16: Continuous Joint Distributions

Lisa Yan May 11, 2020

Quick slide reference

- 3 Continuous joint distributions 16a_cont_joint
- 18 Joint CDFs 16b_joint_CDF
- 23 Independent continuous RVs 16c_indep_cont_rvs
- 28 Multivariate Gaussian RVs 16d_sum_normal
- 32 Exercises LIVE
- 59 Extra: Double integrals 16f_extra

16a_cont_joint

Continuous joint distributions

Remember target?

Good times…

The CS109 logo was created by throwing 500,000 darts according to a joint distribution.

If we throw another dart according to the same distribution, what is

P(dart hits within r pixels of center)?

Quick check: What is the probability that a dart hits at (456.2344132343, 532.1865739012)?

Lisa Yan, CS109, 2020

Possible dart counts (in 50x50 boxes)

Lisa Yan, CS109, 2020

P(dart hits within r pixels of center)?

(in infinitesimally small boxes) iversity a Possible dart counts

Continuous joint probability density functions

If two random variables X and Y are jointly continuous, then there exists a joint probability density function $f_{X,Y}$ defined over $-\infty < x, y < \infty$ such that:

$$
P\big(a_1 \le X \le a_2, \ b_1 \le Y \le b_2\big) = \int_{a_1}^{a_2} \int_{b_1}^{b_2} f_{X,Y}(x,y) dy dx
$$

From one continuous RV to jointly continuous RVs

Single continuous RV X

- PDF f_X such that $\int_{-\infty}^{\infty}$ ∞ $f_X(x)dx=1$
- Integrate to get probabilities

Jointly continuous RVs X and Y

- PDF $f_{X,Y}$ such that $\int_{-\infty}^{\infty}$ ∞ $\int_{-\infty}^{\infty}$ ∞ $f_{X,Y}(x, y) dy dx = 1$
- Double integrate to get probabilities

Probability for jointly continuous RVs is volume under a surface.

Double integrals without tears

Let X and Y be two continuous random variables.

• Support: $0 \le X \le 1, 0 \le Y \le 2$.

Is $g(x, y) = xy$ a valid joint PDF over X and Y?

Write down the definite double integral that must integrate to 1:

Double integrals without tears

Let X and Y be two continuous random variables.

• Support: $0 \le X \le 1$, $0 \le Y \le 2$.

Is $g(x, y) = xy$ a valid joint PDF over X and Y?

Write down the definite double integral that must integrate to 1:

$$
\int_{y=0}^{2} \int_{x=0}^{1} xy \, dx \, dy = 1 \quad \text{or} \quad \int_{x=0}^{1} \int_{y=0}^{2} xy \, dy \, dx = 1
$$
\n(used in next slide)\n
$$
\int_{0}^{\infty} \int_{\sqrt{1-x}}^{\infty} xy \, dy \, dx = \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} y \, dy \, dy
$$

Double integrals without tears

Let X and Y be two continuous random variables.

• Support: $0 \le X \le 1, 0 \le Y \le 2$.

Is $g(x, y) = xy$ a valid joint PDF over X and Y?

0. Set up integral:

$$
1 = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x, y) dx dy = \int_{y=0}^{2} \int_{x=0}^{1} xy dx dy
$$

1. Evaluate inside integral by treating y as a constant:

$$
\int_{y=0}^{2} \left(\int_{x=0}^{1} xy \, dx \right) dy = \int_{y=0}^{2} y \left(\int_{x=0}^{1} x \, dx \right) dy = \int_{y=0}^{2} y \left[\frac{x^2}{2} \right]_{0}^{1} dy = \int_{y=0}^{2} y \frac{1}{2} dy
$$

2. Evaluate remaining (single) integral:

$$
\int_{y=0}^{2} y \frac{1}{2} dy = \left[\frac{y^2}{4} \right]_{y=0}^{2} = 1 - 0 = 1
$$

Yes, $g(x, y)$ is a valid joint PDF because it integrates to 1.

Lisa Yan, CS109, 2020

Marginal distributions

Suppose X and Y are continuous random variables with joint PDF:

$$
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X,Y}(x,y) dy dx = 1
$$

The marginal density functions (marginal PDFs) are therefore:

$$
f_X(a) = \int_{-\infty}^{\infty} f_{X,Y}(a, y) dy \qquad f_Y(b) = \int_{-\infty}^{\infty} f_{X,Y}(x, b) dx
$$

Back to darts!

900

700

 y^{500}

300

100

600 400

200

900

700

500

300

 0^{100}

Stanford University 15

 $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$

900

Lisa Yan, CS109, 2020

Back to darts!

Match X and Y to their respective marginal PDFs:

Stanford University 16

Extra slides

If you want more practice with double integrals, I've included two exercises at the end of this lecture.

16b_joint_cdfs

Joint CDFs

An observation: Connecting CDF to PDF

For a continuous random variable X with PDF f , the CDF (cumulative distribution function) is

$$
F(a) = P(X \le a) = \int_{-\infty}^{a} f(x) dx
$$

The density f is therefore the derivative of the CDF, F :

$$
f(a) = \frac{d}{da}F(a)
$$

(Fundamental Theorem of Calculus)

For two random variables X and Y , there can be a joint cumulative distribution function $F_{X,Y}$:

$$
F_{X,Y}(a,b) = P(X \le a, Y \le b)
$$

For discrete X and Y :

$$
F_{X,Y}(a,b) = \sum_{x \leq a} \sum_{y \leq b} p_{X,Y}(x,y)
$$

For continuous X and Y : $F_{X,Y}(a, b) = |$ −∞ \boldsymbol{a} $\overline{1}$ −∞ \boldsymbol{b} $f_{X,Y}(x,y)dy\,dx$ $f_{X,Y}(a, b) =$ ∂^2 $\frac{\partial}{\partial a \, \partial b} F_{X,Y}(a, b)$

Single variable CDF, graphically

Stanford University 21

Review

Joint CDF, graphically

 $f_{X,Y}(x, y)$ $F_{X,Y}(x, y) = P(X \le x, Y \le y)$

16c_indep_cont_rvs

Independent Continuous RVs

Independent continuous RVs

Two continuous random variables X and Y are independent if:

$$
P(X \le x, Y \le y) = P(X \le x)P(Y \le y)
$$

Equivalently:

$$
F_{X,Y}(x, y) = F_X(x)F_Y(y) \qquad \forall x, y
$$

$$
f_{X,Y}(x, y) = f_X(x)f_Y(y)
$$

Proof of PDF:

$$
f_{X,Y}(x,y) = \frac{\partial^2}{\partial x \partial y} F_{X,Y}(x,y) = \frac{\partial^2}{\partial x \partial y} F_X(x) F_Y(y)
$$

=
$$
\frac{\partial}{\partial x} \frac{\partial}{\partial y} F_X(x) F_Y(y) = \frac{\partial}{\partial x} F_X(x) \frac{\partial}{\partial y} F_Y(y)
$$

 $= f_X(x) f_Y(y)$

Independent continuous RVs

Two continuous random variables X and Y are independent if:

$$
P(X \le x, Y \le y) = P(X \le x)P(Y \le y)
$$

Equivalently:

$$
F_{X,Y}(x, y) = F_X(x)F_Y(y)
$$

$$
f_{X,Y}(x, y) = f_X(x)f_Y(y)
$$

More generally, X and Y are independent if joint density factors separately:

$$
f_{X,Y}(x,y) = g(x)h(y), \text{ where } -\infty < x, y < \infty
$$

Pop quiz! (just kidding)

Are X and Y independent in the following cases?

1.
$$
f_{X,Y}(x, y) = 6e^{-3x}e^{-2y}
$$

where $0 < x, y < \infty$

2.
$$
f_{X,Y}(x, y) = 4xy
$$

where $0 < x, y < 1$

3.
$$
f_{X,Y}(x, y) = 24xy
$$

where $0 < x + y < 1$

Pop quiz! (just kidding)

independent X and Y $f_{X,Y}(x, y) = g(x)h(y),$ where $-\infty < x, y < \infty$

Are X and Y independent in the following cases?

1. $f_{X,Y}(x, y) = 6e^{-3x}e^{-2y}$ where $0 < x, y < \infty$ $g(x) = 3e^{-3x}$ $h(y) = 2e^{-2y}$ Separable functions:

2.
$$
f_{X,Y}(x, y) = 4xy
$$

where $0 < x, y < 1$

Separable functions:
$$
g(x) = 2x
$$

 $h(y) = 2y$

X 3.
$$
f_{X,Y}(x, y) = 24xy
$$

where $0 < x + y < 1$

Cannot capture constraint on $x + y$ into factorization!

If you can factor densities over all of the support, you have independence.

16d_bivariate_normal

Bivariate Normal Distribution

Bivariate Normal Distribution

 X_1 and X_2 follow a bivariate normal distribution if their joint PDF f is

$$
f(x_1, x_2) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}} e^{-\frac{1}{2(1-\rho^2)} \left(\frac{(x_1-\mu_1)^2}{\sigma_1^2} - \frac{2\rho(x_1-\mu_1)(x_2-\mu_2)}{\sigma_1\sigma_2} + \frac{(x_2-\mu_2)^2}{\sigma_2^2}\right)}
$$

Can show that $X_1 \sim \mathcal{N}(\mu_1, \sigma_1^2)$, $X_2 \sim \mathcal{N}(\mu_2, \sigma_2^2)$

(Ross chapter 6, example 5d)

Often written as:

$$
X \sim \mathcal{N}(\mu, \Sigma)
$$

• Vector $\mathbf{X} = (X_1, X_2)$

• Mean vector
$$
\boldsymbol{\mu} = (\mu_1, \mu_2)
$$
, Covariance matrix: $\boldsymbol{\Sigma} =$

 $\text{Cov}(X_1,X_2)$

 $\sigma_1\sigma_2$

$$
\begin{bmatrix} \sigma_1^2 & \rho \sigma_1 \sigma_2 \\ \rho \sigma_1 \sigma_2 & \sigma_2^2 \end{bmatrix}
$$

We will focus on understanding the Recall correlation: $\rho = \frac{\sum V(\lambda_1, \lambda_2)}{\sigma_1 \sigma_2}$ we will focus on understanding

Back to darts

These darts were actually thrown according to a bivariate normal distribution:

$$
X, Y) \sim \mathcal{N}(\mu, \Sigma) \qquad \begin{array}{c} \mu = (450, 600) \\ \Sigma = \begin{bmatrix} 900^2/4 & 0 \\ 0 & 900^2/25 \end{bmatrix} \end{array}
$$

 $(150, 60)$

A diagonal covariance matrix

Let $X = (X_1, X_2)$ follow a bivariate normal distribution $X \sim \mathcal{N}(\mu, \Sigma)$, where

$$
\boldsymbol{\mu} = (\mu_1, \mu_2), \qquad \boldsymbol{\Sigma} =
$$

$$
\Sigma = \begin{bmatrix} \sigma_1^2 & 0 \\ 0 & \sigma_2^2 \end{bmatrix}
$$

)

Are X_1 and X_2 independent?

$$
f(x_1, x_2) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}} e^{-\frac{1}{2(1-\rho^2)} \left(\frac{(x_1-\mu_1)^2}{\sigma_1^2} - \frac{2\rho(x_1-\mu_1)(x_2-\mu_2)}{\sigma_1\sigma_2} + \frac{(x_2-\mu_2)^2}{\sigma_2^2}\right)}
$$

\n
$$
= \frac{1}{2\pi\sigma_1\sigma_2} e^{-\frac{1}{2}\left(\frac{(x_1-\mu_1)^2}{\sigma_1^2} + \frac{(x_2-\mu_2)^2}{\sigma_2^2}\right)}
$$
 (Note covariance: $\rho\sigma_1\sigma_2 = 0$)
\n
$$
= \frac{1}{\sigma_1\sqrt{2\pi}} e^{-(x_1-\mu_1)^2/2\sigma_1^2} \frac{1}{\sigma_2\sqrt{2\pi}} e^{-(x_2-\mu_2)^2/2\sigma_2^2}
$$

\n
$$
= \frac{1}{\sigma_1\sqrt{2\pi}} e^{-(x_1-\mu_1)^2/2\sigma_1^2} \frac{1}{\sigma_2\sqrt{2\pi}} e^{-(x_2-\mu_2)^2/2\sigma_2^2}
$$

(live) 16: Continuous Joint Distributions (I)

Slides by Lisa Yan July 24, 2020

Review

X and *Y* are jointly continuous if they have a joint PDF:
\n
$$
f_{X,Y}(x, y) \text{ such that } \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X,Y}(x, y) dy dx = 1
$$

Most things we've learned about discrete joint distributions translate:

\n Marginal
\n distributions
\n distributions
\n (a) = \n
$$
\int_{-\infty}^{\infty} f_{X,Y}(a, y) \, dy
$$
\n

\n\n Independent RVs
\n $\quad p_{X,Y}(x, y) = p_X(x) p_Y(y)$
\n $\quad f_{X,Y}(x, y) = f_X(x) f_Y(y)$ \n

\n\n Expectation
\n (e.g., LOTUS)
\n $\quad E[g(X, Y)] = \sum_{x} \sum_{y} g(x, y) p_{X,Y}(x, y)$
\n $\quad E[g(X, Y)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x, y) f_{X,Y}(x, y) \, dy \, dx$ \n

\n\n . . . etc.\n

Think

Slide 35 has a question to go over by yourself.

Post any clarifications here!

<https://us.edstem.org/courses/109/discussion/60584>

Think by yourself: 2 min

Warmup exercise

 X and Y have the following joint PDF:

 $f_{X,Y}(x, y) = 3e^{-3x}$ where $0 < x < \infty$, $1 < y < 2$

1. Are X and Y independent?

2. What is the marginal PDF of X ? Of Y ?

3. What is $E[X + Y]$?

Warmup exercise

 X and Y have the following joint PDF:

1. Are X and Y independent?

 $f_{X,Y}(x, y) = 3e^{-3x}$ where $0 < x < \infty$, $1 < y < 2$

 $g(x) = 3Ce^{-3x}$, $0 < x < \infty$ C is a $h(y) = 1/C, \quad 1 < y < 2$ constant

2. What is the marginal PDF of X ? Of Y ?

3. What is $E[X + Y]$?

Lisa Yan, CS109, 2020

✅

Warmup exercise

 X and Y have the following joint PDF:

1. Are X and Y independent?

✅

 $f_{X,Y}(x, y) = 3e^{-3x}$ where $0 < x < \infty$, $1 < y < 2$

 $g(x) = 3Ce^{-3x}$, $0 < x < \infty$ C is a $h(y) = 1/C$, $1 < y < 2$ constant

2. What is the marginal PDF of X ? Of Y ?

3. What is $E[X + Y]$?

Breakout Rooms

Check out the question on the next slide. Post any clarifications here!

<https://us.edstem.org/courses/667/discussion/94992>

Breakout rooms: 4 min. Introduce yourself!

The joy of meetings

Two people set up a meeting time. Each arrives independently at a time uniformly distributed between 12pm and 12:30pm.

Define $X = #$ minutes past 12pm that person 1 arrives. $X \sim$ Unif(0,30) $Y = #$ minutes past 12pm that person 2 arrives. $Y \sim$ Unif $(0, 30)$

What is the probability that the first to arrive waits >10 mins for the other?

Compute: $P(X + 10 < Y) + P(Y + 10 < X) = 2P(X + 10 < Y)$ (by symmetry)

- 1. What is "symmetry" here?
- 2. How do we integrate to compute this probability?

The joy of meetings

Two people set up a meeting time. Each arrives independently at a time uniformly distributed between 12pm and 12:30pm.

Define $X = #$ minutes past 12pm that person 1 arrives. $X \sim$ Unif (0, 30) $Y = #$ minutes past 12pm that person 2 arrives. $Y \sim$ Unif $(0, 30)$

What is the probability that the first to arrive waits >10 mins for the other?

Compute: $P(X + 10 < Y) + P(Y + 10 < X) = 2P(X + 10 < Y)$ (by symmetry)

$$
= 2 \cdot \iint\limits_{x+10 < y} f_{X,Y}(x,y) dxdy = 2 \cdot \iint\limits_{x+10 < y, \atop 0 \le x,y,\le 30} (1/30)^2 dxdy \quad \text{(independence)}
$$

$$
= \frac{2}{30^2} \int_{10}^{30} \int_0^{y-10} dx dy = \frac{2}{30^2} \int_{10}^{30} (y-10) dy = \dots = \frac{4}{9}
$$

Stanford University 42

Interlude for jokes/announcements

Announcements

Interesting probability news

What That Election Probability Means

Even when you shift the probability far left or far right, the opposing candidate still gets some wins. That doesn't mean a forecast was wrong. That's just randomness and uncertainty at play. The probability estimates the percentage of times you get an outcome if you were to do something multiple times.

https://flowingdata.com/2016/07/28/ [what-that-election-probability-means/](https://flowingdata.com/2016/07/28/what-that-election-probability-means/)

Ethics in probability: Utilization and Fairness under Uncertainty

"Suppose there is a remote stretch of coastline with two small villages, A and B, each with a small number of houses."

"In any particular week, the probability distribution over the number of houses C impacted by power outages in each village is as follows:"

 $P_A(C = c) = \begin{cases} 0.6 & c = 0 \\ 0.4 & c = 2 \\ 0 & \text{otherwise} \end{cases}$ $P_B(C = c) = \begin{cases} 0.3 & c = 0 \\ 0.7 & c = 3 \\ 0 & \text{otherwise} \end{cases}$

Suppose you are trying to assign generators to these villages permanently.

- Utilization: E[# of generators that are actually used]
- Fairness: E[village A houses in need get generators] ~= E[village B houses in need get generators]

How do you choose an allocation that optimizes **utilization** subject to our **fairness** constraint? => With **probability** :-)

<https://dl.acm.org/doi/abs/10.1145/3351095.3372847> ACM FAT* Best Paper Award 2020

Lisa Yan, CS109, 2020

Bivariate Normal Distribution

The bivariate normal distribution of $X = (X_1, X_2)$:

- Mean vector $\mu = (\mu_1, \mu_2)$ • Covariance matrix: $\Sigma =$ σ_1^2 $\rho \sigma_1 \sigma_2$ $\rho \sigma_1 \sigma_2 \qquad \sigma_2^2$ σ_1^2 $Cov(X_1, X_2) = Cov(X_2, X_1) = \rho \sigma_1 \sigma_2$
- Marginal distributions: $X_1 \sim \mathcal{N}(\mu_1, \sigma_1^2)$, $X_2 \sim \mathcal{N}(\mu_2, \sigma_2^2)$
- For bivariate normals in particular, $Cov(X_1, X_2) = 0$ implies X_1, X_2 independent.

We will focus on understanding the shape of a bivariate Normal RV.

Breakout Rooms

Check out the question on the next slide. Post any clarifications here!

<https://us.edstem.org/courses/667/discussion/94992>

Breakout rooms: 3 min. Introduce yourself!

Recall for a single RV X with CDF F_X :

CDF: $P(X \leq x) = F_X(x)$

$$
P(a < X \le b) = F_X(b) - F(a)
$$

For two RVs X and Y with joint CDF $F_{X,Y}$:

Joint CDF: $P(X \le x, Y \le y) = F_{XY}(x, y)$ $P(a_1 < X \le a_2, b_1 < Y \le b_2) =$ $F_{X,Y}(a_2,b_2) - F_{X,Y}(a_1,b_2) - F_{X,Y}(a_2,b_1) + F_{X,Y}(a_1,b_1)$

> Note strict inequalities; these properties hold for both discrete and continuous RVs.

Lisa Yan, CS109, 2020

 $P(a_1 < X \le a_2, b_1 < Y \le b_2) =$ $F_{X,Y}(a_2,b_2) - F_{X,Y}(a_1,b_2) - F_{X,Y}(a_2,b_1) + F_{X,Y}(a_1,b_1)$

 $P(a_1 < X \le a_2, b_1 < Y \le b_2) =$ $F_{X,Y}(a_2,b_2) - F_{X,Y}(a_1,b_2) - F_{X,Y}(a_2,b_1) + F_{X,Y}(a_1,b_1)$

$$
P(a_1 < X \le a_2, b_1 < Y \le b_2) =
$$
\n
$$
F_{X,Y}(a_2, b_2) - F_{X,Y}(a_1, b_2) - F_{X,Y}(a_2, b_1) + F_{X,Y}(a_1, b_1)
$$

$$
P(a_1 < X \le a_2, b_1 < Y \le b_2) =
$$
\n
$$
F_{X,Y}(a_2, b_2) - F_{X,Y}(a_1, b_2) - F_{X,Y}(a_2, b_1) + F_{X,Y}(a_1, b_1)
$$

 $P(a_1 < X \le a_2, b_1 < Y \le b_2) =$ $F_{X,Y}(a_2,b_2)-F_{X,Y}(a_1,b_2)-F_{X,Y}(a_2,b_1)+F_{X,Y}(a_1,b_1)$

 $P(a_1 < X \le a_2, b_1 < Y \le b_2) =$ $F_{X,Y}(a_2,b_2) - F_{X,Y}(a_1,b_2) - F_{X,Y}(a_2,b_1) + F_{X,Y}(a_1,b_1)$

$$
P(a_1 < X \le a_2, b_1 < Y \le b_2) =
$$
\n
$$
F_{X,Y}(a_2, b_2) - F_{X,Y}(a_1, b_2) - F_{X,Y}(a_2, b_1) + F_{X,Y}(a_1, b_1)
$$

Probability with Instagram!

 $P(a_1 < X \le a_2, b_1 < Y \le b_2) =$ $F_{X,Y}(a_2,b_2) - F_{X,Y}(a_1,b_2) - F_{X,Y}(a_2,b_1) + F_{X,Y}(a_1,b_1)$

(for next time)

In image processing, a Gaussian blur is the result of blurring an image by a Gaussian function. It is a widely used effect in graphics software, typically to reduce image noise.

Gaussian blur

 $P(a_1 < X \le a_2, b_1 < Y \le b_2) =$ $F_{X,Y}(a_2,b_2) - F_{X,Y}(a_1,b_2) - F_{X,Y}(a_2,b_1) + F_{X,Y}(a_1,b_1)$

In a Gaussian blur, for every pixel:

- Weight each pixel by the probability that X and Y are both within the pixel bounds
- The weighting function is a Bivariate Gaussian (Normal) standard deviation parameter σ

Gaussian blurring with $\sigma = 3$:

 $f_{X,Y}(x, y) =$ 1 $\frac{1}{2\pi \cdot 3^2} e^{-(x^2+y^2)/2 \cdot 3^2}$

What is the weight of the center pixel?

 $P(-0.5 < X \le 0.5, -0.5 < Y \le 0.5) =$

→ Independent
$$
X \sim \mathcal{N}(0, 3^2)
$$
, $Y \sim \mathcal{N}(0, 3^2)$
\n→ Joint CDF: $F_{X,Y}(x, y) = \Phi\left(\frac{x}{3}\right) \Phi\left(\frac{y}{3}\right)$

 $= 0.206$

Next time: More Cont. Joint and Central Limit Theorem

16f_extra

Extra

1. Integral practice

Let X and Y be two continuous random variables with joint PDF: What is $P(X \leq Y)$?

$$
f(x, y) = \begin{cases} 4xy & 0 \le x, y \le 1 \\ 0 & \text{otherwise} \end{cases}
$$

$$
P(X \le Y) = \iint_{\substack{x \le y, \\ 0 \le x, y \le 1}} 4xy \, dx \, dy = \int_{y=0}^{1} \int_{x \le y} 4xy \, dx \, dy = \int_{y=0}^{1} \int_{x=0}^{y} 4xy \, dx \, dy
$$

$$
= \int_{y=0}^{1} 4y \left[\frac{x^2}{2} \right]_{0}^{y} dy = \int_{y=0}^{1} 2y^3 dy = \left[\frac{2}{4}y^4 \right]_{0}^{1} = \frac{1}{2}
$$

2. How do you integrate over a circle?

P(dart hits within $r = 10$ pixels of center)?

$$
P(x^{2} + y^{2} \le 10^{2}) = \int \int f_{X,Y}(x, y) dy dx
$$

$$
x^{2} + y^{2} \le 10^{2}
$$

Let's try an example that doesn't involve integrating a Normal RV ☺

2. Imperfection on Disk

You have a disk surface, a circle of radius R . Suppose you have a single point imperfection uniformly distributed on the disk.

What are the marginal distributions of X and Y ? Are X and Y independent?

$$
f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x, y) dy = \frac{1}{\pi R^2} \int_{x^2 + y^2 \le R^2} dy \quad \text{where } -R \le x \le R
$$

$$
= \frac{1}{\pi R^2} \int_{y = -\sqrt{R^2 - x^2}}^{\sqrt{R^2 - x^2}} dy = \frac{2\sqrt{R^2 - x^2}}{\pi R^2}
$$

$$
f_Y(y) = \frac{2\sqrt{R^2 - y}}{\pi R^2}
$$
 where $-R \le y \le R$, by symmetry

No, X and Y are dependent. $f_{X,Y}(x, y) \neq f_X(x) f_Y(y)$

67

$$
f_{X,Y}(x,y) = \begin{cases} \frac{1}{\pi R^2} & x^2 + y^2 \le R^2\\ 0 & \text{otherwise} \end{cases}
$$