13: Statistics of Multiple RVs

Lisa Yan May 4, 2020

Quick slide reference

3 Expectation of Common RVs

13a_expectation_sum

13b_coupon_collecting

- 8 Coupon Collecting Problems
- 14 Covariance
- 20 Independence and Variance
- 27 Exercises
- 48 Correlation

13c_covariance

13d_variance_sum

LIVE

LIVE

13a_expectation_sum

Expectation of Common RVs

Linearity of Expectation is useful

Expectation is a linear mathematical operation. If $X = \sum_{i=1}^{n} X_i$:

$$E[X] = E\left[\sum_{i=1}^{n} X_i\right] = \sum_{i=1}^{n} E[X_i]$$

- Even if you *don't know* the distribution of X (e.g., because the joint distribution of (X_1, \dots, X_n) is unknown), you can still compute expectation of the sum!!
- Problem-solving key: Define X_i such that

Most common use cases:

- $E[X_i]$ easy to calculate Sum of dependent RVs

Expectations of common RVs: Binomial

$$X \sim Bin(n, p) \quad E[X] = np$$

of successes in n independent trials with probability of success p

Recall: Bin(1, p) = Ber(p)

$$X = \sum_{i=1}^{n} X_i$$

Let $X_i = i$ th trial is heads $X_i \sim \text{Ber}(p), E[X_i] = p$ $E[X] = E\left[\sum_{i=1}^n X_i\right] = \sum_{i=1}^n E[X_i] = \sum_{i=1}^n p = np$

Review

Expectations of common RVs: Negative Binomial

$$Y \sim \text{NegBin}(r, p) \quad E[Y] = \frac{r}{p}$$

 $Y = \sum Y_i$

Recall: NegBin(1, p) = Geo(p)

of independent trials with probability of success p until r successes

1. How should we define Y_i ?

2. How many terms are in our summation?

Expectations of common RVs: Negative Binomial

$$Y \sim \text{NegBin}(r, p) \quad E[Y] = \frac{r}{p}$$

Recall: NegBin(1, p) = Geo(p)

of independent trials with probability of success p until r successes

$$Y = \sum_{i=1}^{?} Y_i$$

Let $Y_i = \#$ trials to get *i*th success (after (i-1)th success) $Y_i \sim \text{Geo}(p), E[Y_i] = \frac{1}{p}$ $E[Y] = E\left[\sum_{i=1}^r Y_i\right] = \sum_{i=1}^r E[Y_i] = \sum_{i=1}^r \frac{1}{p} = \frac{r}{p}$

13b_coupon_collecting

Coupon Collecting Problems

Linearity of Expectation is useful

Expectation is a linear mathematical operation. If $X = \sum_{i=1}^{n} X_i$:

$$E[X] = E\left[\sum_{i=1}^{n} X_i\right] = \sum_{i=1}^{n} E[X_i]$$

- Even if you *don't know* the distribution of X (e.g., because the joint distribution of (X_1, \dots, X_n) is unknown), you can still compute expectation of the sum!!
- Problem-solving key: Define X_i such that

Most common use cases:

- $E[X_i]$ easy to calculate Sum of dependent RVs

Coupon collecting problems: Server requests

The coupon collector's problem in probability theory:

- You buy boxes of cereal.
- There are k different types of coupons
- For each box you buy, you "collect" a coupon of type *i*.
- 1. How many coupons do you expect after buying *n* boxes of cereal?

<u>Servers</u> requests k servers request to server i

What is the expected number of utilized servers after *n* requests?

 * 52% of Amazon profits
 ** more profitable than Amazon's North America commerce operations
 <u>source</u>

Lisa Yan, CS109, 2020

Computer cluster utilization

Consider a computer cluster with k servers. We send n requests.

- Requests independently go to server i with probability p_i
- Let X = # servers that receive ≥ 1 request.

What is E[X]?

Computer cluster utilization

Consider a computer cluster with k servers. We send n requests.

- Requests independently go to server i with probability p_i
- Let X = # servers that receive ≥ 1 request.

What is E[X]?

1. Define additional random variables.

Let:
$$A_i$$
 = event that server i
receives ≥ 1 request
 X_i = indicator for A_i

$$P(A_i) = 1 - P(\text{no requests to } i)$$

= 1 - (1 - p_i)ⁿ

Note: A_i are dependent!

2. Solve.

$$E[X_i] = P(A_i) = 1 - (1 - p_i)^n$$

$$E[X] = E\left[\sum_{i=1}^k X_i\right] = \sum_{i=1}^k E[X_i] = \sum_{i=1}^k (1 - (1 - p_i)^n)$$

$$= \sum_{i=1}^k 1 - \sum_{i=1}^k (1 - p_i)^n = k - \sum_{i=1}^k (1 - p_i)^n$$

$$= \sum_{i=1}^k \sum_{i=1}^{k-1} (1 - p_i)^n = k - \sum_{i=1}^k (1 - p_i)^n$$

$$= \sum_{i=1}^{k-1} \sum_{i=1}^{k-1} (1 - p_i)^n = k - \sum_{i=1}^{k-1} (1 - p_i)^n$$

$$= \sum_{i=1}^{k-1} \sum_{i=1}^{k-1} (1 - p_i)^n = k - \sum_{i=1}^{k-1} (1 - p_i)^n$$

Coupon collecting problems: Hash tables

The coupon collector's problem in probability theory:

- You buy boxes of cereal.
- There are k different types of coupons
- For each box you buy, you "collect" a coupon of type *i*.
- 1. How many coupons do you expect after buying *n* boxes of cereal?
- 2. How many boxes do you expect to buy until you have one of each coupon?

<u>Servers</u>	<u>Hash Tables</u>
requests	strings
k servers	k buckets
request to	hashed to
server i	bucket i

What is the expected number of utilized servers after *n* requests?

What is the expected number of strings to hash until each bucket has ≥ 1 string?

Stay tuned for live lecture!

13c_covariance

Covariance

Statistics of sums of RVs

For any random variables *X* and *Y*,

$$E[X + Y] = E[X] + E[Y]$$

$$Var(X+Y) = ?$$

But first... a new statistic!

Spot the difference

Both distributions have the same E[X], E[Y], Var(X), and Var(Y)

Difference: how the two variables vary with each other.

Covariance

The **covariance** of two variables *X* and *Y* is:

$$Cov(X,Y) = E[(X - E[X])(Y - E[Y])]$$
$$= E[XY] - E[X]E[Y]$$

Proof of second part:

$$Cov(X,Y) = E[(X - E[X])(Y - E[Y])]$$

$$= E[XY - XE[Y] - E[X]Y + E[X]E[Y]]$$

$$= E[XY] - E[XE[Y]] - E[E[X]Y] + E[E[X]E[Y]]$$

$$= E[XY] - E[X]E[Y] - E[X]E[Y] + E[X]E[Y]$$

$$= E[XY] - E[X]E[Y]$$

(linearity of expectation) (*E*[*X*], *E*[*Y*] are scalars)

Covarying humans

Weight (kg)	Height (in)	W·H
64	57	3648
71	59	4189
53	49	2597
67	62	4154
55	51	2805
58	50	2900
77	55	4235
57	48	2736
56	42	2352
51	42	2142
76	61	4636
68	57	3876
E[W]	E[H]	E[WH]
= 62.75	= 52.75	= 3355.83

What is the covariance of weight W and height H?

$$Cov(W,H) = E[WH] - E[W]E[H]$$

= 3355.83 - (62.75)(52.75)

= 45.77

(positive)

Covariance > 0: one variable 1, other variable 1

Properties of Covariance

The **covariance** of two variables *X* and *Y* is:

$$Cov(X,Y) = E[(X - E[X])(Y - E[Y])]$$
$$= E[XY] - E[X]E[Y]$$

Properties:

- **1.** $Var(X) = E[X^2] (E[X])^2 = Cov(X, X)$
- 2. Symmetry
- 3. Non-linearity
- 4. Covariance of sums

(to be discussed in live lecture)

13d_variance_sum

Variance of sums of RVs

For any random variables *X* and *Y*,

$$E[X + Y] = E[X] + E[Y]$$

Var(X + Y) = Var(X) + 2 · Cov(X, Y) + Var(Y)

Variance of general sum of RVs

For any random variables *X* and *Y*,

$$Var(X + Y) = Var(X) + 2 \cdot Cov(X, Y) + Var(Y)$$

Proof:

$$Var(X + Y) = Cov(X + Y, X + Y)$$

$$= Cov(X, X) + Cov(X, Y) + Cov(Y, X) + Cov(Y, Y)$$

$$= Var(X) + 2 \cdot Cov(X, Y) + Var(Y)$$

$$Var(X) = Cov(X, X)$$

$$= Cov(X, X) + Cov(X, Y) + Cov(Y, X) + Cov(Y, Y)$$

$$Var(X) = Cov(X, X)$$

$$Cov(X, X) = Var(X)$$

$$Var(X) = Var(X)$$

More generally:

$$\operatorname{Var}\left(\sum_{i=1}^{n} X_{i}\right) = \sum_{i=1}^{n} \operatorname{Var}(X_{i}) + 2\sum_{i=1}^{n} \sum_{j=i+1}^{n} \operatorname{Cov}\left(X_{i}, X_{j}\right) \quad (\text{proof in extra slides})$$

Statistics of sums of RVs

For any random variables *X* and *Y*,

$$E[X + Y] = E[X] + E[Y]$$

Var(X + Y) = Var(X) + 2 · Cov(X, Y) + Var(Y)

For independent *X* and *Y*,

E[XY] = E[X]E[Y]

(Lemma: proof in extra slides)

Var(X + Y) = Var(X) + Var(Y)

Variance of sum of independent RVs

For independent *X* and *Y*,

$$Var(X + Y) = Var(X) + Var(Y)$$

Proof:

1. Cov(X,Y) = E[XY] - E[X]E[Y]= E[X]E[Y] - E[X]E[Y]= 0

def. of covariance

X and Y are independent

```
2. Var(X + Y) = Var(X) + 2 \cdot Cov(X, Y) + Var(Y)
= Var(X) + Var(Y)
```

NOT bidirectional: Cov(X, Y) = 0 does NOT imply independence of X and Y!

Proving Variance of the Binomial

 $X \sim Bin(n,p)$ Var(X) = np(1-p)

To simplify the algebra a bit, let q = 1 - p, so p + q = 1.

Definition of Binomial Distribution: p + q = 1

Factors of Binomial Coefficient: $k \binom{n}{k} = n \binom{n-1}{k-1}$

Change of limit: term is zero when k - 1 = 0

putting j = k - 1, m = n - 1

splitting sum up into two

Factors of Binomial Coefficient: $j\binom{m}{j} = m\binom{m-1}{j-1}$

Change of limit: term is zero when j - 1 = 0

Binomial Theorem

as p + q = 1by algebra

Expectation of Binomial Distribution: E(X) = np

Let's instead prove this using independence and variance!

Stanford University 25

as required.

 $var(X) = E(X^2) - (E(X))^2$

= np(1-p)

 $= np(1-p) + n^2 p^2 - (np)^2$

Then:

Lisa Yan, CS109, 2020

proofwiki.org

Proving Variance of the Binomial

$$X \sim Bin(n,p)$$
 $Var(X) = np(1-p)$

Let
$$X = \sum_{i=1}^{N} X_i$$

 \boldsymbol{n}

Let $X_i = i$ th trial is heads $X_i \sim \text{Ber}(p)$ $Var(X_i) = p(1-p)$

> X_i are independent (by definition)

$$Var(X) = Var\left(\sum_{i=1}^{n} X_{i}\right)$$
$$= \sum_{i=1}^{n} Var(X_{i})$$
$$= \sum_{i=1}^{n} p(1-p)$$

= np(1-p)

X_i are independent, therefore variance of sum = sum of variance

Variance of Bernoulli

Lisa Yan, CS109, 2020

13: Statistics of Multiple RVs

Slides by Lisa Yan July 20, 2020

Where are we now? A roadmap of CS109

Last week: Joint distributions $p_{X,Y}(x,y)$

Today: Statistics of multiple RVs! Var(X + Y)E[X + Y]Cov(X,Y) $\rho(X,Y)$

Also Wednesday: Modeling with Bayesian Networks

Wednesday: Conditional distributions $p_{X|Y}(x|y)$ E[X|Y]

Don't we already know linearity of expectation?

Expectation is a linear mathematical operation. If $X = \sum_{i=1}^{n} X_i$: $E[X] = E\left[\sum_{i=1}^{n} X_i\right] = \sum_{i=1}^{n} E[X_i]$

We covered this back in Lecture 6 (when we first learned expectation)!

- Proved binomial: sum of 1s or 0s
- Hat check (section): sum of 1s or 0s
- We ignored (in)dependence of events.

Why are we learning this again???

- Now we can prove it!
- We can now ignore (in)dependence of random variables.
- Our approach is still the same!

Review

Coupon collecting problems: Hash tables

The coupon collector's problem in probability theory:

- You buy boxes of cereal.
- There are k different types of coupons
- For each box you buy, you "collect" a coupon of type *i*.
- 1. How many coupons do you expect after buying *n* boxes of cereal?
- 2. How many boxes do you expect to buy until you have one of each coupon?

<u>Servers</u>	<u>Hash Tables</u>
requests	strings
k servers	k buckets
request to	hashed to
server i	bucket <i>i</i>

What is the expected number of utilized servers after *n* requests?

What is the expected number of strings to hash until each bucket has ≥ 1 string?

Breakout Rooms

Check out the properties on the next slide. Post any clarifications here!

https://us.edstem.org/courses/667/discussion/93095

Breakout rooms: 4 min. Introduce yourself!

Hash Tables

Consider a hash table with k buckets.

- Strings are equally likely to get hashed into any bucket (independently).
- Let Y = # strings to hash until each bucket ≥ 1 string.

What is E[Y]?

1. Define additional random variables. How sh

How should we define Y_i such that $Y = \sum Y_i$?

2. Solve.

Hash Tables

Consider a hash table with k buckets.

- Strings are equally likely to get hashed into any bucket (independently).
- Let Y = # strings to hash until each bucket ≥ 1 string.

What is E[Y]?

1. Define additional Let: $Y_i = #$ of trials to get success after *i*-th success random variables. • Success: hash string to previously empty bucket

• If *i* non-empty buckets:
$$P(\text{success}) = \frac{k-i}{k}$$

2. Solve.

$$P(Y_i = n) = \left(\frac{i}{k}\right)^{n-1} \left(\frac{k-i}{k}\right)$$

Equivalently,
$$Y_i \sim \text{Geo}\left(p = \frac{k-i}{k}\right)$$
 $E[Y_i] = \frac{1}{p} = \frac{k}{k-i}$

Hash Tables

Consider a hash table with k buckets.

- Strings are equally likely to get hashed into any bucket (independently).
- Let Y = # strings to hash until each bucket ≥ 1 string.

What is E[Y]?

1. Define additional Let: $Y_i = \#$ of trials to get success after *i*-th success random variables. $Y_i \sim \text{Geo}\left(p = \frac{k-i}{k}\right), \quad E[Y_i] = \frac{1}{p} = \frac{k}{k-i}$

2. Solve.
$$Y = Y_0 + Y_1 + \dots + Y_{k-1}$$

 $E[Y] = E[Y_0] + E[Y_k] + \dots + E[Y_{k-1}]$
 $= \frac{k}{k} + \frac{k}{k-1} + \frac{k}{k-2} + \dots + \frac{k}{1} = k \left[\frac{1}{k} + \frac{1}{k-1} + \dots + 1 \right] = O(k \log k)$

Stanford University 34

Covariance

Review

The **covariance** of two variables *X* and *Y* is:

$$Cov(X,Y) = E[(X - E[X])(Y - E[Y])]$$
$$= E[XY] - E[X]E[Y]$$

Think

The next slide has a question to go over by yourself.

Post any clarifications here!

https://us.edstem.org/courses/667/discussion/93095

Think by yourself: 1 min

Feel the covariance

Cov(X,Y) = E[(X - E[X])(Y - E[Y])]= E[XY] - E[X]E[Y]

Is the covariance positive, negative, or zero?

Feel the covariance

Cov(X,Y) = E[(X - E[X])(Y - E[Y])]= E[XY] - E[X]E[Y]

Is the covariance positive, negative, or zero?

positive

negative

zero

Properties of Covariance

The **covariance** of two variables *X* and *Y* is:

$$Cov(X,Y) = E[(X - E[X])(Y - E[Y])]$$
$$= E[XY] - E[X]E[Y]$$

Properties:

1. Cov(X, Y) = Cov(Y, X)2. Var(X) = Cov(X, X)3. $Cov(\sum_i X_i, \sum_j Y_j) = \sum_i \sum_j Cov(X_i, Y_j)$ X4. Cov(aX + b, Y) = aCov(X, Y) + b? Covariance is non-linear: Cov(aX + b, Y) = aCov(X, Y) For any random variables *X* and *Y*,

$$E[X + Y] = E[X] + E[Y]$$

Var(X + Y) = Var(X) + 2 · Cov(X, Y) + Var(Y)

For independent *X* and *Y*,

(Lemma: proof in extra slides)

$$Var(X + Y) = Var(X) + Var(Y)$$

E[XY] = E[X]E[Y]

Cov(X, Y) = 0 does NOT imply independence of X and Y! Review

Zero covariance does not imply independence

Let X take on values $\{-1,0,1\}$ with equal probability 1/3.

Define
$$Y = \begin{cases} 1 & \text{if } X = 0 \\ 0 & \text{otherwise} \end{cases}$$

What is the joint PMF of *X* and *Y*?

Breakout Rooms

Check out the properties on the next slide. Post any clarifications here!

https://us.edstem.org/courses/667/discussion/93095

Breakout rooms: 4 min. Introduce yourself!

Zero covariance does not imply independence

Let X take on values $\{-1,0,1\}$ **1**. E[X] =E[Y] =with equal probability 1/3. Define $Y = \begin{cases} 1 & \text{if } X = 0 \\ 0 & \text{otherwise} \end{cases}$ 2. E[XY] =X 0 1 -1 3. Cov(X, Y) =0 1/3 2/3 1/3 Marginal 0 0 PMF of 1/3 1/3 0 1 $Y, p_Y(y)$ 4. Are X and Y independent? 1/3 1/3 1/3 Marginal PMF of X, $p_X(x)$

Zero covariance does not imply independence

Let X take on values $\{-1,0,1\}$ with equal probability 1/3. Define $Y = \begin{cases} 1 & \text{if } X = 0 \\ 0 & \text{otherwise} \end{cases}$ X 0 -1 1 1/3 0 1/3 2/3 Marginal 0 PMF of 1/3 1/3 0 0 1 $Y, p_Y(y)$ 1/31/3 1/3 Marginal PMF of X, $p_X(x)$

1.
$$E[X] = E[Y] =$$

 $-1\left(\frac{1}{3}\right) + 0\left(\frac{1}{3}\right) + 1\left(\frac{1}{3}\right) = 0$ $0\left(\frac{2}{3}\right) + 1\left(\frac{1}{3}\right) = 1/3$
2. $E[XY] = (-1 \cdot 0)\left(\frac{1}{3}\right) + (0 \cdot 1)\left(\frac{1}{3}\right) + (1 \cdot 0)\left(\frac{1}{3}\right)$
 $= 0$

3.
$$Cov(X,Y) = E[XY] - E[X]E[Y]$$

= $0 - 0(1/3) = 0$ $\bigwedge_{independence!}^{does not imply}$

4. Are X and Y independent?

$$P(Y = 0 | X = 1) = 1$$

 $\neq P(Y = 0) = 2/3$

I USED TO THINK TO CORRELATION IMPLIED S CAUSATION. J

Interlude for fun/announcements

Announcements

Midterm Quiz

Start:Today (Mon) 5PM PDT – find on WebsiteDue:Tomorrow (Tue) 5PM PDT – submit to Gradescope

More notes: (no office hours tomorrow, Ed will be set to privatequestions-only mode, we'll make clarifications via Ed)

Interesting probability news

Probability and Game Theory in *The Hunger Games*

1 = 12yrs. old; 2 = 13yrs. old; 3 = 14yrs. old; 4 = 15yrs. old; 5 = 16yrs. old

https://www.wired.com/2012/04/probability-and-gametheory-in-the-hunger-games/

"Suppose the parents in a given district gave birth to only...five girls, and that all of these kids were born at the same time."

- Not a probability mass function
- Also duh? (P(you get chosen if you're the only person) = 1)
- You now know enough Python/ probability to write a better simulation to model the Reaping!!!!
- (game theory part of the article is good)

Ethics in Probability: Smoking and Cancer

Correlation does not imply causation

Does lung cancer cause smoking?

https://towardsdatascience.com/correlation-does-not-implycausation-92e4832a6713

"Is it possible then, that lung cancer — that is to say, the pre-cancerous condition which must exist and is known to exist for years in those who are going to show over lung cancer — is one of the causes of smoking cigarettes? I don't think it can be excluded."

- Statistician R.A. Fisher

How, then, do we think about correlation and causation?

Fisher's Paper (1958): <u>https://www.nature.com/articles/182596a0</u>

A reference paper from Judea Pearl on causal inference:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2836213/

drich/fisherguide/Doc1.htm

LIVE

Correlation

Covarying humans

Cov(X,Y) = E[(X - E[X])(Y - E[Y])]= E[XY] - E[X]E[Y]

What is the covariance of weight W and height H? Cov(W,H) = E[WH] - E[W]E[H]= 3355.83 - (62.75)(52.75) = 45.77 (positive)

What about weight (lb) and height (cm)?

Cov(2.20W, 2.54H)

- $= E[2.20W \cdot 2.54H] E[2.20W]E[2.54H]$
- = 18752.38 (138.05)(133.99)

Sign of covariance (+/-) more meaningful than magnitude

Correlation

The **correlation** of two variables *X* and *Y* is:

$$\rho(X,Y) = \frac{\operatorname{Cov}(X,Y)}{\sigma_X \, \sigma_Y}$$

$$\sigma_X^2 = \operatorname{Var}(X),$$

$$\sigma_Y^2 = \operatorname{Var}(Y)$$

- Note: $-1 \le \rho(X, Y) \le 1$
- Correlation measures the **linear relationship** between *X* and *Y*:

$$\begin{array}{ll} \rho(X,Y) = 1 & \implies Y = aX + b, \text{where } a = \sigma_Y / \sigma_X \\ \rho(X,Y) = -1 & \implies Y = -aX + b, \text{where } a = \sigma_Y / \sigma_X \\ \rho(X,Y) = 0 & \implies \text{``uncorrelated'''} (absence of linear relationship) \end{array}$$

Think

The next slide has a question to go over by yourself.

Post any clarifications here!

https://us.edstem.org/courses/667/discussion/93095

Think by yourself: 1 min

Correlation reps

What is the correlation coefficient $\rho(X, Y)$?

Correlation reps

What is the correlation coefficient $\rho(X, Y)$?

C. $\rho(X, Y) = 0$ "uncorrelated" 4.0

 $\begin{array}{l} \mathbf{C.} \ \rho(X,Y) = 0\\ Y = X^2 \end{array}$

X and Y can be nonlinearly related even if $\rho(X, Y) = 0$.

Lisa Yan, CS109, 2020

CS103: Conditional statements

Statement $P \rightarrow Q$: Independence \rightarrow No correlation

Contrapositive $\neg Q \rightarrow \neg P$: Correlation \rightarrow Dependence

Inverse $\neg P \rightarrow \neg Q$:

Dependence
$$\rightarrow$$
 Correlation?

Converse $Q \rightarrow P$:

No correlation
$$\rightarrow$$
 Independence? \mathbf{X} (not always)
Slide 46

"Correlation does not imply causation"

(logically

X (not always)

 $Y = X^2$

 $\rho(X,Y)=0$

equivalent)

Spurious Correlations

 $\rho(X, Y)$ is used a lot to statistically quantify the relationship b/t X and Y.

Correlation: 0.947091

Spurious correlations Stanford University 59

Spurious Correlations

 $\rho(X, Y)$ is used a lot to statistically quantify the relationship b/t X and Y.

Divorce vs. Butter

http://www.bbc.com/news/magazine-27537142

Stanford University

Arcade revenue vs. CS PhDs

Spurious correlations Stanford University 62

Lisa Yan, CS109, 2020

13e_extra

Extra

Expectation of product of independent RVs

If X and Y are independent, then

$$E[XY] = E[X]E[Y]$$
$$E[g(X)h(Y)] = E[g(X)]E[h(Y)]$$

Proof:
$$E[g(X)h(Y)] = \sum_{y} \sum_{x} g(x)h(y)p_{X,Y}(x,y)$$
 (for
 $= \sum_{y} \sum_{x} g(x)h(y)p_{X}(x)p_{Y}(y)$ (x)
 $= \sum_{y} \left(h(y)p_{Y}(y)\sum_{x} g(x)p_{X}(x)\right)$ are
 $= \left(\sum_{x} g(x)p_{X}(x)\right) \left(\sum_{y} h(y)p_{Y}(y)\right)$
 $= E[g(X)]E[h(Y_{0})]_{9,2020}$

for continuous proof, replace summations with integrals)

X and Y are independent

Terms dependent on yare constant in integral of x

Summations separate

Variance of Sums of Variables

$$\operatorname{Var}\left(\sum_{i=1}^{n} X_{i}\right) = \sum_{i=1}^{n} \operatorname{Var}(X_{i}) + 2\sum_{i=1}^{n} \sum_{j=i+1}^{n} \operatorname{Cov}\left(X_{i}, X_{j}\right)$$

Proof:

$$\operatorname{Var}\left(\sum_{i=1}^{n} X_{i}\right) = \operatorname{Cov}\left(\sum_{i=1}^{n} X_{i}, \sum_{i=1}^{n} X_{i}\right) = \sum_{i=1}^{n} \sum_{j=1}^{n} \operatorname{Cov}(X_{i}, X_{j})$$

$$= \sum_{i=1}^{n} \operatorname{Var}(X_{i}) + \sum_{i=1}^{n} \sum_{j=1, j \neq i}^{n} \operatorname{Cov}(X_{i}, X_{j})$$

$$= \sum_{i=1}^{n} \operatorname{Var}(X_{i}) + 2 \sum_{i=1}^{n} \sum_{j=i+1}^{n} \operatorname{Cov}(X_{i}, X_{j})$$
Symmetry of covariance $\operatorname{Cov}(X, X) = \operatorname{Var}(X)$

$$= \sum_{i=1}^{n} \operatorname{Var}(X_{i}) + 2 \sum_{i=1}^{n} \sum_{j=i+1}^{n} \operatorname{Cov}(X_{i}, X_{j})$$
Adjust summation bounds

Stanford University 65