢ . e
T 140 - ¢ o .
Cov(2.20W, 2.54H) 2190 - AR
= E[2.20W - 2.54H] — E[2.20W]E[2.54H] ~ 5, ¢ o | | |
= 18752.38 — (138.05)(133.99) 100 120 Weigﬁf‘;v b) 100 180
= 255.06 (positive)
|, Covariance depends Sign of covariance (+/-) more
on units! meaningful than magnitude

Lisa Yan, CS109, 2020 Stanford University 49




Correlation

The correlation of two variables X and Y is:

Cov X, Y 2 _
p(x, vy = 228X o )
A Oy Oy oy = Var(Y)

Note: —1 < p(X,Y) <1
Correlation measures the linear relationship between X and Y:

p(X,Y)=1 = Y = aX + b,where a = gy /oy
p(X,Y)=—-1 =Y =aX+ b,wherea = —oy/oy
p(X,Y) =0 = “uncorrelated” (absence of linear relationship)

Lisa Yan, CS109, 2020 Stanford University 50



Slide 52 has a question to go over by

Think yourself.

Post any clarifications here!

https://us.edstem.org/courses/109/discussion/54580

Think by yourself: 1 min

(b @ )

A

51
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- Aop(X,Y) =1
Correlation reps 5 p(X,Y) = —1
C. p(X,Y) =0

What is the correlation coefficient p(X,Y)? D. Other
1. 7 : .

af "\\ 2 4 ///n

\\ %

3. A

L7 =\
L)
s

Stanford University 52
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- pX,Y)=1

. pX,Y)=-1
. pX,Y)=0

. Other

Correlation reps

OO w >

What is the correlation coefficient p(X,Y)?

1. = )
41 \\ u

B p(X,Y) = —1 | / A p(X,Y) =1
\ L Y=—aX+b _3 | Y=aX+b
e a>0 // o a>0

C.p(X,¥) =0 vl Gl =0
“uncorrelated” o NERe Y = X*?

se o
ogg o 2 ee *

° I.O‘.u-. > ..o'-..

L R M R S
. coge § Sse
)

X and Y can be nonlinearlfl(related even if p(X,Y) = 0.

Lisa Yan, CS109, 2020
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CS103: Conditional statements

Al A=
% (vl =0  CYrE=0
Statement P — Q: Independence - No correlation
Contrapositive =Q — —P: Correlation = Dependence (logically
equivalent)
hovw _

Inverse =P — =0: Dependence - Correlation (not always)
Y:X2
p(X,Y) =0

Converse ) — P: No correlation = Independence ¢ (ot always)
Slide 47

“Correlation does not imply causation”
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Spurious Correlations

p(X,Y) is used a lot to statistically quantify the relationship b/t X and Y.

Correlation:

0.947091
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
—<
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

Spurious correlations
Lisa Yan, CS109, 2020 Stanford University 55



https://www.tylervigen.com/spurious-correlations

Spurious Correlations

p(X,Y) is used a lot to statistically quantify the relationship b/t X and Y.

Correlation: Per capita cheese consumption

correlates with

0.947091 Number of people who died by becoming tangled in their bedsheets

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
33lbs = 800 deaths
- w
z z
C 31.5lbs 600 deaths o
S &
@
t @
U S
&  30lbs 400 deaths ¢g
w
28.5lbs 200 deaths
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

-®- Bedsheet tanglings -~ Cheese consumed Spurious correlations

Lisa Yan, CS109, 2020 Stanford University 56
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Divorce vs. Butter

Divorce rate Per capita

in Maine per L - consumption of

1,000 people Correlation: 99% margarine (Ibs)
5.25 10

5.00

8
4.75
4.50 N\ y |-

4.25

\ 4
4.00
2 |
] "
3.50 0
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http://www.bbc.com/news/magazine-27537142
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Arcade revenue vs. CS PhDs

Total revenue generated by arcades

correlates with
Correlation: Computer science doctorates awarded in the US
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Expectation of product of independent RVs

It X and Y are E[XY] = E[X]E[Y]
ndependent.then - Elg(0RY)] = ElgOIE[RY)]
oot ELUORNT = ), ) 9k0pr () e s e
= 2 z gO)h(Y)px (x)py(y) X and Y are independent
Terms dependent on y
> (h(y)py (y) zx: g(x)px (x)> are constant in integral of x

( g(x)px(x)> Eh(y)py(y)> Summations separate
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Variance of Sums of Variables
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Var (Z X; ) = Cov (Z X;, Z Xl> = Z Cov(X;, X;)
1=1 i=1 i=1 i=1j=1
n n n
= ZVar(Xi) + Z z Cov (X, X;)
1=1 i=1j=1,j=+i
n n n
= ZVar(Xi) + 2 z 2 Cov (X, X;)
1=1 =1 j=i+1
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Symmetry of covariance
Cov(X,X) = Var(X)

Adjust summation bounds
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