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Remember target?

Hit: 59
Thrown: 309

Good times...

09
— = {).191
309
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CS109 logo with darts

The CS109 logo was created by
throwing 500,000 darts according to a
joint distribution.

If we throw another dart according to
the same distribution, what is

P(dart hits within r pixels of center)?

Quick check: What is the probability that a dart
hits at (456.2344132343, 532.1865739012)7?
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CS109 logo with darts

P(dart hits within r pixels of center)?
900
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CS109 logo with darts

P(dart hits within r pixels of center)?
900

700

500

300

1001

0 . , . .
0 100 300 500 700 900 ) i
X Possible dart counts (in 50x50 boxes)

Lisa Yan, CS109, 2020 Stanford University 7




CS109 logo with darts

P(dart hits within r pixels of center)?
900

0.00000%75
0.00000350 [\
700 0.00000%25
0.00000%00
0.00000475 j
500
Yy

300

1001

500
300

0 o 100 x
0 100 300 500 700 900

Possible dart counts
(in infinitesimally small boxes) iversity
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Continuous joint probability density functions

If two random variables X and Y are jointly continuous, then there exists a
Jjoint probability density function fx y defined over —co < x,y < oo such that:

a, rby

Pla, <X <a, b<Y < bz) = f fxy(x,y)dy dx

a; “bq
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From one continuous RV to jointly continuous RVs

Single continuous RV X

Probability = area
* PDF fx such that [~ fy(x)dx = 1 W under curve

* Integrate to get probabilities o 44 s 0 90

Jointly continuous RVs X and Y

* PDF fyysuchthat|~ [~ fyy(x,y)dydx=1 .

0.00000% 25

* Double integrate to get probabilities -

0.00000450 |

900
800

600

Probability for jointly continuous RVs is volume under a surface.
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Double integrals without tears

Let X and Y be two continuous random variables.

e Support: 0 <X <1,0L8Y < 2.
Is g(x,y) = xy a valid joint PDF over X and Y?

Write down the definite double integral that
must integrate to 1:

Lisa Yan, CS109, 2020
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Double integrals without tears

Let X and Y be two continuous random variables.
200
Suppor: 0 < X <1,0<Y < 2. fir
125
. . . 100
Is g(x,y) = xy a valid joint PDF over X and Y? g }3573
co‘i—q;\‘:‘"\‘_ 1015
05 10 15“ = 0005 Y

Write down the definite double integral that
must integrate to 1:
1 2

f xydydx =1

2 1
j j xydxdy =1 or f
y=0Jx=0 x=0/y=0 - >
o/ &/
O

O d© 49

(used in next slide)
Stanford University
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Double integrals without tears

2.00
L75
1.50
125
1.00
0.75
0.50

0.25

0.00

Let X and Y be two continuous random variables.
e Support: 0 <X <1,0L8Y < 2.
Is g(x,y) = xy a valid joint PDF over X and Y?
0. Set up mtegral
1-] j g(x,y)dx dy = f f xy dx dy

1. Evaluate inside integral by treating y as a constant:

2 1 2 1 2 1 2

f (f xydx)dy :f y(j xdx)dy =j y[—] dy=f y=dy
y=0 \/x=0 y=0 x=0 y=0 |2 0 y=0_ 2

2. Evaluate remalnlng smgle integral:

2
— 1 N — Yes, g(x,y)is a valid joint PDF
y dy [ ] =1 0=1 because it integrates to 1.

y L
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Marginal distributions

Suppose X and Y are continuous random

variables with joint PDF: 01501 f;/ \\ Al
0125 j
0 00 0.100] / fx(x) s ‘
j j fxy(x,y)dydx =1 0050, / \IPC’J)
o0 d—oo 0.0257 . ] :
-
y -2,

4
- _ 0 2
-4 2 .

The marginal density functions (marginal PDFs) are therefore:

fe(@ =f for@ndy  fo(b) = f Fuy (e, b)dx
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Back to darts!

o (OP-dOWN) Match X and Y to their respective marginal PDFs:

{

700

y500 0.0009
0.0008 0.002
300 e o e =s e

- — D.{IGDT 000175

100 :E“ 0.0006 0.0015%
Pyl

% 100 300 xsoo 700 900 E 0.0005 0,00125
£

) ) S 0.0004 0.001
(side view) 2

E 0.0003 0.00075

il 0,0002 0.0005

0.0001 0.00025

: . . : 0.0 F=——— : : :
0 100 300 500 700 apgQ 0 100 300 500 700 900

&
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Back to darts!

(top-down)

Match X and Y to their respective marginal PDFs:
700
y500 0.0009
0.0008 0.002
300
0.0007 0.00175
100 ,E‘ 0.0006 0.0015
0O 100 300 500 700 900 ED.GU’DE 0.00125
X ,E‘
: . E 0.0004 0.001
(side view) g
E 0.0003 0.00075
i) 0.0002 0.0005
0.0001 0.00025
: . . : 0.0 F=——— : : :
0 100 300 500 700 900 0 100 300 500 700 900
pixel X pixely
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Extra slides

If you want more practice with double integrals,
I've included two exercises at the end of this lecture.
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An observation: Connecting CDF to PDF

For a continuous random variable X with PDF f, the CDF (cumulative
distribution function) is

Fla)=PX <a)= ja f(x)dx

The density f is therefore the derivative of the CDF, F:

(Fundamental Theorem

d
f(a) — %F(a) of Calculus)
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Joint cumulative distribution function

For two random variables X and Y, there can be a joint cumulative
distribution function Fy y:

FX,Y(a, b) — P(X < a,Y < b)

For discrete X and Y: For continuous X and Y:
a b
FX,Y(a: b) = 2 z PX,Y(X, y) FX;Y(a’ b) = J_oo J_Oofx,y(X, y)dy dx
x<a y<b 52

fX,Y(a: b) = 34 0b FX,Y(a; b)

Lisa Yan, C$109, 2020 Stanford University 20



Single variable CDF, graphically Review

lim Fy(x) =1

X—+ 00

1.0 - - :

- /

f\‘-. 0.6 1 ;;;

CDF Fix)
.,

04 - /

0.200
0.175
J \
00 - '-.‘.
\ [
0.075 A {
/ \
f \ .
0.050 4 / 0.2
0.025 / \\
0.000 { =" e — =
-100 -75 -50 -25 00 25 50 75 100
X

001 e

-100 75 50 25 0.0 25 5.0 7.5 10.0

lim Fy(x) = 0 "

fx(x) T Fy(x) =P(X <x)
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Joint CDF, graphically

lim Fyy(x,y) =1

X,y —>+00
0.8
3
et
0.6 g
o)
04 &
&l ke
10.0
24

/‘10-97_5
5.0
254,
v 25

llm FX,Y(x,y) — O X

X,y——00

50 —-7.
7.5 10 0-10.0

fxy (6, y) Fyy(x,y) =P(X <x,Y <y)
Stanford University 22
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Independent continuous RVs

Two continuous random variables X and Y are independent if:

P(X<x,Y<y)=PX<x)PY <y) vy

Equivalently:

Fxy(x,y) = Fx(x)Fy(y) Vx,y
fX,Y(x» y) = fx(x)fy(y)

Proof of PDF:

2 62
fX,Y(x; y) = x 9y FX,Y(x: y) = 9x Ay Fy(x)Fy (y)
d ad d d
=——F F =—F —F
dx Oy x () Fy (y) Ox ¥ (%) 3y v ()

= fx()fy ()
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Independent continuous RVs

More generally, X and Y are independent if joint density factors separately:

fxr (6, y) = g(x)h(y), where — o0 < x,y < o

Lisa Yan, C$109, 2020 Stanford University 25




fxy(x,y) = g(x)h(y), independent

POP qUIZ' (]USt 1<1dd1ng) where — o0 < x,y < © XandY

Are X and Y independent in the following cases?

fxy(x,y) = 6e™*e™%Y
where 0 < x,y < o0

fxy(x,y) = 4xy
where 0 <x,y <1

fX,Y(ny) — 24xy
where0 <x+ y <1

Lisa Yan, C$109, 2020 Stanford University 26




fxy (e, y) = g(x)h(y), independent

Pop quiz! (just kidding) where — w0 < x,y < ) Xand ¥

Are X and Y independent in the following cases?

fxy(x,y) = 6e 3Xe~2Y Separable functions: g(x) = 3e™3*

where 0 < x,y < oo h(y) = 2e™%
fxv(x,y) = 4xy Separable functions: g(x) = 2x
where 0 < x,y < 1 h(y) = 2y
X 3. fxy(x,y) = 24xy Cannot capture constraint on x + y
where0 < x+ y <1 into factorization!

If you can factor densities over all of the
support, you have independence.

Lisa Yan, C$109, 2020 Stanford University 27
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Bivariate Normal Distribution

X1 and X, follow a bivariate normal distribution if their joint PDF f is

1 _ 1 <(x1—u1)2 _2p(x1—p) (X — Up) N (xz—ﬂ2)2>
F i xz) = RN
2101054/ 1 — p2
Can show that X; ~N(u1, 0'12), X5 ~N(u2, 0'22) (Ross chapter 6, example 5d)
Often written as: X~N(u X)

2

2
01 P0102]
pP0O102 )

Mean vector u = (u4, u,), Covariance matrix: £ = [

Cov(xy,X5) We will focus on understanding the
0105 shape of a bivariate Normal RV.

Recall correlation: p =

Lisa Yan, C$109, 2020 Stanford University 29




Back to darts

(top-down)

900

700

500
y

300

100

0

0 100 300 500 700 900
X

(side view)

These darts were actually thrown according
to a bivariate normal distribution:

1 = (450,600)

5 _ 9002 /4 0
I 9002%/25

— 7 \
0.0008 0.002 / \
0.0007 0.00175 I,f# \
£ 0.0006 0.0015 ;'I HR
000 / \

0.00125

& 0.0004 9002 0.001 / 9002 Hﬂ.
Lo X~V (450, s Y~V {1600, —=— |\
§ \

(X: Y) NN(”J Z)

Marginal
PDFs:

4 25

0.0002 0.0005
0.0001 0.00025
. . . ; 0.0 =y . . . |
0 100 300 500 J00 900 0 100 300 500 F00 900
pixel x pixel y
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A diagonal covariance matrix

Let X = (X, X,) follow a bivariate normal distribution X~N (i, X), where

of O]

— ) ) z:
p = (U, 4z) [O 022

Are X; and X, independent?

1 - 5 1 2)((961—!211)2 _Zp(xl—ﬂ1)(x2—ﬂz)_l_(xz—élz)Z)
f(x1,x;) = e *U=p 1 9102 72
210,05+ 1 — p?
1 ~ 1((961—111)2 N (xz—u2)2> (Note covariance: po;o, = 0)
— e 2 0'12 0'22
210107 X, and X, are independent
with marginal distributions
— 1 e—(xl—ﬂ1)2/2012_ 1 e—(xz—.uz)z/zazz X~ & 2 X\ 2
Ulm 02\/% 1~N (U 07), Xo~N (U 05)
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Jointly continuous RVs

X and Y are jointly continuous if they have a joint PDF:
fxy (x,y) such that f f fxy(x,y)dydx =1

Most things we’ve learned about discrete joint distributions translate:

distributions

vargnal  py(a) = ) pyy(ay) @ = | fur(@nay
> — 00

IndependentRVs  Pxy(x,¥) = px(x)py(y) fxy(y) = fx(O)fy(y)

o torue ElOENI= Y gCoypxyy)  Elglx, V)] = f f 9063 fiy (2, y)dy dx
X y —o00 Y —o00

...etc.
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Slide 35 has a question to go over by

Think yourself.

Post any clarifications here!

https://us.edstem.org/courses/109/discussion/60584

Think by yourself: 2 min

34



https://us.edstem.org/courses/109/discussion/60584

Warmup exercise

— —3x
X and Y have the following joint PDF: fry(x,y) = 3e
where) < x <o0,1<y<?2

1. Are X and Y independent?

2. What is the marginal
PDF of X? Of Y?

3. Whatis E[X + Y]?

Lisa Yan, CS109, 2020 Stanford University 35




Warmup exercise

— —3x
X and Y have the following joint PDF: fry(x,y) = 3e
where) < x <o0,1<y<?2

1. Are X and Y independent? gx) =3Ce™*,0<x <o (isa
h(y)=1/C, 1<y<2 constant

- N
fX Y(x; y)

Lisa Yan, C$109, 2020 Stanford University 36




Warmup exercise

X and Y have the following joint PDF: fxy(x,y) = 3e73*
where ) <x <o0,1<y<?2

Are X and Y independent? gx) =3Ce™3*,0<x <o C(Cisa
h(y)=1/C, 1<y<2 constant

What is the marginal

PDF of X? Of Y?

What is E[X + Y]?

Lisa Yan, C$109, 2020 Stanford University 37



Check out the question on the next slide.
Post any clarifications here!

Bfeal(OUt https://us.edstem.org/courses/667/discussion/94992
Rooms

Breakout rooms: 4 min. Introduce yourself!

39
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The joy of meetings

Two people set up a meeting time. Each arrives independently at a time uniformly
distributed between 12pm and 12:30pm.

Define X = # minutes past 12pm that person 1 arrives. X~Unif(0,30)
Y = # minutes past 12pm that person 2 arrives. Y~Unif(0, 30)

What is the probability that the first to arrive waits >10 mins for the other?

Compute: P(X +10<Y)+P(Y +10< X)) =2P(X+10<Y) (by symmetry)
What is “symmetry” here?
How do we integrate to compute this probability?

Lisa Yan, CS109, 2020 Stanford University 40



The joy of meetings

Two people set up a meeting time. Each arrives independently at a time uniformly
distributed between 12pm and 12:30pm.

Define X = # minutes past 12pm that person 1 arrives. X~Unif(0, 30)
Y = # minutes past 12pm that person 2 arrives. Y~Unif(0, 30)

What is the probability that the first to arrive waits >10 mins for the other?

Compute: P(X +10<Y)+P(Y+10< X)=2P(X+10<Y) (by symmetry)

] fxy(,y)dxdy =2 - f (1/30)?dxdy  (independence)

x+10<y x+10<y,
0=<x,y,<30

jy 10 2 30 4

dxdy =—-—= (y—10)dy —..=_

302 10 30% )10 9

Lisa Yan, C$109, 2020 Stanford University 42



Interlude for
jokes/announcements




Announcements

4 )
Grades
Pset 3 by: Tonight
Midterm by: End of weekend
N /
4 )

Problem Set 4 due soon

Due:

o

Monday 7/27 1pm

)

4 N\
Mid-quarter feedback form
Link (Stanford account login)
Open until: Wednesday
\ %
4 N\

Problem Set 5 out tonight

Due: Monday 8/3 1pm
Covers: Up to Wed’s lecture (16)
N

)

Lisa Yan, CS109, 2020
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https://forms.gle/8zfueMbfaXc7zxoj6

Interesting probability news

What Th at Election Give Clinton a 68% chance of winning and Trump 32%
Probability Means S
Hillary Clinton Donald Trump
78% 22%

Even when you shift the probability far left or far
right, the opposing candidate still gets some wins.
That doesn’t mean a forecast was wrong. That’s just S : 3
randomness and uncertainty at play. The probability o
estimates the percentage of times you get an XA

outcome if you were to do something multiple times.

https://flowingdata.com/2016/07/28/
what-that-election-probability-means/
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Ethics in probability: Utilization and Fairness under Uncertainty

“Suppose there is a remote stretch of coastline with two “In any particular week, the probability distribution over the
small villages, A and B, each with a small number of ~ number of houses C impacted by power outages in each

houses.” village is as follows:”
0i6 =9 0.3 =8
Vil =cj=3Pp4 =2 Pl = e)=%30:7 =3
0 otherwise 0 otherwise

Suppose you are trying to assign generators to these villages permanently.

Utilization:  E[# of generators that are actually used]
Fairness: E[village A houses in need get generators] ~= E[village B houses in need get generators]

How do you choose an allocation that optimizes utilization subject to our fairness constraint?
=> With -)

https://dl.acm.org/doi/abs/10.1145/3351095.3372847 ACM FAT* Best Paper Award 2020

Lisa Yan, C$109, 2020 Stanford University 47
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Bivariate Normal Distribution

The bivariate normal distribution of X = (X1, X,):
X~N(u X)

Mean vector u = (uq, 4,)

2
01 p0O103

2 ] COV(XltXZ) — COV(X21X1) = P0103
p0O103 03

Covariance matrix;: X = [

Marginal distributions: X; ~N (uy, 6¢), X, ~N (U5, 05)
For bivariate normals in particular, Cov(X¢, X,) = 0 implies X1, X, independent.

We will focus on understanding the
shape of a bivariate Normal RV.

Lisa Yan, CS109, 2020 Stanford University 4s




Check out the question on the next slide.
Post any clarifications here!

Bfeal(OUt https://us.edstem.org/courses/667/discussion/94992
Rooms

Breakout rooms: 3 min. Introduce yourself!

49
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(X,Y) Matching (all have u = (0,0)) 9 A |

Lisa Yan, CS109, 2020
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. L o] L [l o]
(X,Y) Matching (all have u = (0,0)) lo 1 lo 2
! 0'5][) 1 —05
05 117 l-05 1
1. 2. :

X
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Probabilities from joint CDFs

Recall for a single RV X with CDF Fy:
CDF: P(X < x) = Fyx(x)

Pla< X <b)= Fyx(b)—F(a)

For two RVs X and Y with joint CDF Fy y:
JointCDF: P(X < x,Y <y) = Fxy(x,y)
P(a; <X <a,; b <Y <bhy)=
FX,Y(aZ,bZ) — FX,Y(al,bZ) — FX,Y(aZ,bl) + FX,Y(al,bl)

Note strict inequalities; these properties hold
for both discrete and continuous RVs.

Lisa Yan, C$109, 2020 Stanford University 52




Probabilities from joint CDFs

P(a; <X <ayb, <Y<bhy)=
Fxy(az,b2) — Fxy(ay,bz) — Fxy(azb1) + Fxy(a1,b1)

Lisa Yan, C$109, 2020 Stanford University 53




Probabilities from joint CDFs

Pla, <X <a,,by<Y <bh,) =
FX,Y(aZ,bZ)

Stanford University 54




Probabilities from joint CDFs

P(a; <X <ayb, <Y<bh,)=
FX,Y(aZ,bZ) — Fxy (a1,bz)

Stanford University 55




Probabilities from joint CDFs

P(a; <X <ay b, <Y<bh,)=
FX»Y(aZ,bZ) o FX,Y(al,bZ) — Fx}y(azibl)

Stanford University 56




Probabilities from joint CDFs

P(a; <X <ayb, <Y<bhy)=
FX;Y(aZ,bZ) o FX,Y(al,bZ) — FX,y(az’bl)

Lisa Yan, C$109, 2020 Stanford University 57




Probabilities from joint CDFs

P(a; <X <ayb <Y <bh,)=
Fyy(azby) — Fyy(aiby) — Fxy(azby) + Fyy(as by)

Lisa Yan, CS109, 2020 Stanford University 58




Probabilities from joint CDFs

P(a; <X <ayb <Y <bh,)=
Fyy(azby) — Fyy(aiby) — Fyy(azby) + Fxy(as by)

Lisa Yan, CS109, 2020 Stanford University 59




o7 . P(a, <X <a, b, <Y<bh,)=
Probability with Instagram! o e P — ) )
(for next
time)

e
wt

Original

In image processing, a Gaussian blur is the result of blurring an
image by a Gaussian function. It is a widely used effect in
graphics software, typically to reduce image noise.

StDev = 10

Lisa Yan, CS109, 2020 Stanford University 60




. Pla; <X <a,,by <Y <bh,) =
Gaussian blur ) )

FX,Y(aZ,bZ) - FX,Y(al,bZ) - FX,Y(aZ,bl) + FX,Y(al,bl)

05 15

X 505
In lan blur, for every pixel: . .
a Qauss @ .b f, Torevery pixe Weight matrix:
* Weight each pixel by the probability that X )
and Y are both within the pixel bounds Center pixel: (O, 0) .,
» The weighting function is a Bivariate Pixel bounds: =
Gaussian (Normal) standard deviation —05<x<0.5
parameter o —05<y<0.5
Gaussian blurring with o = 3:

2.2y a2 = Independent X~N(0,3%),Y~N(0,32%)
~e (x2+y?2)/2-3 | y )
2m - 3 > Joint CDF: Fyy (x,y) = @ (5) @ (%)
What is the weight of the center pixel?

fX,Y(x! y) —

P(—0.5< X <0.5-05<Y <0.5) =

= 0.206
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Next time:

More Cont. Joint
and Central Limit

Theorem




16f _extra

Extra




1. Integral practice

Let X and Y be two continuous random
variables with joint PDF: flx,y) =

What is P(X < Y)?

4xy 0<x,y<1
0 otherwise

1

P(X<Y)= ﬂ 4xy dx dy = j j4xydxdy =f
=0

X<y, y=0 x<y Yy
0<x,y<1

y
f 4xy dx dy
=0

1 1

x2]” ; 2 71 1

—_ 4‘ — d — 2 = |— 4 — =

j y[zL g f ydy l4y] 2
y=0 y=0 0
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2. How do you integrate over a circle?

0 . : L .

| P(dart hits within r = 10 pixels of center)?
200 !

P(x? +y? <10%) = fxy(x,y)dy dx
x% +y% <102

600 -
800 - | Let’s try an example that doesn’t
900 | R R | involve integrating a Normal RV

0 200 400 600 800 900 @

X
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2. Imperfection on Disk

You have a disk surface, a circle of radius R. (1
Suppose you have a single point imperfection foy(,y) ={7p2
uniformly distributed on the disk. o

What are the marginal distributions of X and Y?
Are X and Y independent?

x* +y* < R?

. 0 otherwise

> 1
fx(x) = f fX,Y(x; y)dy = TR2 f dy where —R < x <R

x%+y?<R?
VRZ—x2
1 2VRZ — x?2
~ TR? f @ = TR?
y=—VRZ—x2

2\/R2 No, X and Y are dependent.
fry) = e Y where —R < y < R, by symmetry fXY(x v) # fx ) fy (v)
7T
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