15: General Inference

Lisa Yan May 8, 2020

Quick slide reference

- 3 General Inference: intro 15a_inference
- 15 Bayesian Networks 15b_bayes_nets
- 22 Inference (I): Math 15c_inference_math

- 29 Inference (II): Rejection sampling LIVE
- 54 Inference (III): Gibbs sampling (extra) (no video)

15a_inference

General Inference: Introduction

General inference question:

Given the values of some random variables, what is the conditional distribution of some other random variables?

One inference question:

$$
P(F=1|N=1,T=1)
$$

$$
= \frac{P(F = 1, N = 1, T = 1)}{P(N = 1, T = 1)}
$$

Another inference question:

$$
P(C_o = 1, U = 1 | S = 0, F_e = 0)
$$

=
$$
\frac{P(C_o = 1, U = 1, S = 0, F_e = 0)}{P(S = 0, F_e = 0)}
$$

Lisa Yan, CS109, 2020

N can be large…

Lisa Yan, CS109, 2020

Conditionally Independent RVs

Conditional Probability Conditional Distributions Independent RVs

Independence

Conditionally Independent RVs

Recall that two events A and B are conditionally independent given E if:

 $P(AB|E) = P(A|E)P(B|E)$

n discrete random variables $X_1, X_2, ..., X_n$ are called conditionally independent given Y if:

for all
$$
x_1, x_2, ..., x_n, y
$$
:
\n
$$
P(X_1 = x_1, X_2 = x_2, ..., X_n = x_n | Y = y) = \prod_{i=1}^{n} P(X_i = x_i | Y = y)
$$

This implies the following (cool to remember for later):

$$
\log P(X_1 = x_1, X_2 = x_2, ..., X_n = x_n | Y = y) = \sum_{i=1}^{n} \log P(X_i = x_i | Y = y)
$$

Lec. 12: Independence of multiple random variables Errata

Recall independence of *n* events $E_1, E_2, ..., E_n$:

for
$$
r = 1, ..., n
$$
:
for every subset $E_1, E_2, ..., E_r$:
 $P(E_1, E_2, ..., E_r) = P(E_1)P(E_2) \cdots P(E_r)$

We have independence of *n* discrete random variables $X_1, X_2, ..., X_n$ if for all x_1, x_2, \ldots, x_n : $\boldsymbol{\eta}$

$$
P(X_1 = x_1, X_2 = x_2, ..., X_n = x_n) = \prod_{i=1}^{n} P(X_i = x_i)
$$

Lisa Yan, CS109, 2020 **Stanford University** 14 Errata (edited May 3): Removed the independent RV requirement for all subsets of size $r = 1, ..., n$. Do you see why this requirement is unnecessary? (Hint: independence of RVs implies independence of all events)

15b_bayes_nets

Bayesian Networks

Bayes Nets

Great! Just specify $2^4 = 16$ joint probabilities…?

$$
P(F_{lu} = a, F_{ev} = b, U = c, T = d)
$$

What would a Stanford flu expert do?

Describe the joint distribution using causality!!!

What would a Stanford flu expert do?

1. Describe the joint distribution using causality.

2. Assume

conditional independence.

In a Bayesian Network, Each random variable is conditionally independent of its non-descendants, given its parents.

- Node: random variable
- Directed edge: conditional dependency

Examples:

•
$$
P(F_{ev} = 1 | T \ge 0, F_{lu} = 1) = P(F_{ev} = 1 | F_{lu} = 1)
$$

• $P(F_{111} = 1, U = 0) = P(F_{111} = 1)P(U = 0)$

 $P(F_{ev} = 1|F_{lu} = 1) = 0.9$ $P(F_{ev} = 1|F_{iv} = 0) = 0.05$ What would a Stanford flu expert do?

- 1. Describe the joint distribution using causality.
- 2. Assume conditional independence.
- 3. Provide P (values | parents) for each random variable

What conditional probabilities should our expert specify?

 $P(F_{ev} = 1|F_{lu} = 1) = 0.9$ $P(F_{e\nu} = 1|F_{\nu} = 0) = 0.05$

What would a Stanford flu expert do?

- 1. Describe the joint distribution using causality.
- 2. Assume conditional independence.
- 3. Provide P (values | parents) for each random variable

What conditional probabilities should our expert specify?

$$
P(T = 1 | F_{lu} = 0, U = 0)
$$

\n
$$
P(T = 1 | F_{lu} = 0, U = 1)
$$

\n
$$
P(T = 1 | F_{lu} = 1, U = 0)
$$

\n
$$
P(T = 1 | F_{lu} = 1, U = 1)
$$

Using a Bayes Net

 $P(F_{ev} = 1|F_{lu} = 1) = 0.9$ $P(F_{ev} = 1|F_{lu} = 0) = 0.05$

Lisa Yan, CS109, 2020 $P(T = 1|F_{11} = 0, U = 0) = 0.1$ $P(T = 1|F_{lu} = 0, U = 1) = 0.8$ $P(T = 1|F_{11} = 1, U = 0) = 0.9$ $P(T = 1|F_{11} = 1, U = 1) = 1.0$

What would a CS109 student do?

1. Populate a Bayesian network by asking a Stanford flu expert or by using reasonable assumptions

2. Answer inference questions

15c_inference_math

Inference (I): Math

Bayes Nets: Conditional independence

In a Bayesian Network, Each random variable is conditionally independent of its non-descendants, given its parents.

- Node: random variable
- Directed edge: conditional dependency

Review

 $P(F_{ev} = 1|F_{lu} = 1) = 0.9$

 $P(F_{e\nu} = 1|F_{\nu} = 0) = 0.05$

 $P(T = 1|F_{11} = 0, U = 0) = 0.1$ $P(T = 1|F_{11} = 0, U = 1) = 0.8$ $P(T = 1|F_{11} = 1, U = 0) = 0.9$ $P(T = 1|F_{11} = 1, U = 1) = 1.0$

Lisa Yan, CS109, 2020

1.
$$
P(F_{lu} = 0, U = 1, F_{ev} = 0, T = 1)
$$
?

Compute joint probabilities using chain rule.
= $P(F_{tu} = 0) P(U = 1 | F_{tu} = 0) P(F_{ev} = 0 | F_{tu} = 0, u = 1)$ $\cdot P(T=1 | F_{\omega=0}, U=1, F_{\omega=0})$ $SP($ FLU=0) $P($ ll=1) $P($ Fev=0) Fw=0) P $|T=1|$ Futo, $U=1$) $= 0.9$ (0.8) 0.95 (0.8)

 $= 0.5472$

 $P(F_{ev} = 1|F_{lu} = 1) = 0.9$ $P(F_{ev} = 1|F_{lu} = 0) = 0.05$

Lisa Yan, CS109, 2020 $P(T = 1|F_{11} = 0, U = 0) = 0.1$ $P(T = 1|F_{lu} = 0, U = 1) = 0.8$ $P(T = 1|F_{11} = 1, U = 0) = 0.9$ $P(T = 1|F_{11} = 1, U = 1) = 1.0$

2.
$$
P(F_{lu} = 1 | F_{ev} = 0, U = 0, T = 1)
$$
?

1. Compute joint probabilities $P(F_{11} = 1, F_{e1} = 0, U = 0, T = 1)$ $P(F_{111} = 0, F_{212} = 0, U = 0, T = 1)$ given 2. Definition of conditional probability

$$
P(F_{lu} = 1, F_{ev} = 0, U = 0, T = 1)
$$

$$
\sum_{x} P(F_{lu} = x, F_{ev} = 0, U = 0, T = 1)
$$

 $= 0.095$

3.
$$
P(F_{lu} = 1 | U = 1, T = 1)
$$
?

 $P(F_{ev} = 1|F_{lu} = 1) = 0.9$

 $P(F_{ev} = 1|F_{lu} = 0) = 0.05$

Lisa Yan, CS109, 2020 $P(T = 1|F_{11} = 0, U = 0) = 0.1$ $P(T = 1|F_{111} = 0, U = 1) = 0.8$ $P(T = 1|F_{11} = 1, U = 0) = 0.9$ $P(T = 1|F_{11} = 1, U = 1) = 1.0$

3.
$$
P(F_{lu} = 1 | U = 1, T = 1)
$$
?

1. Compute joint probabilities

 $P(F_{11} = 1, U = 1, F_{21} = 1, T = 1)$

 $P(F_{111} = 0, U = 1, F_{212} = 0, T = 1)$?

…

2. Definition of conditional probability

$$
\frac{\sum_{y} P(F_{lu} = 1, U = 1, F_{ev} = y, T = 1)}{\sum_{x} \sum_{y} P(F_{lu} = x, U = 1, F_{ev} = y, T = 1)}
$$

 $= 0.122$

Solving inference questions precisely is possible, but sometimes tedious.

Can we use sampling to do approximate inference?

 $P(F_{ev} = 1|F_{lu} = 1) = 0.9$ $P(F_{e\nu} = 1|F_{\nu} = 0) = 0.05$

Lisa Yan, CS109, 2020 $P(T = 1|F_{11} = 0, U = 0) = 0.1$ $P(T = 1|F_{111} = 0, U = 1) = 0.8$ $P(T = 1|F_{11} = 1, U = 0) = 0.9$ $P(T = 1|F_{11} = 1, U = 1) = 1.0$

(live) 15: General Inference

Lisa Yan May 8, 2020

In a Bayesian Network, Each random variable is conditionally independent of its non-descendants, given its parents.

• Node: random variable

Review

• Directed edge: conditional dependency

Examples:

$$
P(F_{ev} = 1 | T > 0, F_{lu} = 1) = P(F_{ev} = 1 | F_{lu} = 1)
$$

or $F = 1 | H = 0$

 $P(r_{lu} = 1, U = 0) = P(r_{lu} = 1)P(U = 0)$

Breakout Rooms

Check out the quest (Slide 31). Post any

https://us.edstem.org/d

Breakout rooms: 4

$$
P(F_{lu} = 1 | F_{ev} = 1, U = 1, T = 1)
$$
\n
$$
\frac{1}{2} \frac{
$$

Lisa Yan, CS109, 2020 $P(T = 1|F_{lu} = 0, U = 1) = 0.8$ $P(T = 1|F_{11} = 1, U = 0) = 0.9$ $P(T = 1|F_{11} = 1, U = 1) = 1.0$

 $P(F_{111} = 1) = 0.1$ $\leq P(U = 1) = 0.8$ $P(F_{lu} = 1 | F_{ev} = 1, U = 1, T = 1)$? Mumerator P (Flu=1, FW=1, U=1, T=1) Flu $($ Undergrad $= P(Fu=1) P(u=1) Fu=1)$ · P (Feve 1) Fluc 1, U-3) • P (T=1) F6=1, U=1, Fex=4) Fever) Tired 0.1 (0.9) (0.8) 1 $P(T = 1|F_{11} = 0, U = 0) = 0.1$ $P(F_{ev} = 1|F_{lu} = 1) = 0.9$ $P(T = 1|F_{11} = 0, U = 1) = 0.8$ $P(F_{ev} = 1|F_{lu} = 0) = 0.05$ $P(T = 1|F_{11} = 1, U = 0) = 0.9$ $P(T = 1|F_{11} = 1, U = 1) = 1.0$ **Stanford University** 34 Lisa Yan, CS109, 2020

Solving inference questions precisely is possible, but sometimes tedious.

Can we use sampling to do approximate inference?

 $P(F_{ev} = 1|F_{lu} = 1) = 0.9$ $P(F_{e\nu} = 1|F_{\nu} = 0) = 0.05$

Lisa Yan, CS109, 2020 $P(T = 1|F_{11} = 0, U = 0) = 0.1$ $P(T = 1|F_{111} = 0, U = 1) = 0.8$ $P(T = 1|F_{11} = 1, U = 0) = 0.9$ $P(T = 1|F_{11} = 1, U = 1) = 1.0$

Lisa Yan, CS109, 2020 (3) What is $P(F_{lu} = 1 | U = 1, T = 1)$? $= 0.122$ **Stanford University** 36 Flu $($ Undergrad Fever) Tired $P(F_{lu} = 1) = 0.1$ $P(U = 1) = 0.8$ $P(F_{ev} = 1|F_{lu} = 1) = 0.9$ $P(F_{ev} = 1|F_{lu} = 0) = 0.05$ $P(T = 1|F_{lu} = 0, U = 0) = 0.1$ $P(T = 1|F_{lu} = 0, U = 1) = 0.8$ $P(T = 1|F_{11} = 1, U = 0) = 0.9$ $P(T = 1|F_{11} = 1, U = 1) = 1.0$ (from pre-lecture video)

Review

Step 0:

Have a fully specified Bayesian Network **Stanford University** 37 Flu $($ Undergrad Fever | Tired $P(F_{lu} = 1) = 0.1$ $P(U = 1) = 0.8$ $P(F_{ev} = 1|F_{lu} = 1) = 0.9$ $P(F_{ev} = 1|F_{lu} = 0) = 0.05$ $P(T = 1|F_{lu} = 0, U = 0) = 0.1$ $P(T = 1|F_{lu} = 0, U = 1) = 0.8$ $P(T = 1|F_{lu} = 1, U = 0) = 0.9$ $P(T = 1|F_{lu} = 1, U = 1) = 1.0$


```
Inference What is P(F_{111} = 1 | U = 1, T = 1)?
question:
```
def rejection_sampling(event, observation): samples = sample a ton() samples observation = \ldots # number of samples with $(U = 1, T = 1)$ samples_event = # number of samples with $(F_{111} = 1, U = 1, T = 1)$ return len(samples event)/len(samples observation) # samples with $(F_{111} = 1, U = 1, T = 1)$ # samples with $(U = 1, T = 1)$ Approximate Probability =

Inference What is $P(F_{111} = 1 | U = 1, T = 1)$? question:

samples with $(F_{111} = 1, U = 1, T = 1)$ # samples with $(U = 1, T = 1)$ Approximate Probability =

Why would this definition of approximate probability make sense?

Think Slide 41 has a que
Think yourself. yourself.

Post any clarification

https://us.edstem.org/

Think by yourself: 2

Why would this approximate probability make sense?

Inference What is $P(F_{111} = 1 | U = 1, T = 1)$? question:

> # samples with $(F_{111} = 1, U = 1, T = 1)$ # samples with $(U = 1, T = 1)$ Approximate Probability =

Recall our definition of probability as a frequency: $P(E) = \lim$ $n\rightarrow\infty$ $n(E)$ \overline{n} $n = #$ of total trials $n(E) = #$ trials where E occurs

Why would this approximate probability make sense?

questio

Inference
question: What is
$$
P(F_{lu} = 1 | U = 1, T = 1)
$$
? $n(\underbrace{\underbrace{\underbrace{\underbrace{\underbrace{\text{F}}_{m} \underbrace{\underbrace{\underbrace{\text{F}}_{u=1} \underbrace{\text{F}}_{v=1}}}_{\text{F}}}}_{\text{F}(u=1, T=1)} = \frac{n(\underbrace{\underbrace{\underbrace{\underbrace{\text{F}}_{u=1} \underbrace{\text{F}}_{v=1}}_{\text{F}})}}_{\text{F}(u=1, T=1)}$

samples with $(F_{111} = 1, U = 1, T = 1)$ # samples with $(U = 1, T = 1)$ Approximate Probability =

Recall our definition of probability as a frequency: $P(E) = \lim$ $n\rightarrow\infty$ $n(E)$ \widehat{n} $n = #$ of total trials $n(E) = #$ trials where E occurs


```
N_SAMPLES = 100000
# Method: Sample a ton
# -------------------
 create N_SAMPLES with likelihood proportional
# to the joint distribution
def sample_a_ton():
    samples = []for i in range(N_SAMPLES):
        sample = make\_sample() # a particle
        samples.append(sample)
    return samples
                                             How do we make a sample
                                              (F_{111} = a, U = b, F_{213} = c, T = d)according to the
                                                   joint probability?
```
Create a sample using the Bayesian Network!!

Interlude for jokes/announcements

Announcements

Announcements: CS109 contest

Do somethin with probabi

Replaces on

Optional Pro Due: _V

 $12:1$ inner $12+$

https://web.stanford.edu/class/cs109/psets

Interesting p[robability news](http://www.intuitor.com/statistics/TwentyQs.html)

http://www.intuitor.com/stati /TwentyQs.html

53


```
Inference What is P(F_{11} = 1 | U = 1, T = 1)?
question:
```
def rejection_sampling(event, observation):

```
samples = sample_a_{ion}()
```

```
samples observation = …
      # number of samples with (U = 1, T = 1)
```

```
samples_event =
      # number of samples with (F_{111} = 1, U = 1, T = 1)return len(samples event)/len(samples observation)
```

```
Inference What is P(F_{111} = 1 | U = 1, T = 1)?
question:
```

```
def rejection_sampling(event, observation):
```

```
samples = sample_a_{ion}()
```

```
samples_observation = 
      reject_inconsistent(samples, observation)
```

```
samples_event =
      # number of samples with (F_{111} = 1, U = 1, T = 1)return len(samples event)/len(samples observation)
```
Keep only samples that are consistent with the observation $(U = 1, T = 1)$.

```
return consistent_samples
def rejection_sampling(event, observation):
    samples = sample_a_{ion}()samples observation =
                reject_inconsistent(samples, observation)
    \texttt{samples} # Method: Reject Inconsistent
                * ---------------------<br># Rejects all samples that do not align with the outcome
    return \# Returns a list of consistent samples.
                   for sample in samples: \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} U = 1, T = 1 \end{bmatrix}if check_consistent(sample, outcome):<br>Consistent samples append(sample)
Inference What is P(F_{111} = 1 | U = 1, T = 1)?
question:
                # -------------------
                # Rejects all samples that do not align with the outcome.
               def reject_inconsistent(samples, outcome):
                    consistent\_samples = []consistent_samples.append(sample) \leftarrow
```

```
Inference What is P(F_{111} = 1 | U = 1, T = 1)?
question:def rejection_sampling(event, observation):
   samples = sample_aton()(42772)samples observation =
           reject_inconsistent(samples, observation) (Fu \geq 1, u \geq 4)T=1samples_event =
           reject_inconsistent(samples_observation, event)
   return len(samples event)/len(samples observation)
     Conditional event = samples with (F_{1u} = 1, U = 1, T = 1).
```


```
Inference What is P(F_{111} = 1 | U = 1, T = 1)?
question:
```

```
def rejection_sampling(event, observation):
```

```
samples = sample_a_{ton}()samples observation =
        reject_inconsistent(samples, observation)
samples_event =
        reject_inconsistent(samples_observation, event)
return len(samples event)/len(samples observation)
               # samples with (F_{111} = 1, U = 1, T = 1)Approximate
  Probability =
```
samples with $(U = 1, T = 1)$

To the code!

If you can sample enough from the joint distribution, you can answer any probability inference question.

With enough samples, you can correctly compute:

- Probability estimates
- Conditional probability estimates
- **Expectation estimates**

Because your samples are a representation of the joint distribution!

```
[flu, und, fev, tir]
Sampling...[0, 1, 0, 1][0, 1, 0, 1][0, 1, 0, 1][0, 0, 0, 0][0, 1, 0, 1][0, 1, 1, 1][0, 1, 0, 0][1, 1, 1, 1][0, 0, 1, 1][0, 1, 0, 1]Finished sampling
```
P(has flu | undergrad and is tired) = 0.122

Other applications

Take CS238/AA228: Decision Making under Uncertainty!

Challenge with Bayesian Networks

What if we don't know the structure?

Take CS228: Probabilistic Graphical Models!

Disadvantages of rejection sampling

$$
P(F_{lu}=1|F_{ev}=1)?
$$

What if we never encounter some samples?

 $[flu=0, und, fev=1, tir]$

Disadvantages of rejection sampling

$$
P(F_{lu} = 1 | F_{ev} = 99.4)
$$
?

What if we never encounter some samples?

What if random variables are continuous?

(no video)

Gibbs sampling (extra)

Gibbs Sampling (not covered)

Basic idea:

- Fix all observed events
- Incrementally sample a new value for each random variable
- Difficulty: More coding for computing different posterior probabilities

Learn in extra slides/extra notebook! (or by taking CS228/CS238)

