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13a_expectation_sum

Expectation of
Common RVs




Linearity of Expectation is useful

Expectation is a linear mathematical operation. If X = " X :

E[X]=E i Xl-- = Zn: E[X;]

Even if you don’t know the distribution of X (e.g., because the joint
distribution of (X4, ..., X;,) is unknown), you can still compute
expectation of the sum!!

Most common use cases:
« FE|X;] easy to calculate
$ e Sum of dependent RVs

Problem-solving key: -
Define X; suchthat %= in

=1

Lisa Yan, C$109, 2020 Stanford University




Expectations of common RVs: Binomial

X~Bin(n,p) E[X]=np

Recall: Bin(1,p) = Ber(p)

n
X = EXL
1=1

Let X; = ith trial is heads
Xi~Ber(p),E[Xi] =p

# of successes in n independent trials
with probability of success p

E[X]=E

Lisa Yan, CS109, 2020

n
2.
=1

=1

=zn:E[Xi] =zn:29=np
1

L=
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Expectations of common RVs: Negative Binomial

_ - . . . L

Y~NegB|n (7,., p) E[Y]==: # of mdependenft trials with probability
p of success p until r successes

Recall: NegBin(1,p) = Geo(p)

How should we define Y;?

?
Y = E Y;
=1 How many terms are in our summation?

Lisa Yan, C$109, 2020 Stanford University 6



Expectations of common RVs: Negative Binomial

" T : . . op
Y~NegB| N (7", p) E[Y] = - # of mdependenft trials with probability
p of success p until r successes

Recall: NegBin(1,p) = Geo(p)

?
Y=2Yi
=1

Let Y; = # trials to get ith success (after
(i — 1)th success)

Yi~Geo(p), E[Y;] = E[Y] =

er
p b

1
p

Lisa Yan, C$109, 2020 Stanford University 7




13b_coupon_collecting

Coupon
Collecting
Problems




Linearity of Expectation is useful

Expectation is a linear mathematical operation. If X = " X :

E[X]=E i Xl-- = Zn: E[X;]

Even if you don’t know the distribution of X (e.g., because the joint
distribution of (X4, ..., X;,) is unknown), you can still compute
expectation of the sum!!

Most common use cases:
* F|X;] easy to calculate
$ « Sum of dependent RVs

Problem-solving key: -
Define X; suchthat %= in

=1

Lisa Yan, C$109, 2020 Stanford University




Coupon collecting problems: Server requests

The coupon collector’s problem in probability theory: ~ Servers

You buy boxes of cereal.

There are k different types of coupons
For each box you buy, you "collect”

a coupon of type i.

How many coupons do you expect
after buying n boxes of cereal?

‘\’7 \ h‘}

— amazZon
web services™

Lisa Yan, CS109, 2020

W

requests
k servers

request to
server i

What is the expected number of
utilized servers after n requests?

*  52% of Amazon profits

** more profitable than Amazon’s
North America commerce operations

source

Stanford University 10


http://www.zdnet.com/article/amazons-finds-its-profit-horse-in-aws-why-its-so-disruptive-to-its-old-guard/

E = zn: E[X;]

i=1

n
R
i=1

Consider a computer cluster with k servers. We send n requests.
Requests independently go to server i with probability p;

Let X = # servers that receive = 1 request.
What is E|X]?

Computer cluster utilization

Lisa Yan, C$109, 2020 Stanford University 11




n

Computer cluster utilization = Z E[Xi]

i=1

Consider a computer cluster with k servers. We send n requests.
Requests independently go to server it with probability p;
Let X = # servers that receive = 1 request.

What is E[X]?

Define additional Solve.
random variables.
Let: A; = event that server i ElX;] = P(A )=1- (1 —p)"
receives = 1 request
X; = indicator for 4; E[X] = ZX z E[X Z(l —(1-p)"
=

P(4;) =1 —P(norequeststoi)
=1-(1-p)" Zl—Zﬂ—PJ"—k Z(l—mn

Note: A; are dependent! Lisa Yan, C$109, 2020 Stanford University 12



Coupon collecting problems: Hash tables

The coupon collector’s problem in probability theory: Hash Tables
You buy boxes of cereal. strings
There are k different types of coupons ke buckets
For each box you buy, you "collect” hashed to
a coupon of type i. bucket ¢
How many boxes do you expect What is the expected number of
to buy until you have one of strings to hash until each bucket

each coupon? has > 1 string?

Stay tuned for live lecture!

Lisa Yan, C$109, 2020 Stanford University 13



13c_covariance

Covariance




Statistics of sums of RVs

For any random variables X and Y,

ElX+Y]|=E[X]|+E|Y]

Var(X +Y) = ?

But first...
a hew statistic!

Lisa Yan, C$109, 2020 Stanford University 15




Spot the difference

Compare/contrast the following two distributions: Assume all points are
equally likely.
1
y y PX=xY=y)=r
4 g‘:-;.: v o, 4 RTK 3
e as ot B
A ° “:?a%:'.uf‘ v . e . . ?‘-.“
2 s 25 gt s 2 . “}Q L
S g "*”'%.?‘ g
A .".iz. ':. .:. R .: : ‘0;}:5%?:. -
0 22 o0 x caeg. X
0 2 4 6 0 2 4 6

Both distributions have the same E|[X], E|Y], Var(X), and Var(Y)

Difference: how the two variables vary with each other.

Lisa Yan, C$109, 2020 Stanford University 16




Covariance

The covariance of two variables X and Y is:

Cov(X,Y) =E|[(X—-E[XD(Y —E|Y]]
= E|XY]| — E|X]|E|Y]

Proof of second part:

Cov(X,Y) = E[(X — E[X]D(Y — E[Y])]
= E|XY — XE[Y] — E[X]Y + E[X]E[Y]]
= E[XY] — E[XE[Y]] - E[E[X]Y] + E[E[X]E[Y]] expastation)
= E[XY] — E[X]E[Y] — E[X]E[Y] + E[X]E[Y] oy
— E[XY] — E[X]E[Y

a Yan, C$109, 2020 Stanford University 17




Covarying humans

Cov(X,Y) = E[(X — E[XD(Y — E[Y])]
= E|XY] — E[X]E|Y]

Weight (kg) | Height (in) W-H
64 57 3648
71 59 4189
53 49 2597
67 62 4154
55 51 2805
58 50 2900
77 55 4235
57 48 2736
56 42 2352
51 42 2142
76 61 4636
68 57 3876

E[W]  E[H] E[WH]

= 62.75 =52.75 = 3355.83

What is the covariance of weight W and
height H?

Cov(W,H) = E[WH] — E[W]E[H]

= 3355.83 — (62.75)(52.75)
(positive) = 45,77

45 55 65 75 85
Weight W (kilograms)

Covariance > O: one variable T, other variable T

Lisa Yan, C$109, 2020 Stanford University 18



Properties of Covariance

Properties:
Var(X) = E[X?] — (E[X])? = Cov(X, X)
Symmetry
Non-linearity (to be discussed in live lecture)

Covariance of sums

Lisa Yan, C$109, 2020 Stanford University 19




13d_variance_sum

Variance of
sums of RVs




Statistics of sums of RVs

For any random variables X and Y,
EIX+Y|=E[X]|+E|Y]
Var(X +Y) = Var(X) + 2 - Cov(X,Y) + Var(Y)

Lisa Yan, C$109, 2020 Stanford University 21




Variance of general sum of RVs

For any random variables X and Y,

Var(X +Y) =Var(X) + 2 - Cov(X,Y) + Var(Y)

Proof:

Var(X+Y)=Cov(X+Y,X+Y) Var(X) = Cov(X, X)
= Cov(X, X) + Cov(X,Y)+ Cov(Y, X)+ Cov(Y,Y) Cova”;l“ggif;
= Var(X) + 2 -Cov(X,Y) + Var(Y) Symmetry of covariance +

Cov(X, X) = Var(X)
More generally:

Var(in) ZVar(X) + 22 z Cov (X;, X;)
i=1

i=1 j=i+1

Lisa Yan, C$109, 2020 Stanford University 22



Statistics of sums of RVs

For independent X and Y,
E|XY| = E[X]|E|Y]

Var(X +Y) = Var(X)+ Var(Y)

Stanford University 23




Variance of sum of independent RVs

For independent X and Y,

Var(X +Y) = Var(X)+ Var(Y)

Proof:

Cov(X,Y) = E|XY]| — E|X]E|Y] def. of covariance
= E[X|E[Y] - EIX]E[Y] X and Y are independent
=0

NOT bidirectional:

Var(X +Y) =Var(X) + 2 - Cov(X,Y) + Var(Y) Cov(X, Y) = 0 does NOT

= Var(X)+ Var(Y) imply independence of X
and Y!

Lisa Yan, CS109, 2020 Stanford University 24




Proving Variance of the Binomial

X~Bin(n,p) var(X) =np(1 - p)

To simplify the algebra a bit, letg =1 — p,sop+ g = 1.

So:
L -
E(Xz} = E k‘(k)p“q « Definition of Binomial Distribution: p + g = 1
k=0
5 n=1\ ¢ .k ’ - n n—1
= E kn rq Factors of Binomial Coeflicient: k =n
k=0 k-1 k k-1
o -1
=np Z k(n )Pk_]q(”_l)_“_l) Change of limit: term is zero when k — 1 = 0
S \k-1
no " o
=HPZ(J+1)(J.)P’Q / putting j=k—1,m=n—1
j=0
“ m A ,
= np il | Pea™ + ( _)p’q”'_’ splitting sum up into two
PG}
n 1 o om _ -1
= np Z m(m )p‘q"‘" + Z ("‘l)p’q'""‘ Factors of Binomial Coefficient: j(m) = m(m )
j=o N T 1 =0\ J =1
m _ l m .
=np{ (n—1)p Z (m )p)_]q(”’_"_u_" + E (”,!)p’q’”_i Change of limit: term is zero when j — 1 = 0
=Rt 1 j=o N
= np((n—Dp(p + 9" + (p+ g)™) Binomial Theorem
=np(ln—1p+1) asp+qg=1 ey -
= nzpz +np(l — p) by algebra
Let’s instead prove this using
Then:

(0 = E(x*) - @007 Independence and variance!

= np(l —p)+ nlpl - (m:l)2 Expectation of Binomial Distribution: E (X) = np

o proofwiki.org

as required.

Lisa Yan, C$109, 2020 Stanford University 25




Proving Variance of the Binomial

X~Bin(n,p) var(X) =np(1 - p)

n n
Let X = ZXi Var(X) = Var(Z Xl->
i=1 '

i=1
ik Xj are independent,
Let X; = ith trial is heads = z Var(X;) therefore variance of sum
Xl-~Ber(p) = = sum of variance

Var(X;) = p(1 —p) n
= z p(1—p) Variance of Bernoulli
X; are independent i=1

(by definition)

Lisa Yan, C$109, 2020 Stanford University 26




(live)
13: Statistics of
Multiple RVs

Slides by Lisa Yan
July 20, 2020




Where are we now? A roadmap of CS109

Today: Statistics of
multiple RVs!

Var(X +Y)
E[X + Y]
Cov(X,Y)
p(X,Y)

Wednesday:
Conditional distributions

PX|Y(X|3’)
E[X|Y]

Lisa Yan, CS109, 2020

Also Wednesday: Modeling
with Bayesian Networks

Iman *{_quch
? _ 2% Anodel

Stanford University 28



Don’t we already know linearity of expectation?

Expectation is a linear mathematlcal opera’uon If X =%

E[X]=E EX EEX
=1

We covered this back in Lecture 6 (when we first learned expectation)!
Proved binomial: sum of 1s or Os
Hat check (section): sum of 1s or Os
We ignored (in)dependence of events.
Why are we learning this again???
Now we can prove it!
We can now ignore (in)dependence of random variables.
Our approach is still the same!

Lisa Yan, C$109, 2020 Stanford University 29




Coupon collecting problems: Hash tables

The coupon collector’s problem in probability theory: Hash Tables
You buy boxes of cereal. strings
There are k different types of coupons ke buckets
For each box you buy, you "collect” hashed to
a coupon of type i. bucket ¢
How many boxes do you expect What is the expected number of
to buy until you have one of strings to hash until each bucket

each coupon? has > 1 string?

Lisa Yan, CS109, 2020 Stanford University 30



Check out the properties on the next slide.
Post any clarifications here!

B feal(OUt https://us.edstem.org/courses/667/discussion/93095
Rooms

Breakout rooms: 4 min. Introduce yourself!

31



https://us.edstem.org/courses/667/discussion/93095

=zn:E[Xi]

i=1

n
R
i=1

Hash Tables g

Consider a hash table with k buckets.
» Strings are equally likely to get hashed into any bucket (independently).

* Let Y = # strings to hash until each bucket = 1 string.
What is E[Y]?

1. Define additional
random variables.  How should we define Y; such that Y = z Y, ?
i

Lisa Yan, C$109, 2020 Stanford University 32



:zn:E[Xi]

i=1

n
R
i=1

Hash Tables g

Consider a hash table with k buckets.
Strings are equally likely to get hashed into any bucket (independently).

Let Y = # strings to hash until each bucket = 1 string.
What is E[Y]?

Define additional  Let: Y; = # of trials to get success after i-th success
random variables. Success: hash string to previously empty bucket

If i non-empty buckets: P(success) = ko

k
.\ n—1 .
CRNONCY

Equivalently, Y;~Geo (p = %) ElY;]

1k
p k—i

Lisa Yan, CS109, 2020 Stanford University 33




Hash Tables E|Y x| =) EX)

i=1

n
R
i=1

Consider a hash table with k buckets.

Strings are equally likely to get hashed into any bucket (independently).
Let Y = # strings to hash until each bucket = 1 string.

What is E[Y]?

Solve. Y=Y,+YV;+-+Y_4 |
Evenif Y; dependent,
E[Y] — E[Yo] + E[Yk] + ot E[Yk—1] it wouldn’t affect expectation!

—k-l- i + i + +k k1 ! 1 k log k
"k Tk—1" k-2 1= f gt Tt =0lklogh)

Lisa Yan, C$109, 2020 Stanford University 34



Covariance Review

The covariance of two variables X and Y is:

Cov(X,Y) =E|[(X—-E[XD(Y —E|Y]]
= E|XY]| — E|X]|E|Y]

Lisa Yan, CS109, 2020 Stanford University 35




The next slide has a question to go over by

Think yourself.

Post any clarifications here!

https://us.edstem.org/courses/667/discussion/93095

Think by yourself: 1 min

36
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. Cov(X, ¥) = E[(X — E[X])(Y — E[Y])]
Feel the covariance _ E[XY] — E[XIE[Y]

Is the covariance positive, negative, or zero?

1' E[X] re 2. TN | E[X]
. > -
I I [
| oAt Ely] ™ -
N\ '.‘.,,I'.\.
X =X X=X

Lisa Yan, C$109, 2020 Stanford University 37




. Cov(X, ¥) = E[(X — E[X])(Y — E[Y])]
Feel the covariance _ E[XY] — E[XIE[Y]

Is the covariance positive, negative, or zero?

1. EIX]| .. 2. ... | EIX]
. > -
I I P
| oAt Ely] ™ -
N '-‘.,.I'.\.
X =x X=x
positive negative ZEro

Lisa Yan, CS109, 2020 Stanford University 3s




Properties of Covariance

Properties:
Cov(X,Y) = Cov(Y,X)
Var(X) = Cov(X, X)
COV(ZiXi )2 Y]) =i COV(Xi' YJ)
/. CovtaX =+t ) =uCovX )=+t ?

Covariance is non-linear: Cov(aX + b,Y) = aCov(X,Y)

Lisa Yan, CS109, 2020 Stanford University 39




Statistics of sums of RVs

For any random variables X and Y,

Var(X +Y) =Var(X) + 2 - Cov(X,Y) + Var(Y)
For independent X and Y,

Var(X + Y) = Var(X)+ Var(Y)

Cov(X,Y) = 0 does NOT imply
independence of X and Y'!

Lisa Yan, C$109, 2020 Stanford University 41




Zero covariance does not imply independence

Let X take on values {—1,0,1}
with equal probability 1/3.

1 ifX =20

Define ¥ = {O otherwise

What is the joint PMF of X and Y?

Lisa Yan, C$109, 2020 Stanford University 42




Check out the properties on the next slide.
Post any clarifications here!

B feal(OUt https://us.edstem.org/courses/667/discussion/93095
Rooms

Breakout rooms: 4 min. Introduce yourself!

44
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Zero covariance does not imply independence

Let X take on values {—1,0,1} 1 E[x] = E[Y] =
with equal probability 1/3.
Define Y = {(1) tIJX = 0
otherwise 5 E[XY] _
X
10 1
| 3. Cov(X,Y) =
.. 0 |1/3 0 1/3|2/3 Margnal
PMF of
0 1/3 0 (1/3 vy, 1,0y
1/3 1/3 1/3 4. Are X and Y independent?
Marginal PMF

of X, px(x)
i

Lisa Yan, CS109, 2020 Stanford University 45




Zero covariance does not imply independence

Let X take on values {—1,0,1}
with equal probability 1/3.

: 1 TX=0
Define Y = _
{0 otherwise
X
1 0 1
.. 0 |1/3 0 1/3|2/3 Margnal
PMF of
0 1/3 0 |1/3 vy 5.0y
1/3 1/3 1/3
Marginal PMF
of X, px(x)

Aot

Lisa Yan, CS109, 2020

E[X E[Y] =

E|XY] =(—1-0)(%)+(0-1)(%>+(1-0)(§>
=(

Cov(X,Y) = E[XY] — E[X]E[Y]
-0 — 0(1/3) =0 Adoes not imply

independence!

Are X and Y independent? ¥
P(Y=0|X=1)=1
+ P(Y=0)=2/3

Stanford University 46



Interlude for

fun/announcements




Announcements

~

Midterm Quiz
Start: Today (Mon) 5PM PDT - find on Website
Due: Tomorrow (Tue) 5PM PDT - submit to Gradescope

More notes: (no office hours tomorrow, Ed will be set to private-

\questions—only mode, we’ll make clarifications via Ed) /

Lisa Yan, CS109, 2020
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Interesting probability news

Probability and Game Theory “Suppose the parents in a given
in The Hunger Games district gave birth to only...five girls,
Probabilty of being chosen for the Games by Age and that all of these kids were born at
B the same time.”

Not a probability mass function

Also duh? (P(you get chosen if you're the
only person) = 1)

You now know enough Python/ probability

to write a better simulation to model the
Reaping!!!!

Prob

, l | (game theory part of the article is good)

1=12yrs. old; 2 = 13yrs. old; 3 = 14yrs. old; 4 = 13yrs. old, 5 = 16yrs. old

https://www.wired.com/2012/04/probability-and-game-
theory-in-the-hunger-games/

Lisa Yan, CS109, 2020
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Ethics in Probability: Smoking and Cancer

Correlation does not imply causation
Does lung cancer cause smoking?

https://towardsdatascience.com/correlation-does-not-imply-
causation-92e4832a6713

“Is it possible then, that lung cancer — that is to say, the pre-cancerous
condition which must exist and is known to exist for years in those who are
going to show over lung cancer — is one of the causes of smoking cigarettes? I
don’t think it can be excluded.”

- Statistician R.A. Fisher

How, then, do we think about correlation and

Ca Usat| O nf‘) http://www.economics.soton.ac.uk/staff/al
drich/fisherguide/Docl.htm

Fisher’s Paper (1958): https://www.nature.com/articles/182596a0

A reference paper from Judea Pearl

: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2836213/
on causal inference:

Lisa Yan, CS109, 2020 Stanford University
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LIVE

Correlation




Cov(X,Y) = E[(X — E[XD(Y — E[Y])]

Covarying humans = E[XY] — E[X]E[Y]
What is the covariance of 7707
weight W and height H? 5 60 -
Cov(W,H) = E[WH] — E[W]E[H] = |
= 3355.83 — (62.75)(52.75) %40
= 45.77 (positive) T s 55 65 75 85
Weight W (kilograms)
What about weight (Ib) and =07
height (cm)? £ 1607 ¢ .,
T 140 - M *
Cov(2.20W, 2.54H) @00 AR
= E[2.20W - 2.54H] — E[2.20W]E[2.54H] T 1o * o | | |
_ 100 120 140 160 180
= 18752.38 — (138.05)(133.99) Weigh 7 (o
= 255.06 (positive)
ACovarianoe depends Sign of covariance (+/-) more
on units! meaningful than magnitude

Lisa Yan, C$109, 2020 Stanford University 52




Correlation

The correlation of two variables X and Y is:

Cov(X,Y) 2 v
P (X’ Y) = JXZ =\\//21r(()1(/)),
Ox Oy Y

Note: —1 < p(X,Y) <1
Correlation measures the linear relationship between X and Y

p(X,Y)=1 = Y = aX + b,where a = oy /oy
p(X,Y)=—-1 =Y =—aX+ b,wherea =oy/oy
p(X,Y)=0 = “uncorrelated” (absence of linear relationship)

Lisa Yan, CS109, 2020 Stanford University 53



The next slide has a question to go over by

Think yourself.

Post any clarifications here!

https://us.edstem.org/courses/667/discussion/93095

Think by yourself: 1 min
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. pX,Y) =1

. pX,Y)=-1
. pX,Y)=0

. Other

Correlation reps

OO >

What is the correlation coefficient p(X,Y)?

6 .
1- \\ 2 6 T T r 7
., ]
4l " ’
AN J
2|

Lisa Yan, CS109, 2020 Stanford University 55




. pX,Y) =1

. pX,Y)=-1
. pX,Y)=0

. Other

Correlation reps

OO >

What is the correlation coefficient p(X,Y)?

6 -
1- \\ 2 6 T r 7
., -,
4 - 7’
AN J

\ B.p(X,Y) = -1 ) / A p(X,Y) =1
Y = —aX + b 3' Y =aX +b

> a>0 1~ a>0

C.p(x,Y) =0 ST e =0
AT suncorrelated” | EEoTEED Y = X?

.
P ST R Y
e’ - -
18 one - tag™
€ te b At
o' oo 3o
Y o 8.
2 K

L DT

P .

X and Y can be nonlinearly related even if p(X,Y) = 0.

Lisa Yan, CS109, 2020 Stanford University 56




CS103: Conditional statements

Statement P — Q: Independence = No correlation
Contrapositive =Q — —P: Correlation = Dependence (logically
equivalent)
Inverse =P — —0Q: Dependence = Correlation? X (notalways)
Y = X2 L 7]
p(X,Y) =0
Converse Q — P: No correlation = Independence? X (not always)
Slide 46

“Correlation does not imply causation”

Lisa Yan, C$109, 2020 Stanford University 57



Spurious Correlations

p(X,Y) is used a lot to statistically quantify the relationship b/t X and Y.

Correlation:
0.947091

2000 201 2002 2003 2004 2005 2006 2007 2008 2009

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

Spurious correlations
Lisa Yan, CS109, 2020 Stanford University 59



https://www.tylervigen.com/spurious-correlations

Spurious Correlations

p(X,Y) is used a lot to statistically quantify the relationship b/t X and Y.

Correlation: Per capita cheese consumption

correlates with

0.947091 Number of people who died by becoming tangled in their bedsheets

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
33lbs . 200 deaths
3 ¢ ~ 7
— =8
y L
= -
£ 31 5lbs 600 deaths @
) ° - —
L =
w 1
. pics
L 5
5 30lbs 400 deaths 5
L
28.5lbs 200 deaths
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

-8 Bedsheet tanglings -+ Cheese consumed SDUFiOUS correlations

Lisa Yan, CS109, 2020 Stanford University 60



https://www.tylervigen.com/spurious-correlations

Divorce vs. Butter

Divorce rate Per capita

in Maine per . A consumption of

1,000 people Correlation: 99% margarine (Ibs)
5.25 10

N s

4.25

\ 4
4.00
2 |
3.75 -
3.50 0
2000 01 02 03 04 Do 00 07 08 09
Source: US Census, USDA, tylervigen.com SPL

http://www.bbc.com/news/magazine-27537142

Lisa Yan, C$109, 2020 Stanford University
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Arcade revenue vs. CS PhDs

Total revenue generated by arcades
correlates with

Correlation: Computer science doctorates awarded in the US
0.947091

206000 2001 201k2 ELIE] 004 20005 206 2007 2H0E b L
%2 billion 2000 degrees
~
g
%1.75 ballion ._E
2 1500 degrees
= =
: )
o 515 billion g
= i
i =N
- 1000 degrees 5,
=
%1.25 ballion 2]
— . %
L2
%1 billion 500 degrees
2000 20611 200k 2003 04 2005 2006 2007 2008 209
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Spurious correlations
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https://www.tylervigen.com/spurious-correlations
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Expectation of product of independent RVs

.|fX and Y are E[XY] = E[X]E[Y]
ndependent, then — glg(x)h(Y)] = E[g(X)]E[A(Y)]
oot E[CORMNT = ) ) 9GOy e s
= z 2 gO)h(Y)px(x)py () X and Y are independent
(h(y)py(y) Z g(x)px(x)> ferms dependent on y
> ~ are constant in integral of x

( g(x)px(x)> (Z h(y)py(y)> Summations separate
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Variance of Sums of Variables

Var Zn:Xi ZVar(X)+ZZ Z Cov (X;, X;)
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var(Yx.) =COV(zxi,zxi) =3 cou(x )
i=1 i=1 i=1 i=1j=1
Symmetry of covariance
z Var(X ) + Cov (Xl' J Cov(X,X) = Var(X)
=1 j= 1]¢l
n
z Var(X;) + 2 Cov (X,;,Xj) Adjust summation bounds
i=1 i=1 j=i+1
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