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Discrete conditional distributions
Recall the definition of the conditional probability of event 𝐸 given event 𝐹:

𝑃 𝐸 𝐹 =
𝑃 𝐸𝐹
𝑃 𝐹

For discrete random variables 𝑋 and 𝑌, the conditional PMF of 𝑋 given 𝑌 is

𝑃 𝑋 = 𝑥 𝑌 = 𝑦 =  
𝑃 𝑋 = 𝑥, 𝑌 = 𝑦

𝑃 𝑌 = 𝑦

𝑝!|# 𝑥|𝑦 =
𝑝!,# 𝑥, 𝑦

𝑝# 𝑦

4

Different notation,
same idea:
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Discrete probabilities of CS109
Each student responds with:
Year 𝑌
• 1: Frosh/Soph
• 2: Jr/Sr
• 3: Co-term/grad/NDO

Timezone 𝑇 (12pm California time in 
my timezone is):
• −1: AM
• 0: noon
• 1: PM

5

𝑃 𝑌 = 3, 𝑇 = 1

Joint PMFs sum to 1.

𝑌 = 1 𝑌 = 2 𝑌 = 3
𝑇 = −1 .06 .01 .01
𝑇 = 0 .29 .14 .09
𝑇 = 1 .30 .08 .02

Joint PMF
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Discrete probabilities of CS109
The below are conditional probability tables
for conditional PMFs
(A) 𝑃 𝑌 = 𝑦|𝑇 = 𝑡 and (B) 𝑃 𝑇 = 𝑡|𝑌 = 𝑦 .
1. Which is which?
2. What’s the missing probability?

6

𝑌 = 1 𝑌 = 2 𝑌 = 3
𝑇 = −1 .06 .01 .01
𝑇 = 0 .29 .14 .09
𝑇 = 1 .30 .08 .02

Joint PMF

🤔

𝑌 = 1 𝑌 = 2 𝑌 = 3
𝑇 = −1 .09 .04 .08
𝑇 = 0 .45 .61 .75
𝑇 = 1 .46 .35 .17

𝑌 = 1 𝑌 = 2 𝑌 = 3
𝑇 = −1 .75 .125 ?
𝑇 = 0 .56 .27 .17
𝑇 = 1 .75 .2 .05
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Discrete probabilities of CS109
The below are conditional probability tables
for conditional PMFs
(A) 𝑃 𝑌 = 𝑦|𝑇 = 𝑡 and (B) 𝑃 𝑇 = 𝑡|𝑌 = 𝑦 .
1. Which is which?
2. What’s the missing probability?
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𝑌 = 1 𝑌 = 2 𝑌 = 3
𝑇 = −1 .06 .01 .01
𝑇 = 0 .29 .14 .09
𝑇 = 1 .30 .08 .02

𝑌 = 1 𝑌 = 2 𝑌 = 3
𝑇 = −1 .09 .04 .08
𝑇 = 0 .45 .61 .75
𝑇 = 1 .46 .35 .17

Joint PMF

𝑌 = 1 𝑌 = 2 𝑌 = 3
𝑇 = −1 .75 .125 ?
𝑇 = 0 .56 .27 .17
𝑇 = 1 .75 .2 .05

(B) 𝑃 𝑇 = 𝑡|𝑌 = 𝑦 (A) 𝑃 𝑌 = 𝑦|𝑇 = 𝑡

.30/(.06+.29+.30)

1-.75-.125
.125

Conditional PMFs also sum to 1 conditioned on 
different events!
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Extended to Amazon

8

P(bought item 𝑋 | bought item 𝑌)
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Quick check
Number or function?

1. 𝑃 𝑋 = 2 𝑌 = 5

2. 𝑃 𝑋 = 𝑥 𝑌 = 5

3. 𝑃 𝑋 = 2 𝑌 = 𝑦

4. 𝑃 𝑋 = 𝑥 𝑌 = 𝑦

9

𝑃 𝑋 = 𝑥 𝑌 = 𝑦 =  
𝑃 𝑋 = 𝑥, 𝑌 = 𝑦

𝑃 𝑌 = 𝑦

🤔

True or false?

5.

6.

7.

8.

) ) 𝑃 𝑋 = 𝑥|𝑌 = 𝑦
!"

= 1

) 𝑃 𝑋 = 2|𝑌 = 𝑦
!

= 1

) 𝑃 𝑋 = 𝑥|𝑌 = 5
"

= 1

) ) 𝑃 𝑋 = 𝑥|𝑌 = 𝑦 𝑃 𝑌 = 𝑦
!"

= 1
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Quick check
Number or function?

1. 𝑃 𝑋 = 2 𝑌 = 5

2. 𝑃 𝑋 = 𝑥 𝑌 = 5

3. 𝑃 𝑋 = 2 𝑌 = 𝑦

4. 𝑃 𝑋 = 𝑥 𝑌 = 𝑦
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2-D function

1-D function

1-D function

number
true

false

false

𝑃 𝑋 = 𝑥 𝑌 = 𝑦 =  
𝑃 𝑋 = 𝑥, 𝑌 = 𝑦

𝑃 𝑌 = 𝑦

True or false?

5.

6.

7.

8.

) ) 𝑃 𝑋 = 𝑥|𝑌 = 𝑦
!"

= 1

) 𝑃 𝑋 = 2|𝑌 = 𝑦
!

= 1

) 𝑃 𝑋 = 𝑥|𝑌 = 5
"

= 1

) ) 𝑃 𝑋 = 𝑥|𝑌 = 𝑦 𝑃 𝑌 = 𝑦
!"

= 1 true
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Web server requests (Lecture: Independent RVs)
Let 𝑁 = # of requests to a web server per day. Suppose 𝑁~Poi 𝜆 .
• Each request independently comes from a human (prob. 𝑝), or bot (1 − 𝑝).
• Let 𝑋 be # of human requests/day, and 𝑌 be # of bot requests/day.
Are 𝑋 and 𝑌 independent? What are their marginal PMFs?

Our approach:
• Yes, independent Poisson random variables:

𝑋~Poi 𝜆𝑝 , 𝑌~Poi 𝜆 1 − 𝑝
• Two big parts of our derivation:
◦ 𝑃 𝑋 = 𝑛, 𝑌 = 𝑚 = 𝑃 𝑋 = 𝑛|𝑁 = 𝑛 + 𝑚 𝑃 𝑁 = 𝑛
◦ 𝑋|𝑁 = 𝑛 + 𝑚~Bin 𝑛 + 𝑚, 𝑝

12

Review

A conditional distribution, 𝑋|𝑁!
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Web server requests, redux
Consider the number of requests to a web server per day.
• Let 𝑋 = # requests from humans/day. 𝑋~Poi 𝜆#
• Let 𝑌 = # requests from bots/day. 𝑌~Poi 𝜆$
• 𝑋 and 𝑌 are independent. → 𝑋 + 𝑌~Poi 𝜆# + 𝜆$
What is 𝑃 𝑋 = 𝑘|𝑋 + 𝑌 = 𝑛 ?

𝑃 𝑋 = 𝑘|𝑋 + 𝑌 = 𝑛 =
𝑃 𝑋 = 𝑘, 𝑌 = 𝑛 − 𝑘

𝑃 𝑋 + 𝑌 = 𝑛 =
𝑃 𝑋 = 𝑘 𝑃 𝑌 = 𝑛 − 𝑘

𝑃 𝑋 + 𝑌 = 𝑛                                

=
𝑒%&!𝜆#'

𝑘! ⋅
𝑒%&"𝜆$(%'

𝑛 − 𝑘 ! ⋅
𝑛!

𝑒% &!)&" 𝜆# + 𝜆$ ( =
𝑛!

𝑘! 𝑛 − 𝑘 ! ⋅
𝜆#'𝜆$(%'

𝜆# + 𝜆$ (

= 𝑛
𝑘

𝜆#
𝜆# + 𝜆$

' 𝜆$
𝜆# + 𝜆$

(%'
                                                                        

13

(𝑋,𝑌 indep.)

𝑋|𝑋 + 𝑌~Bin 𝑋 + 𝑌,
𝜆#

𝜆# + 𝜆$

(Note: this is a different problem 
setup from the previous slide)
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Conditional expectation
Recall the the conditional PMF of 𝑋 given 𝑌 = 𝑦: 

𝑝!|# 𝑥|𝑦 = 𝑃 𝑋 = 𝑥|𝑌 = 𝑦 =
𝑝!,# 𝑥, 𝑦
𝑝# 𝑦

The conditional expectation of 𝑋 given 𝑌 = 𝑦 is

𝐸 𝑋|𝑌 = 𝑦 = = 𝑥𝑃 𝑋 = 𝑥|𝑌 = 𝑦
'

= = 𝑥𝑝!|# 𝑥|𝑦
'

15
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It’s been so long, our dice friends
• Roll two 6-sided dice.
• Let roll 1 be 𝐷(, roll 2 be 𝐷). 
• Let 𝑆 = value of 𝐷( + 𝐷).

1. What is 𝐸 𝑆|𝐷) = 6 ?

16

𝐸 𝑋|𝑌 = 𝑦 =0𝑥𝑝!|# 𝑥|𝑦
$

𝐸 𝑆|𝐷$  = 6 = ) 𝑥𝑃 𝑆 = 𝑥|𝐷$ = 6
"

=
1
6 7 + 8 + 9 + 10 + 11 + 12

Intuitively: 6 + 𝐸 𝐷# = 6 + 3.5 = 9.5

=
57
6

= 9.5 

Let’s prove this!
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Properties of conditional expectation

17

1. LOTUS:

𝐸 𝑔 𝑋 |𝑌 = 𝑦 = ) 𝑔 𝑥 𝑝3|4(𝑥|𝑦)
"

2. Linearity of conditional expectation:

𝐸 ) 𝑋5
(

56#

| 𝑌 = 𝑦 = ) 𝐸 𝑋5|𝑌 = 𝑦
(

56#

3. Law of total expectation (next time)
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It’s been so long, our dice friends
• Roll two 6-sided dice.
• Let roll 1 be 𝐷(, roll 2 be 𝐷). 
• Let 𝑆 = value of 𝐷( + 𝐷).

1. What is 𝐸 𝑆|𝐷) = 6 ?
2. What is 𝐸 𝑆|𝐷) ?

A. A function of 𝑆
B. A function of 𝐷)
C. A number

3. Give an expression
for 𝐸 𝑆|𝐷) .

18

𝐸 𝑋|𝑌 = 𝑦 =0𝑥𝑝!|# 𝑥|𝑦
$

57
6

= 9.5 

🤔
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It’s been so long, our dice friends
• Roll two 6-sided dice.
• Let roll 1 be 𝐷(, roll 2 be 𝐷). 
• Let 𝑆 = value of 𝐷( + 𝐷).

1. What is 𝐸 𝑆|𝐷) = 6 ?
2. What is 𝐸 𝑆|𝐷) ?

A. A function of 𝑆
B. A function of 𝐷)
C. A number

3. Give an expression
for 𝐸 𝑆|𝐷) .

19

𝐸 𝑋|𝑌 = 𝑦 =0𝑥𝑝!|# 𝑥|𝑦
$

57
6

= 9.5 

𝐸 𝑆|𝐷$ = 𝑑$ = 𝐸 𝐷# + 𝑑$|𝐷$ = 𝑑$

= ) 𝑑# + 𝑑$ 𝑃 𝐷# = 𝑑#|𝐷$ = 𝑑$
7!

= ) 𝑑#𝑃 𝐷# = 𝑑#
7!

+ 𝑑$ ) 𝑃 𝐷# = 𝑑#
7!

= 𝐸 𝐷# + 𝑑$ = 3.5 + 𝑑$ 𝐸 𝑆|𝐷) = 3.5 + 𝐷)

(𝐷% = 𝑑%, 𝐷& = 𝑑&
independent 

events)
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Properties of conditional expectation

21

1. LOTUS:

𝐸 𝑔 𝑋 |𝑌 = 𝑦 = ) 𝑔 𝑥 𝑝3|4(𝑥|𝑦)
"

2. Linearity of conditional expectation:

𝐸 ) 𝑋5
(

56#

| 𝑌 = 𝑦 = ) 𝐸 𝑋5|𝑌 = 𝑦
(

56#

3. Law of total expectation:

𝐸 𝑋 = 𝐸 𝐸 𝑋|𝑌 what?!
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Proof of Law of Total Expectation

22

𝐸 𝑋 = 𝐸 𝐸 𝑋|𝑌

𝐸 𝐸 𝑋|𝑌 = 𝐸 𝑔 𝑌 = ) 𝑃 𝑌 = 𝑦 𝐸 𝑋|𝑌 = 𝑦
!

(LOTUS, 𝑔 𝑌 = 𝐸 𝑋|𝑌 )

= ) 𝑃 𝑌 = 𝑦 ) 𝑥𝑃 𝑋 = 𝑥|𝑌 = 𝑦
"!

(def of 
conditional 

expectation)

= ) ) 𝑥𝑃 𝑋 = 𝑥|𝑌 = 𝑦 𝑃 𝑌 = 𝑦
"!

= ) ) 𝑥𝑃 𝑋 = 𝑥, 𝑌 = 𝑦
"!

(chain rule)

= ) ) 𝑥𝑃 𝑋 = 𝑥, 𝑌 = 𝑦
!"

= ) 𝑥 ) 𝑃 𝑋 = 𝑥, 𝑌 = 𝑦
!"

(switch order of 
summations)

= ) 𝑥𝑃 𝑋 = 𝑥
"

(marginalization)

= 𝐸 𝑋 …what?
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Another way to compute 𝐸 𝑋

If we only have a conditional PMF of 𝑋 on some discrete variable 𝑌,
we can compute 𝐸 𝑋 as follows:
1. Compute expectation of 𝑋 given some value of 𝑌 = 𝑦
2. Repeat step 1 for all values of 𝑌
3. Compute a weighted sum (where weights are 𝑃 𝑌 = 𝑦 )

23

𝐸 𝑋 = 𝐸 𝐸 𝑋|𝑌

𝐸 𝐸 𝑋|𝑌 = ) 𝑃 𝑌 = 𝑦 𝐸 𝑋|𝑌 = 𝑦
!

= 𝐸 𝑋

Useful for analyzing recursive code!!

def recurse():
if (random.random() < 0.5):

return 3
else: return (2 + recurse())
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Quick slide reference

25

3 General Inference: intro 15a_inference

15 Bayesian Networks 15b_bayes_nets

22 Inference (I): Math 15c_inference_math

29 Inference (II): Rejection sampling LIVE

69 Inference (III): Gibbs sampling (extra) (no video)
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15a_inference
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Inference

27
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Inference

28
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Inference

29

Flu

Cold

Cancer

Under-
grad

Chest 
pain

TiredSore
Throat

Fever

Nausea

General inference question:

Given the values of some random
variables, what is the conditional
distribution of some other random
variables?
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Inference

30

Flu

Cold

Cancer

Under-
grad

Chest 
pain

TiredSore
Throat

Fever

Nausea

One inference question:

𝑃 𝐹 = 1|𝑁 = 1, 𝑇 = 1

=
𝑃 𝐹 = 1,𝑁 = 1, 𝑇 = 1

𝑃 𝑁 = 1, 𝑇 = 1
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Inference

31

Flu

Cold

Cancer

Under-
grad

Chest 
pain

TiredSore
Throat

Fever

Nausea

Another inference question:

𝑃 𝐶% = 1, 𝑈 = 1|𝑆 = 0, 𝐹& = 0

=
𝑃 𝐶- = 1, 𝑈 = 1, 𝑆 = 0, 𝐹. = 0

𝑃 𝑆 = 0, 𝐹. = 0
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Inference
If we knew the joint distribution,
we can answer all probabilistic
inference questions.

What is the size of the joint 
probability table? 
A. 2/0( entries
B. 𝑁) entries
C. 2/ entries
D. None/other/don’t know

Flu

Cold

Cancer

Under-
grad

Chest 
pain

TiredSore
Throat

Fever

Nausea 𝑁 = 9
all binary RVs

🤔
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Inference
If we knew the joint distribution,
we can answer all probabilistic
inference questions.

What is the size of the joint 
probability table? 
A. 2/0( entries
B. 𝑁) entries
C. 2/ entries
D. None/other/don’t know

Flu

Cold

Cancer

Under-
grad

Chest 
pain

TiredSore
Throat

Fever

Nausea 𝑁 = 9
all binary RVs

Naively specifying a joint distribution 
is often intractable.



Lisa Yan, CS109, 2020

N can be large…

34
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Conditional Probability Independence

Conditionally Independent RVs

35

Conditional Distributions Independent RVs
Conditional Probability Independence
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Conditionally Independent RVs
Recall that two events 𝐴 and 𝐵 are
conditionally independent given 𝐸 if:

 𝑛 discrete random variables 𝑋(, 𝑋), … , 𝑋1 are called conditionally 
independent given 𝑌 if: 

for all 𝑥(, 𝑥), … , 𝑥1 , 𝑦:

𝑃 𝑋( = 𝑥(, 𝑋) = 𝑥), … , 𝑋1 = 𝑥1|𝑌 = 𝑦 = I 𝑃 𝑋2 = 𝑥2|𝑌 = 𝑦
1

23(

This implies the following (cool to remember for later):

log 𝑃 𝑋( = 𝑥(, 𝑋) = 𝑥), … , 𝑋1 = 𝑥1|𝑌 = 𝑦 = = log 𝑃 𝑋2 = 𝑥2|𝑌 = 𝑦
1

23(
36

𝑃 𝐴𝐵|𝐸 = 𝑃 𝐴|𝐸 𝑃(𝐵|𝐸)
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Lec. 12: Independence of multiple random variables
Recall independence of
𝑛 events 𝐸(, 𝐸), … , 𝐸1:

We have independence of 𝑛 discrete random variables 𝑋(, 𝑋), … , 𝑋1 if
for all 𝑥(, 𝑥), … , 𝑥1:

𝑃 𝑋( = 𝑥(, 𝑋) = 𝑥), … , 𝑋1 = 𝑥1 = I 𝑃 𝑋2 = 𝑥2

1

23(

37

for 𝑟 = 1, … , 𝑛:
for every subset 𝐸#, 𝐸$, … , 𝐸:: 

𝑃 𝐸#, 𝐸$, … , 𝐸: = 𝑃 𝐸# 𝑃 𝐸$ ⋯ 𝑃 𝐸:

Errata (edited May 3): Removed the independent RV requirement for 
all subsets of size 𝑟 = 1,… , 𝑛. Do you see why this requirement is 
unnecessary?
(Hint: independence of RVs implies independence of all events)

Errata



Bayesian 
Networks

38

15b_bayes_nets



Lisa Yan, CS109, 2020

A simpler WebMD

Great! Just specify 24 = 16 joint 
probabilities…?

 𝑃 𝐹56 = 𝑎, 𝐹.7 = 𝑏, 𝑈 = 𝑐, 𝑇 = 𝑑

What would a Stanford flu expert do?

39

Flu Under-
grad

TiredFever

Describe the joint distribution using 
causality!!!
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Constructing a Bayesian Network
What would a Stanford flu expert do?
1. Describe the joint distribution using 

causality.

2. Assume   
conditional 
independence.

40

Flu Under-
grad

TiredFever
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Constructing a Bayesian Network
In a Bayesian Network,
Each random variable is 
conditionally independent of its 
non-descendants, given its parents. 

• Node: random variable
• Directed edge: conditional dependency

Examples:
• 𝑃 𝐹)* = 1|𝑇 = 0, 𝐹+, = 1 = 𝑃 𝐹)* = 1|𝐹+, = 1
• 𝑃 𝐹+, = 1,𝑈 = 0 = 𝑃 𝐹+, = 1 𝑃 𝑈 = 0

41

Flu Under-
grad

TiredFever
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Constructing a Bayesian Network
What would a Stanford flu expert do?
1. Describe the joint distribution using 

causality.
2. Assume conditional independence.
3. Provide 𝑃 values|parents for each 

random variable

What conditional probabilities
should our expert specify?

42

Flu Under-
grad

TiredFever

𝑃 𝐹!" = 1 = 0.1

𝑃 𝐹#$ = 1|𝐹!" = 1 = 0.9
𝑃 𝐹#$ = 1|𝐹!" = 0 = 0.05

𝑃 𝑈 = 1 = 0.8

🤔

✅
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Constructing a Bayesian Network
What would a Stanford flu expert do?
1. Describe the joint distribution using 

causality.
2. Assume conditional independence.
3. Provide 𝑃 values|parents for each 

random variable

What conditional probabilities
should our expert specify?

43

Flu Under-
grad

TiredFever

𝑃 𝐹!" = 1 = 0.1

𝑃 𝐹#$ = 1|𝐹!" = 1 = 0.9
𝑃 𝐹#$ = 1|𝐹!" = 0 = 0.05

𝑃 𝑈 = 1 = 0.8

𝑃 𝑇 = 1|𝐹'( = 0, 𝑈 = 0
𝑃 𝑇 = 1|𝐹'( = 0, 𝑈 = 1
𝑃 𝑇 = 1|𝐹'( = 1, 𝑈 = 0
𝑃 𝑇 = 1|𝐹'( = 1, 𝑈 = 1
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What would a CS109 student do?
1. Populate a Bayesian network by 

asking a Stanford flu expert
or

by using reasonable assumptions

2. Answer inference questions

Using a Bayes Net

44

Our focus
today

Flu Under-
grad

TiredFever

𝑃 𝐹!" = 1 = 0.1

𝑃 𝐹#$ = 1|𝐹!" = 1 = 0.9
𝑃 𝐹#$ = 1|𝐹!" = 0 = 0.05

𝑃 𝑈 = 1 = 0.8

𝑃 𝑇 = 1|𝐹!" = 0, 𝑈 = 0 = 0.1
𝑃 𝑇 = 1|𝐹!" = 0, 𝑈 = 1 = 0.8
𝑃 𝑇 = 1|𝐹!" = 1, 𝑈 = 0 = 0.9
 𝑃 𝑇 = 1|𝐹!" = 1, 𝑈 = 1 = 1.0



Inference (I): 
Math

45

15c_inference_math
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Bayes Nets: Conditional independence
In a Bayesian Network,
Each random variable is 
conditionally independent of its 
non-descendants, given its parents. 

• Node: random variable
• Directed edge: conditional dependency

46

Flu Under-
grad

TiredFever

Review
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Inference via math

47

Flu Under-
grad

TiredFever

𝑃 𝐹!" = 1 = 0.1 𝑃 𝑈 = 1 = 0.8

𝑃 𝐹#$ = 1|𝐹!" = 1 = 0.9
𝑃 𝐹#$ = 1|𝐹!" = 0 = 0.05

𝑃 𝑇 = 1|𝐹!" = 0, 𝑈 = 0 = 0.1
𝑃 𝑇 = 1|𝐹!" = 0, 𝑈 = 1 = 0.8
𝑃 𝑇 = 1|𝐹!" = 1, 𝑈 = 0 = 0.9
 𝑃 𝑇 = 1|𝐹!" = 1, 𝑈 = 1 = 1.0

1. 𝑃 𝐹56 = 0, 𝑈 = 1, 𝐹.7 = 0, 𝑇 = 1 ?

Compute joint probabilities
using chain rule.
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Inference via math

48

Flu Under-
grad

TiredFever

𝑃 𝑈 = 1 = 0.8

𝑃 𝐹#$ = 1|𝐹!" = 1 = 0.9
𝑃 𝐹#$ = 1|𝐹!" = 0 = 0.05

𝑃 𝑇 = 1|𝐹!" = 0, 𝑈 = 0 = 0.1
𝑃 𝑇 = 1|𝐹!" = 0, 𝑈 = 1 = 0.8
𝑃 𝑇 = 1|𝐹!" = 1, 𝑈 = 0 = 0.9
 𝑃 𝑇 = 1|𝐹!" = 1, 𝑈 = 1 = 1.0

1. Compute joint probabilities

2. Definition of conditional probability

𝑃 𝐹EF = 1, 𝐹GH = 0, 𝑈 = 0, 𝑇 = 1
𝑃 𝐹EF = 0, 𝐹GH = 0, 𝑈 = 0, 𝑇 = 1

𝑃 𝐹EF = 1, 𝐹GH = 0, 𝑈 = 0, 𝑇 = 1
∑ 𝑃 𝐹EF = 𝑥, 𝐹GH = 0, 𝑈 = 0, 𝑇 = 1  "

2. 𝑃 𝐹56 = 1|𝐹.7 = 0, 𝑈 = 0, 𝑇 = 1 ?
𝑃 𝐹!" = 1 = 0.1

= 0.095
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Inference via math

3. 𝑃 𝐹56 = 1|𝑈 = 1, 𝑇 = 1 ?

49

Flu Under-
grad

TiredFever

𝑃 𝐹!" = 1 = 0.1 𝑃 𝑈 = 1 = 0.8

𝑃 𝐹#$ = 1|𝐹!" = 1 = 0.9
𝑃 𝐹#$ = 1|𝐹!" = 0 = 0.05

𝑃 𝑇 = 1|𝐹!" = 0, 𝑈 = 0 = 0.1
𝑃 𝑇 = 1|𝐹!" = 0, 𝑈 = 1 = 0.8
𝑃 𝑇 = 1|𝐹!" = 1, 𝑈 = 0 = 0.9
 𝑃 𝑇 = 1|𝐹!" = 1, 𝑈 = 1 = 1.0 🤔
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Inference via math

3. 𝑃 𝐹56 = 1|𝑈 = 1, 𝑇 = 1 ?

50

Flu Under-
grad

TiredFever

𝑃 𝐹!" = 1 = 0.1 𝑃 𝑈 = 1 = 0.8

𝑃 𝐹#$ = 1|𝐹!" = 1 = 0.9
𝑃 𝐹#$ = 1|𝐹!" = 0 = 0.05

𝑃 𝑇 = 1|𝐹!" = 0, 𝑈 = 0 = 0.1
𝑃 𝑇 = 1|𝐹!" = 0, 𝑈 = 1 = 0.8
𝑃 𝑇 = 1|𝐹!" = 1, 𝑈 = 0 = 0.9
 𝑃 𝑇 = 1|𝐹!" = 1, 𝑈 = 1 = 1.0

1. Compute joint probabilities

2. Definition of conditional probability

𝑃 𝐹EF = 1, 𝑈 = 1, 𝐹GH = 1, 𝑇 = 1
…

𝑃 𝐹EF = 0, 𝑈 = 1, 𝐹GH = 0, 𝑇 = 1 ?

∑ 𝑃 𝐹EF = 1, 𝑈 = 1, 𝐹GH = 𝑦, 𝑇 = 1!
∑ ∑ 𝑃 𝐹EF = 𝑥, 𝑈 = 1, 𝐹GH = 𝑦, 𝑇 = 1!  "

= 0.122
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Inference via math

51

Flu Under-
grad

TiredFever

𝑃 𝐹!" = 1 = 0.1 𝑃 𝑈 = 1 = 0.8

𝑃 𝐹#$ = 1|𝐹!" = 1 = 0.9
𝑃 𝐹#$ = 1|𝐹!" = 0 = 0.05

𝑃 𝑇 = 1|𝐹!" = 0, 𝑈 = 0 = 0.1
𝑃 𝑇 = 1|𝐹!" = 0, 𝑈 = 1 = 0.8
𝑃 𝑇 = 1|𝐹!" = 1, 𝑈 = 0 = 0.9
 𝑃 𝑇 = 1|𝐹!" = 1, 𝑈 = 1 = 1.0

Solving inference questions 
precisely is possible, but 
sometimes tedious.

Can we use sampling
to do approximate 
inference?

Yes.



(live)
Conditional Expectation 
+ General Inference
Lisa Yan
July 22, 2020

52
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Conditional Expectation

53

Conditional Distributions Expectation



Breakout 
Rooms

Check out the question on the next slide 
(Slide 28). Post any clarifications here!

https://us.edstem.org/courses/667/discussion/93799

Breakout rooms: 4 min. Introduce yourself!

54

🤔



Lisa Yan, CS109, 2020

Quick check
1. 𝐸 𝑋

2. 𝐸 𝑋, 𝑌

3. 𝐸 𝑋 + 𝑌

4. 𝐸 𝑋|𝑌

5. 𝐸 𝑋|𝑌 = 6

6. 𝐸 𝑋 = 1

55

A. value
B. random variable, function of 𝑌
C. random variable, function of 𝑋
D. function of 𝑋 and 𝑌
E. doesn’t make sense

🤔
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Quick check
1. 𝐸 𝑋

2. 𝐸 𝑋, 𝑌

3. 𝐸 𝑋 + 𝑌

4. 𝐸 𝑋|𝑌

5. 𝐸 𝑋|𝑌 = 6

6. 𝐸 𝑋 = 1

56

A. value
B. random variable, function of 𝑌
C. random variable, function of 𝑋
D. function of 𝑋 and 𝑌
E. doesn’t make sense
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Conditional Expectation
The conditional expectation of 𝑋 given 𝑌 = 𝑦 is

𝐸 𝑋|𝑌 = 𝑦 = = 𝑥𝑃 𝑋 = 𝑥|𝑌 = 𝑦
'

= = 𝑥𝑝!|# 𝑥|𝑦
'

• Interpret: 𝐸 𝑋|𝑌 is a random variable that takes on the value
𝐸 𝑋|𝑌 = 𝑦 with probability 𝑃 𝑌 = 𝑦

The Law of Total Expectation states that

𝐸 𝐸 𝑋|𝑌 = = 𝐸 𝑋|𝑌 = 𝑦 𝑃 𝑌 = 𝑦
B

= 𝐸 𝑋

• Apply: 𝐸 𝑋  can be calculated as the expectation of 𝐸 𝑋|𝑌

57

Review



Think Slide 34 has a question to go over by 
yourself.

Post any clarifications here!
https://us.edstem.org/courses/667/discussion/93799

Think by yourself: 2 min

58

🤔(by yourself)
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Analyzing recursive code

59

def recurse():
# equally likely values 1,2,3
x = np.random.choice([1,2,3])
if (x == 1): return 3
elif (x == 2): return (5 + recurse())
else: return (7 + recurse())

Let 𝑌 = return value of recurse().
What is 𝐸 𝑌 ?

𝐸 𝑋 = 𝐸 𝐸 𝑋|𝑌 =0𝐸 𝑋|𝑌 = 𝑦 𝑃 𝑌 = 𝑦
)
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Analyzing recursive code

60

def recurse():
# equally likely values 1,2,3
x = np.random.choice([1,2,3])
if (x == 1): return 3
elif (x == 2): return (5 + recurse())
else: return (7 + recurse())

Let 𝑌 = return value of recurse().
What is 𝐸 𝑌 ?

𝐸 𝑋 = 𝐸 𝐸 𝑋|𝑌 =0𝐸 𝑋|𝑌 = 𝑦 𝑃 𝑌 = 𝑦
)

When 𝑋 = 1, return 3.
𝐸 𝑌|𝑋 = 1 = 3

𝐸 𝑌 = 𝐸 𝑌|𝑋 = 1 𝑃 𝑋 = 1 +  𝐸 𝑌|𝑋 = 2 𝑃 𝑋 = 2 +  𝐸 𝑌|𝑋 = 3 𝑃 𝑋 = 3
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🤔
61

Analyzing recursive code

def recurse():
# equally likely values 1,2,3
x = np.random.choice([1,2,3])
if (x == 1): return 3
elif (x == 2): return (5 + recurse())
else: return (7 + recurse())

Let 𝑌 = return value of recurse().
What is 𝐸 𝑌 ?

𝐸 𝑋 = 𝐸 𝐸 𝑋|𝑌 =0𝐸 𝑋|𝑌 = 𝑦 𝑃 𝑌 = 𝑦
)

If 𝑌 discrete

What is 𝐸 𝑌|𝑋 = 2 ?
A. 𝐸 5 + 𝑌
B. 𝐸 𝑌 + 5 = 5 + 𝐸 𝑌
C. 5 + 𝐸 𝑌|𝑋 = 2

𝐸 𝑌|𝑋 = 1 = 3

𝐸 𝑌 = 𝐸 𝑌|𝑋 = 1 𝑃 𝑋 = 1 +  𝐸 𝑌|𝑋 = 2 𝑃 𝑋 = 2 +  𝐸 𝑌|𝑋 = 3 𝑃 𝑋 = 3

(by yourself)
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Analyzing recursive code

62

def recurse():
# equally likely values 1,2,3
x = np.random.choice([1,2,3])
if (x == 1): return 3
elif (x == 2): return (5 + recurse())
else: return (7 + recurse())

Let 𝑌 = return value of recurse().
What is 𝐸 𝑌 ?

𝐸 𝑋 = 𝐸 𝐸 𝑋|𝑌 =0𝐸 𝑋|𝑌 = 𝑦 𝑃 𝑌 = 𝑦
)

If 𝑌 discrete

When 𝑋 = 2, return 5 +
a future return value of recurse().

What is 𝐸 𝑌|𝑋 = 2 ?
A. 𝐸 5 + 𝑌
B. 𝐸 𝑌 + 5 = 5 + 𝐸 𝑌
C. 5 + 𝐸 𝑌|𝑋 = 2

𝐸 𝑌|𝑋 = 1 = 3

𝐸 𝑌 = 𝐸 𝑌|𝑋 = 1 𝑃 𝑋 = 1 +  𝐸 𝑌|𝑋 = 2 𝑃 𝑋 = 2 +  𝐸 𝑌|𝑋 = 3 𝑃 𝑋 = 3
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Analyzing recursive code

63

def recurse():
# equally likely values 1,2,3
x = np.random.choice([1,2,3])
if (x == 1): return 3
elif (x == 2): return (5 + recurse())
else: return (7 + recurse())

Let 𝑌 = return value of recurse().
What is 𝐸 𝑌 ?

𝐸 𝑋 = 𝐸 𝐸 𝑋|𝑌 =0𝐸 𝑋|𝑌 = 𝑦 𝑃 𝑌 = 𝑦
)

If 𝑌 discrete

𝐸 𝑌|𝑋 = 1 = 3 𝐸 𝑌|𝑋 = 2 = 𝐸 5 + 𝑌 When 𝑋 = 3, return 
7 + a future return value 
of recurse().

𝐸 𝑌|𝑋 = 3 = 𝐸 7 + 𝑌

𝐸 𝑌 = 𝐸 𝑌|𝑋 = 1 𝑃 𝑋 = 1 +  𝐸 𝑌|𝑋 = 2 𝑃 𝑋 = 2 +  𝐸 𝑌|𝑋 = 3 𝑃 𝑋 = 3
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Analyzing recursive code

64

def recurse():
# equally likely values 1,2,3
x = np.random.choice([1,2,3])
if (x == 1): return 3
elif (x == 2): return (5 + recurse())
else: return (7 + recurse())

Let 𝑌 = return value of recurse().
What is 𝐸 𝑌 ?

𝐸 𝑋 = 𝐸 𝐸 𝑋|𝑌 =0𝐸 𝑋|𝑌 = 𝑦 𝑃 𝑌 = 𝑦
)

If 𝑌 discrete

𝐸 𝑌 = 𝐸 𝑌|𝑋 = 1 𝑃 𝑋 = 1 +  𝐸 𝑌|𝑋 = 2 𝑃 𝑋 = 2 +  𝐸 𝑌|𝑋 = 3 𝑃 𝑋 = 3

𝐸 𝑌 =            3 1/3                +  5 + 𝐸 𝑌 1/3           +       7 + 𝐸 𝑌 1/3

𝐸 𝑌 = 1/3 15 + 2𝐸 𝑌 = 5 + 2/3 𝐸 𝑌

𝐸 𝑌 = 15

𝐸 𝑌|𝑋 = 1 = 3 𝐸 𝑌|𝑋 = 2 = 𝐸 5 + 𝑌 𝐸 𝑌|𝑋 = 3 = 𝐸 7 + 𝑌

On your own: What is Var 𝑌 ?
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Independent RVs, defined another way
If 𝑋 and 𝑌 are independent discrete random variables, then ∀𝑥, 𝑦:

𝑃 𝑋 = 𝑥|𝑌 = 𝑦 =
𝑃 𝑋 = 𝑥, 𝑌 = 𝑦

𝑃 𝑌 = 𝑦
=

𝑃 𝑋 = 𝑥 𝑃 𝑌 = 𝑦
𝑃 𝑌 = 𝑦

= 𝑃 𝑋 = 𝑥

𝑝!|# 𝑥|𝑦 =
𝑝!,# 𝑥, 𝑦

𝑝# 𝑦
=

𝑝! 𝑥 𝑝# 𝑦
𝑝# 𝑦

= 𝑝! 𝑥

Note for conditional expectation, independent 𝑋 and 𝑌 implies

𝐸 𝑋|𝑌 = 𝑦 = = 𝑥𝑝!|# 𝑥|𝑦
'

= = 𝑥𝑝! 𝑥
'

= 𝐸 𝑋

65



Interlude for 
jokes/announcements

66



67

https://xkcd.com/795/
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Interesting probability news

68

https://www.bloomberg.com/graphics/us-economic-
recession-tracker/

“Bloomberg Economics created a 
model last year to determine 
America’s recession odds.”
• I encourage you to read through 

and understand the parameters 
used to define this model!
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Constructing a Bayesian Network
In a Bayesian Network,
Each random variable is 
conditionally independent of its 
non-descendants, given its parents. 

• Node: random variable
• Directed edge: conditional dependency

Examples:
• 𝑃 𝐹)* = 1|𝑇 = 0, 𝐹+, = 1 = 𝑃 𝐹)* = 1|𝐹+, = 1
• 𝑃 𝐹+, = 1,𝑈 = 0 = 𝑃 𝐹+, = 1 𝑃 𝑈 = 0

69

Flu Under-
grad

TiredFever

Review



Breakout 
Rooms

Check out the question on the next slide. 
Post any clarifications here!

https://us.edstem.org/courses/667/discussion/93799

Breakout rooms: 4 min. Introduce yourself!

70

🤔
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Inference via math

71

Flu Under-
grad

TiredFever

𝑃 𝐹!" = 1 = 0.1 𝑃 𝑈 = 1 = 0.8

𝑃 𝐹#$ = 1|𝐹!" = 1 = 0.9
𝑃 𝐹#$ = 1|𝐹!" = 0 = 0.05

𝑃 𝑇 = 1|𝐹!" = 0, 𝑈 = 0 = 0.1
𝑃 𝑇 = 1|𝐹!" = 0, 𝑈 = 1 = 0.8
𝑃 𝑇 = 1|𝐹!" = 1, 𝑈 = 0 = 0.9
 𝑃 𝑇 = 1|𝐹!" = 1, 𝑈 = 1 = 1.0 🤔

What is 𝑃 𝐹!" = 1|𝑈 = 1, 𝑇 = 1 ?

= 0.122
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Inference via math
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Flu Under-
grad

TiredFever

𝑃 𝐹!" = 1 = 0.1 𝑃 𝑈 = 1 = 0.8

𝑃 𝐹#$ = 1|𝐹!" = 1 = 0.9
𝑃 𝐹#$ = 1|𝐹!" = 0 = 0.05

𝑃 𝑇 = 1|𝐹!" = 0, 𝑈 = 0 = 0.1
𝑃 𝑇 = 1|𝐹!" = 0, 𝑈 = 1 = 0.8
𝑃 𝑇 = 1|𝐹!" = 1, 𝑈 = 0 = 0.9
 𝑃 𝑇 = 1|𝐹!" = 1, 𝑈 = 1 = 1.0

Solving inference questions 
precisely is possible, but 
sometimes tedious.

Can we use sampling
to do approximate 
inference?

Yes.
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Inference via math

What is 𝑃 𝐹!" = 1|𝑈 = 1, 𝑇 = 1 ?

= 0.122
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Flu Under-
grad

TiredFever

𝑃 𝐹!" = 1 = 0.1 𝑃 𝑈 = 1 = 0.8

𝑃 𝐹#$ = 1|𝐹!" = 1 = 0.9
𝑃 𝐹#$ = 1|𝐹!" = 0 = 0.05

𝑃 𝑇 = 1|𝐹!" = 0, 𝑈 = 0 = 0.1
𝑃 𝑇 = 1|𝐹!" = 0, 𝑈 = 1 = 0.8
𝑃 𝑇 = 1|𝐹!" = 1, 𝑈 = 0 = 0.9
 𝑃 𝑇 = 1|𝐹!" = 1, 𝑈 = 1 = 1.0

Review

(from pre-lecture video)
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Rejection sampling algorithm

Step 0:
Have a fully specified
Bayesian Network

74

Flu Under-
grad

TiredFever

𝑃 𝐹!" = 1 = 0.1 𝑃 𝑈 = 1 = 0.8

𝑃 𝐹#$ = 1|𝐹!" = 1 = 0.9
𝑃 𝐹#$ = 1|𝐹!" = 0 = 0.05

𝑃 𝑇 = 1|𝐹!" = 0, 𝑈 = 0 = 0.1
𝑃 𝑇 = 1|𝐹!" = 0, 𝑈 = 1 = 0.8
𝑃 𝑇 = 1|𝐹!" = 1, 𝑈 = 0 = 0.9
 𝑃 𝑇 = 1|𝐹!" = 1, 𝑈 = 1 = 1.0
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Rejection sampling algorithm

75

def rejection_sampling(event, observation):
samples = sample_a_ton()
samples_observation = …

# number of samples with 𝑈 = 1, 𝑇 = 1
samples_event =

# number of samples with 𝐹EF = 1, 𝑈 = 1, 𝑇 = 1
return len(samples_event)/len(samples_observation)

What is 𝑃 𝐹!" = 1|𝑈 = 1, 𝑇 = 1 ?Inference
question: [flu,	und,	fev,	tir]
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Rejection sampling algorithm

76

def rejection_sampling(event, observation):
samples = sample_a_ton()
samples_observation = …

# number of samples with 𝑈 = 1, 𝑇 = 1
samples_event =

# number of samples with 𝐹EF = 1, 𝑈 = 1, 𝑇 = 1
return len(samples_event)/len(samples_observation)

What is 𝑃 𝐹!" = 1|𝑈 = 1, 𝑇 = 1 ?Inference
question:

# samples with 𝐹56 = 1, 𝑈 = 1, 𝑇 = 1
# samples with 𝑈 = 1, 𝑇 = 1

Approximate
Probability =
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Rejection sampling algorithm

77

What is 𝑃 𝐹!" = 1|𝑈 = 1, 𝑇 = 1 ?Inference
question:

# samples with 𝐹56 = 1, 𝑈 = 1, 𝑇 = 1
# samples with 𝑈 = 1, 𝑇 = 1

Approximate
Probability =

🤔

Why would this definition of approximate probability make sense?



Think Slide 40 has a question to go over by 
yourself.

Post any clarifications here!
https://us.edstem.org/courses/667/discussion/93799

Think by yourself: 2 min

78

🤔(by yourself)
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Why would this approximate probability make sense?

79

What is 𝑃 𝐹!" = 1|𝑈 = 1, 𝑇 = 1 ?Inference
question:

# samples with 𝐹56 = 1, 𝑈 = 1, 𝑇 = 1
# samples with 𝑈 = 1, 𝑇 = 1

Approximate
Probability =

Recall our definition of 
probability as a frequency:

🤔

𝑃 𝐸 = lim
1→D

𝑛(𝐸)
𝑛

𝑛 = # of total trials
𝑛(𝐸) = # trials where 𝐸 occurs
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Why would this approximate probability make sense?

80

What is 𝑃 𝐹!" = 1|𝑈 = 1, 𝑇 = 1 ?Inference
question:

# samples with 𝐹56 = 1, 𝑈 = 1, 𝑇 = 1
# samples with 𝑈 = 1, 𝑇 = 1

Approximate
Probability =

Recall our definition of 
probability as a frequency:

𝑃 𝐸 = lim
1→D

𝑛(𝐸)
𝑛

𝑛 = # of total trials
𝑛(𝐸) = # trials where 𝐸 occurs
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Rejection sampling algorithm
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def rejection_sampling(event, observation):
samples = sample_a_ton()
samples_observation = …

# number of samples with 𝑈 = 1, 𝑇 = 1
samples_event =

# number of samples with 𝐹EF = 1, 𝑈 = 1, 𝑇 = 1
return len(samples_event)/len(samples_observation)

What is 𝑃 𝐹!" = 1|𝑈 = 1, 𝑇 = 1 ?Inference
question: [flu,	und,	fev,	tir]
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Rejection sampling algorithm

N_SAMPLES = 100000
# Method: Sample a ton
# -------------------
# create N_SAMPLES with likelihood proportional
# to the joint distribution
def sample_a_ton():

samples = []
for i in range(N_SAMPLES):

sample = make_sample() # a particle
samples.append(sample)

return samples

82

How do we make a sample
𝐹EF = 𝑎, 𝑈 = 𝑏, 𝐹GH = 𝑐, 𝑇 = 𝑑

according to the
joint probability?

Create a sample using the Bayesian Network!!



Lisa Yan, CS109, 2020

Rejection sampling algorithm
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Flu Under-
grad

Tired
Fever

𝑃 𝐹!" = 1 = 0.1 𝑃 𝑈 = 1 = 0.8

𝑃 𝑇 = 1|𝐹!" = 0, 𝑈 = 0 = 0.1
𝑃 𝑇 = 1|𝐹!" = 0, 𝑈 = 1 = 0.8
𝑃 𝑇 = 1|𝐹!" = 1, 𝑈 = 0 = 0.9
 𝑃 𝑇 = 1|𝐹!" = 1, 𝑈 = 1 = 1.0

𝑃 𝐹#$ = 1|𝐹!" = 1 = 0.9
𝑃 𝐹#$ = 1|𝐹!" = 0 = 0.05

# Method: Make Sample
# -------------------
# create a single sample from the joint distribution
# based on the medical "WebMD" Bayesian Network
def make_sample():

# prior on causal factors
flu = bernoulli(0.1)
und = bernoulli(0.8)

# choose fever based on flu
if flu == 1: fev = bernoulli(0.9)
else:        fev = bernoulli(0.05)

# choose tired based on (undergrad and flu)
# 
# TODO: fill in
# 
# 

# a sample from the joint has an
# assignment to *all* random variables
return [flu, und, fev, tir]
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Rejection sampling algorithm
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Flu Under-
grad

Tired
Fever

𝑃 𝐹!" = 1 = 0.1 𝑃 𝑈 = 1 = 0.8

𝑃 𝐹#$ = 1|𝐹!" = 1 = 0.9
𝑃 𝐹#$ = 1|𝐹!" = 0 = 0.05

𝑃 𝑇 = 1|𝐹!" = 0, 𝑈 = 0 = 0.1
𝑃 𝑇 = 1|𝐹!" = 0, 𝑈 = 1 = 0.8
𝑃 𝑇 = 1|𝐹!" = 1, 𝑈 = 0 = 0.9
 𝑃 𝑇 = 1|𝐹!" = 1, 𝑈 = 1 = 1.0

# Method: Make Sample
# -------------------
# create a single sample from the joint distribution
# based on the medical "WebMD" Bayesian Network
def make_sample():

# prior on causal factors
flu = bernoulli(0.1)
und = bernoulli(0.8)

# choose fever based on flu
if flu == 1: fev = bernoulli(0.9)
else:        fev = bernoulli(0.05)

# choose tired based on (undergrad and flu)
# 
# TODO: fill in
# 
# 

# a sample from the joint has an
# assignment to *all* random variables
return [flu, und, fev, tir]
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Rejection sampling algorithm
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Flu Under-
grad

Tired
Fever

𝑃 𝐹!" = 1 = 0.1 𝑃 𝑈 = 1 = 0.8

𝑃 𝐹#$ = 1|𝐹!" = 1 = 0.9
𝑃 𝐹#$ = 1|𝐹!" = 0 = 0.05

𝑃 𝑇 = 1|𝐹!" = 0, 𝑈 = 0 = 0.1
𝑃 𝑇 = 1|𝐹!" = 0, 𝑈 = 1 = 0.8
𝑃 𝑇 = 1|𝐹!" = 1, 𝑈 = 0 = 0.9
 𝑃 𝑇 = 1|𝐹!" = 1, 𝑈 = 1 = 1.0

# Method: Make Sample
# -------------------
# create a single sample from the joint distribution
# based on the medical "WebMD" Bayesian Network
def make_sample():

# prior on causal factors
flu = bernoulli(0.1)
und = bernoulli(0.8)

# choose fever based on flu
if flu == 1: fev = bernoulli(0.9)
else:        fev = bernoulli(0.05)

# choose tired based on (undergrad and flu)
# 
# TODO: fill in
# 
# 

# a sample from the joint has an
# assignment to *all* random variables
return [flu, und, fev, tir]
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# Method: Make Sample
# -------------------
# create a single sample from the joint distribution
# based on the medical "WebMD" Bayesian Network
def make_sample():

# prior on causal factors
flu = bernoulli(0.1)
und = bernoulli(0.8)

# choose fever based on flu
if flu == 1: fev = bernoulli(0.9)
else:        fev = bernoulli(0.05)

# choose tired based on (undergrad and flu)
# 
# TODO: fill in
# 
# 

# a sample from the joint has an
# assignment to *all* random variables
return [flu, und, fev, tir]

Rejection sampling algorithm

86

Flu Under-
grad

Tired
Fever

𝑃 𝐹!" = 1 = 0.1 𝑃 𝑈 = 1 = 0.8

𝑃 𝑇 = 1|𝐹!" = 0, 𝑈 = 0 = 0.1
𝑃 𝑇 = 1|𝐹!" = 0, 𝑈 = 1 = 0.8
𝑃 𝑇 = 1|𝐹!" = 1, 𝑈 = 0 = 0.9
 𝑃 𝑇 = 1|𝐹!" = 1, 𝑈 = 1 = 1.0

🤔
𝑃 𝐹#$ = 1|𝐹!" = 1 = 0.9
𝑃 𝐹#$ = 1|𝐹!" = 0 = 0.05
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Rejection sampling algorithm
# Method: Make Sample
# -------------------
# create a single sample from the joint distribution
# based on the medical "WebMD" Bayesian Network
def make_sample():

# prior on causal factors
flu = bernoulli(0.1)
und = bernoulli(0.8)

# choose fever based on flu
if flu == 1: fev = bernoulli(0.9)
else:        fev = bernoulli(0.05)

# choose tired based on (undergrad and flu)
if flu == 0 and und == 0: tir = bernoulli(0.1)
elif flu == 0 and und == 1: tir = bernoulli(0.8)
elif flu == 1 and und == 0: tir = bernoulli(0.9)
else:                       tir = bernoulli(1.0)

# a sample from the joint has an
# assignment to *all* random variables
return [flu, und, fev, tir] 87

Flu Under-
grad

Tired
Fever

𝑃 𝐹!" = 1 = 0.1 𝑃 𝑈 = 1 = 0.8

𝑃 𝐹#$ = 1|𝐹!" = 1 = 0.9
𝑃 𝐹#$ = 1|𝐹!" = 0 = 0.05

𝑃 𝑇 = 1|𝐹!" = 0, 𝑈 = 0 = 0.1
𝑃 𝑇 = 1|𝐹!" = 0, 𝑈 = 1 = 0.8
𝑃 𝑇 = 1|𝐹!" = 1, 𝑈 = 0 = 0.9
 𝑃 𝑇 = 1|𝐹!" = 1, 𝑈 = 1 = 1.0
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Rejection sampling algorithm
# Method: Make Sample
# -------------------
# create a single sample from the joint distribution
# based on the medical "WebMD" Bayesian Network
def make_sample():

# prior on causal factors
flu = bernoulli(0.1)
und = bernoulli(0.8)

# choose fever based on flu
if flu == 1: fev = bernoulli(0.9)
else:        fev = bernoulli(0.05)

# choose tired based on (undergrad and flu)
if flu == 0 and und == 0: tir = bernoulli(0.1)
elif flu == 0 and und == 1: tir = bernoulli(0.8)
elif flu == 1 and und == 0: tir = bernoulli(0.9)
else:                       tir = bernoulli(1.0)

# a sample from the joint has an
# assignment to *all* random variables
return [flu, und, fev, tir] 88

Flu Under-
grad

Tired
Fever

𝑃 𝐹!" = 1 = 0.1 𝑃 𝑈 = 1 = 0.8

𝑃 𝐹#$ = 1|𝐹!" = 1 = 0.9
𝑃 𝐹#$ = 1|𝐹!" = 0 = 0.05

𝑃 𝑇 = 1|𝐹!" = 0, 𝑈 = 0 = 0.1
𝑃 𝑇 = 1|𝐹!" = 0, 𝑈 = 1 = 0.8
𝑃 𝑇 = 1|𝐹!" = 1, 𝑈 = 0 = 0.9
 𝑃 𝑇 = 1|𝐹!" = 1, 𝑈 = 1 = 1.0
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Rejection sampling algorithm
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def rejection_sampling(event, observation):
samples = sample_a_ton()
samples_observation = …

# number of samples with 𝑈 = 1, 𝑇 = 1
samples_event =

# number of samples with 𝐹EF = 1, 𝑈 = 1, 𝑇 = 1
return len(samples_event)/len(samples_observation)

What is 𝑃 𝐹!" = 1|𝑈 = 1, 𝑇 = 1 ?Inference
question:
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Rejection sampling algorithm
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def rejection_sampling(event, observation):
samples = sample_a_ton()
samples_observation = 

reject_inconsistent(samples, observation)
samples_event =

# number of samples with 𝐹EF = 1, 𝑈 = 1, 𝑇 = 1
return len(samples_event)/len(samples_observation)

What is 𝑃 𝐹!" = 1|𝑈 = 1, 𝑇 = 1 ?Inference
question:
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Rejection sampling algorithm
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def rejection_sampling(event, observation):
samples = sample_a_ton()
samples_observation = 

reject_inconsistent(samples, observation)
samples_event =

# number of samples with 𝐹EF = 1, 𝑈 = 1, 𝑇 = 1
return len(samples_event)/len(samples_observation)

What is 𝑃 𝐹!" = 1|𝑈 = 1, 𝑇 = 1 ?Inference
question:

Keep only samples that are consistent
with the observation 𝑈 = 1, 𝑇 = 1 .
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Rejection sampling algorithm
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def rejection_sampling(event, observation):
samples = sample_a_ton()
samples_observation =

reject_inconsistent(samples, observation)
samples_event =

reject_inconsistent(samples_observation, event)
return len(samples_event)/len(samples_observation)

Keep only samples that are consistent
with the observation 𝑇 = 1, 𝑈 = 0 .

What is 𝑃 𝐹!" = 1|𝑈 = 1, 𝑇 = 1 ?Inference
question:

# Method: Reject Inconsistent
# -------------------
# Rejects all samples that do not align with the outcome.
# Returns a list of consistent samples.
def reject_inconsistent(samples, outcome):

consistent_samples = []
for sample in samples:

if check_consistent(sample, outcome):
consistent_samples.append(sample)

return consistent_samples

𝑈 = 1, 𝑇 = 1
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Rejection sampling algorithm
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def rejection_sampling(event, observation):
samples = sample_a_ton()
samples_observation =

reject_inconsistent(samples, observation)
samples_event =

reject_inconsistent(samples_observation, event)
return len(samples_event)/len(samples_observation)

Conditional event = samples with 𝐹56 = 1, 𝑈 = 1, 𝑇 = 1 .

What is 𝑃 𝐹!" = 1|𝑈 = 1, 𝑇 = 1 ?Inference
question:
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Rejection sampling algorithm
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def rejection_sampling(event, observation):
samples = sample_a_ton()
samples_observation =

reject_inconsistent(samples, observation)
samples_event =

reject_inconsistent(samples_observation, event)
return len(samples_event)/len(samples_observation)

Conditional event = samples with 𝐹56 = 1, 𝑈 = 1, 𝑇 = 1 .

What is 𝑃 𝐹!" = 1|𝑈 = 1, 𝑇 = 1 ?Inference
question:

def reject_inconsistent(samples, outcome):

...

return consistent_samples

𝐹EF = 1𝐹EF = 𝑥, 𝑈 = 1, 𝐹GH = 𝑦, 𝑇 = 1
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Rejection sampling algorithm
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def rejection_sampling(event, observation):
samples = sample_a_ton()
samples_observation =

reject_inconsistent(samples, observation)
samples_event =

reject_inconsistent(samples_observation, event)
return len(samples_event)/len(samples_observation)

# samples with 𝐹56 = 1, 𝑈 = 1, 𝑇 = 1

What is 𝑃 𝐹!" = 1|𝑈 = 1, 𝑇 = 1 ?Inference
question:

# samples with 𝑈 = 1, 𝑇 = 1

Approximate
Probability =
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Rejection sampling

With enough samples, you can correctly compute:
• Probability estimates
• Conditional probability estimates
• Expectation estimates

Because your samples are a representation
of the joint distribution!

96

[flu,	und,	fev,	tir]

P(has flu | undergrad and is tired) = 0.122

If you can sample enough from the joint distribution, 
you can answer most probability inference questions.
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Other applications

97

Chemical 
present?

Chemical 
detected?

Trajectory 
deviation

Solar 
panel 
failure

Electrical 
system 
failure

Battery 
failure

Communi-
cation loss

Take CS238/AA228: Decision Making under Uncertainty!
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Challenge with Bayesian Networks

98

Flu Under-
grad

Tired
Fever

What if we don’t know the structure?

Take CS228: Probabilistic Graphical Models!

? ?

?

?
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Disadvantages of rejection sampling

What if random variables 
are continuous?

What if you run out of
time/computational 
power?

99

Flu Under-
grad

Tired
Fever

𝑃 𝐹!" = 1 = 0.1 𝑃 𝑈 = 1 = 0.8

𝑃 𝑇 = 1|𝐹!" = 0, 𝑈 = 0 = 0.1
𝑃 𝑇 = 1|𝐹!" = 0, 𝑈 = 1 = 0.8
𝑃 𝑇 = 1|𝐹!" = 1, 𝑈 = 0 = 0.9
 𝑃 𝑇 = 1|𝐹!" = 1, 𝑈 = 1 = 1.0

𝐹#$|𝐹!" = 1 ~ 𝒩(100,1.81)
𝐹#$|𝐹!" = 0~ 𝒩 98.25,0.73

𝑃 𝐹!" = 1|𝐹#$ = 99.4 ?



Congratulations on finishing 
the midterm J
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