18: Central Limit Theorem

Lisa Yan May 15, 2020

Quick slide reference

3	i.i.d. random variables	18a_iid
9	Central Limit Theorem	18b_clt
19	CLT example	18c_clt_example
24	Sum/average/max of i.i.d. rvs	18d_sums
30	Exercises	LIVE
43	Extra: History of the CLT	18f_clt_history

i.i.d. random variables

Another big day

Up until this point, we've mostly covered traditional probability topics:

- Equally likely outcomes
- · Conditional probability, independence, random variables
- Joint probability distributions, conditional expectation

We have done some awesome applications:

- Federalist Papers: Authorship identification
- WebMD: General Inference

Today

 Our last big topic in traditional probability before we move onto modern-day statistical analysis!

Independence of multiple random variables

We have independence of n discrete random variables $X_1, X_2, ..., X_n$ if for all $x_1, x_2, ..., x_n$:

$$P(X_1 = x_1, X_2 = x_2, \dots, X_n = x_n) = \prod_{i=1}^{n} P(X_i = x_i)$$

$$p_{X_1, X_2, \dots, X_n}(x_1, x_2, \dots, x_n) = \prod_{i=1}^{n} p_{X_i}(x_i)$$

We have independence of n continuous random variables $X_1, X_2, ..., X_n$ if for all $x_1, x_2, ..., x_n$:

$$P(X_1 \le x_1, X_2 \le x_2, \dots, X_n \le x_n) = \prod_{i=1}^n P(X_i \le x_i)$$

$$f_{X_1, X_2, \dots, X_n}(x_1, x_2, \dots, x_n) = \prod_{i=1}^n f_{X_i}(x_i)$$
Starfard University

i.i.d. random variables

Consider n variables X_1, X_2, \dots, X_n .

 X_1, X_2, \dots, X_n are independent and identically distributed if

- $X_1, X_2, ..., X_n$ are independent, and
- All have the same PMF (if discrete) or PDF (if continuous).
 - $\Rightarrow E[X_i] = \mu \text{ for } i = 1, ..., n$
 - \Rightarrow Var $(X_i) = \sigma^2$ for i = 1, ..., n

Same thing: i.i.d.

iid

IID

Quick check

Are $X_1, X_2, ..., X_n$ i.i.d. with the following distributions?

- 1. $X_i \sim \text{Exp}(\lambda)$, X_i independent
- 2. $X_i \sim \text{Exp}(\lambda_i)$, X_i independent
- 3. $X_i \sim \text{Exp}(\lambda), X_1 = X_2 = \dots = X_n$

4. $X_i \sim \text{Bin}(n_i, p)$, X_i independent

Quick check

Are $X_1, X_2, ..., X_n$ i.i.d. with the following distributions?

1. $X_i \sim \text{Exp}(\lambda)$, X_i independent

2. $X_i \sim \text{Exp}(\lambda_i)$, X_i independent

(unless λ_i equal)

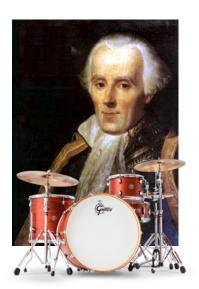
3. $X_i \sim \text{Exp}(\lambda), X_1 = X_2 = \cdots = X_n$

dependent: $X_1 = X_2 = \cdots = X_n$

4. $X_i \sim \text{Bin}(n_i, p)$, X_i independent

 \times (unless n_i equal) Note underlying Bernoulli RVs are i.i.d.!

Central Limit Theorem



(silent drumroll)

Central Limit Theorem

Consider n independent and identically distributed (i.i.d.) variables X_1, X_2, \dots, X_n with $E[X_i] = \mu$ and $Var(X_i) = \sigma^2$.

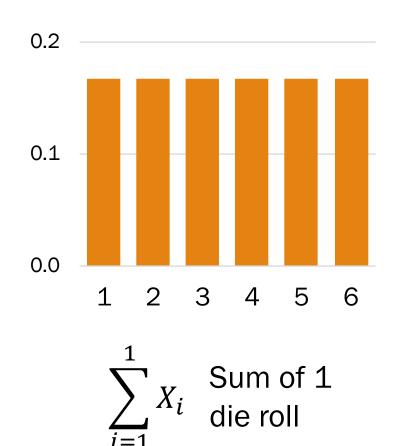
$$\sum_{i=1}^{n} X_i \sim \mathcal{N}(n\mu, n\sigma^2)$$

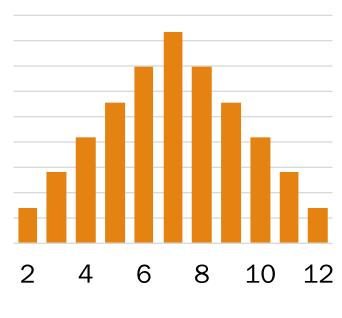
The sum of n i.i.d. random variables is normally distributed with mean $n\mu$ and variance $n\sigma^2$.

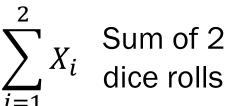
True happiness

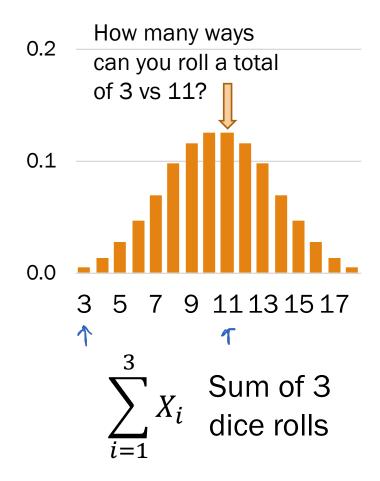
Sum of dice rolls

Roll n independent dice. Let X_i be the outcome of roll i. X_i are i.i.d.



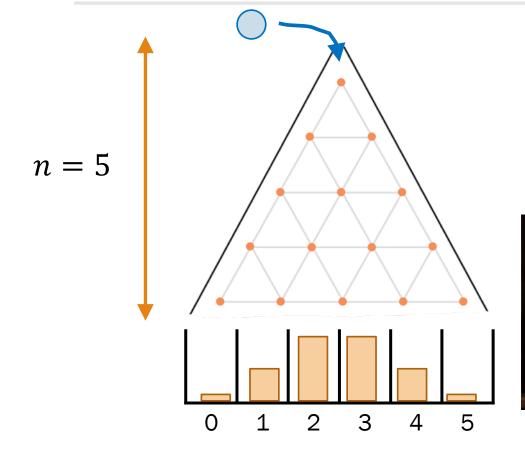




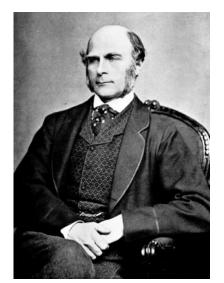


$$\sum_{i=1}^{n} X_i \sim \mathcal{N}(n\mu, n\sigma^2)$$

The sum of n i.i.d. random variables is normally distributed with mean $n\mu$ and variance $n\sigma^2$.



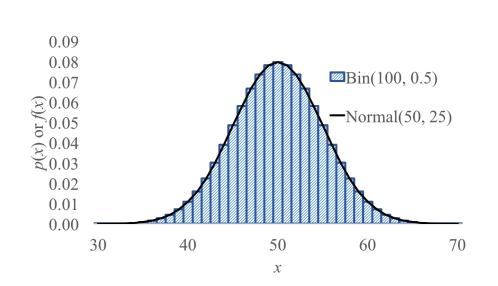
Galton Board, by Sir Francis Galton (1822-1911)



Stanford University 14

$$\sum_{i=1}^{n} X_i \sim \mathcal{N}(n\mu, n\sigma^2)$$

The sum of n i.i.d. random variables is normally distributed with mean $n\mu$ and variance $n\sigma^2$.



Normal approximation of Binomial Sum of i.i.d. Bernoulli RVs ≈ Normal

Proof:

Let $X_i \sim \text{Ber}(p)$ for i = 1, ..., n, where X_i are i.i.d. $E[X_i] = p$, $Var(X_i) = p(1 - p)$

$$X = \sum_{i=1}^{n} X_i \qquad (X \sim \text{Bin}(n, p))$$

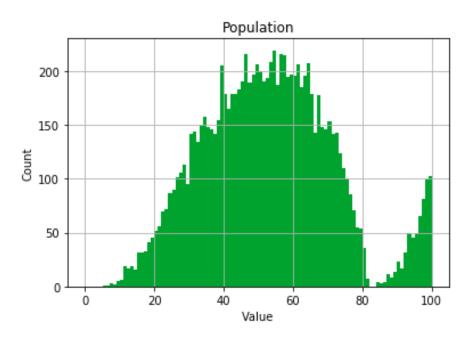
$$X \sim \mathcal{N}(n\mu, n\sigma^2)$$
 (CLT, as $n \to \infty$)

$$X \sim \mathcal{N}(np, np(1-p))$$

(substitute mean, variance of Bernoulli)

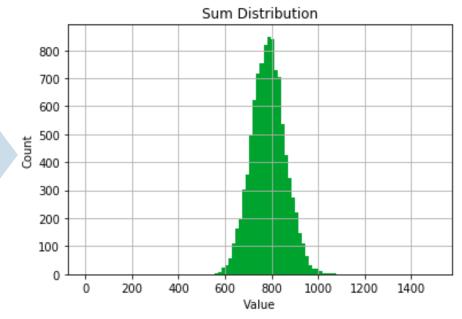
$$\sum_{i=1}^{n} X_i \sim \mathcal{N}(n\mu, n\sigma^2)$$

The sum of n i.i.d. random variables is normally distributed with mean $n\mu$ and variance $n\sigma^2$.



Distribution of X_i

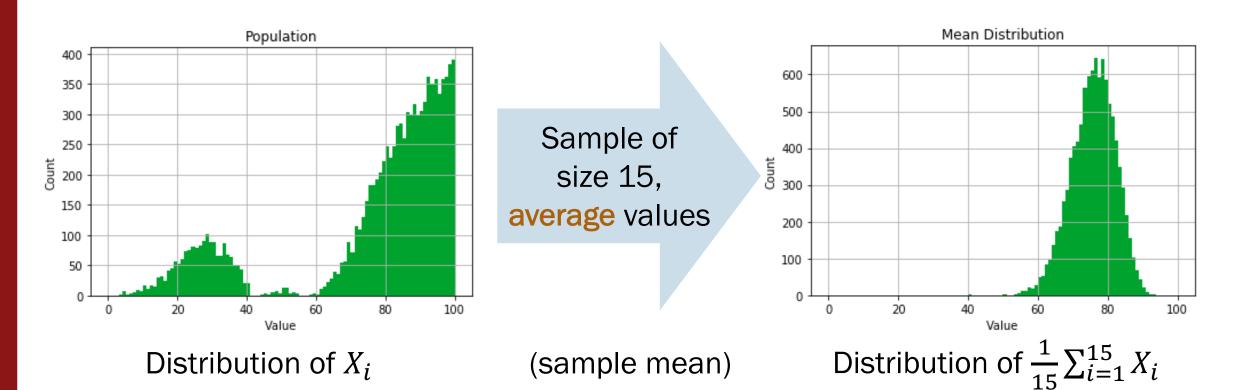
Sample of size 15, sum values



Distribution of $\sum_{i=1}^{15} X_i$

$$\sum_{i=1}^{n} X_i \sim \mathcal{N}(n\mu, n\sigma^2)$$

The sum of n i.i.d. random variables is normally distributed with mean $n\mu$ and variance $n\sigma^2$.



Proof of CLT

$$\sum_{i=1}^{n} X_i \sim \mathcal{N}(n\mu, n\sigma^2)$$

The sum of n i.i.d. random variables is normally distributed with mean $n\mu$ and variance $n\sigma^2$.

Proof:

- The Fourier Transform of a PDF is called a characteristic function.
- Take the characteristic function of the probability mass of the sample distance from the mean, divided by standard deviation
- $f(x) = e^{-\frac{x^2}{2}}$ Show that this approaches an exponential function in the limit as $n \to \infty$:
- This function is in turn the characteristic function of the Standard Normal, $Z \sim \mathcal{N}(0,1)$.

(this proof is beyond the scope of CS109)

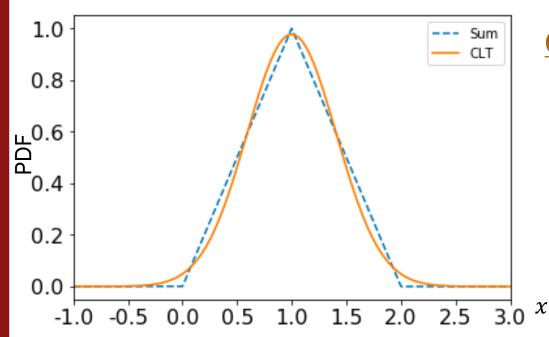
18c_clt_example

CLT example

Let $X = \sum_{i=1}^{n} X_i$ be sum of i.i.d. RVs, where $X_i \sim \text{Uni}(0,1)$. $\mu = E[X_i] = 1/2$ $\sigma^2 = \text{Var}(X_i) = 1/12$

For different n, how close is the CLT approximation of $P(X \le n/3)$?

n = 2:



Exact

$$P(X \le 2/3) \approx 0.2222$$

CLT approximation

$$X \approx Y \sim \mathcal{N}(n\mu, n\sigma^2) \implies Y \sim \mathcal{N}(1, 1/6)$$

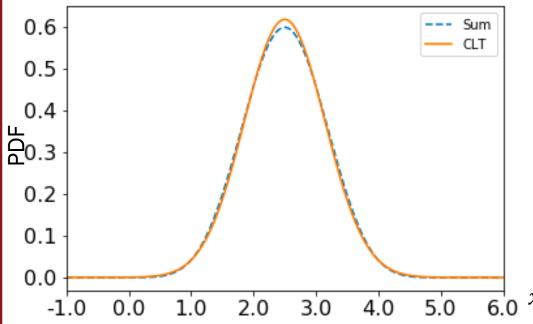
$$P(X \le 2/3) \approx P(Y \le 2/3)$$

$$=\Phi\left(\frac{2/3-1}{\sqrt{1/6}}\right) \approx 0.2071$$

Let $X = \sum_{i=1}^{n} X_i$ be sum of i.i.d. RVs, where $X_i \sim \text{Uni}(0,1)$. $\mu = E[X_i] = 1/2$ $\sigma^2 = \text{Var}(X_i) = 1/12$

For different n, how close is the CLT approximation of $P(X \le n/3)$?

n = 5:



Exact

$$P(X \le 5/3) \approx 0.1017$$

CLT approximation

$$X \approx Y \sim \mathcal{N}(n\mu, n\sigma^2) \implies Y \sim \mathcal{N}(5/2, 5/12)$$

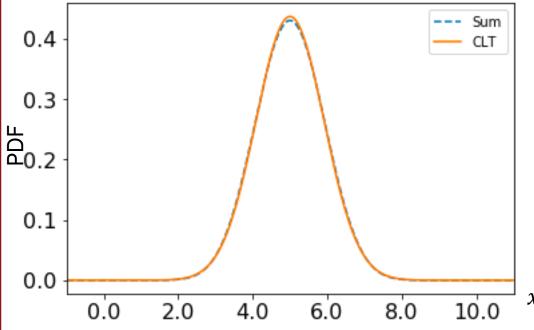
$$P(X \le 5/3) \approx P(Y \le 5/3)$$

$$= \Phi\left(\frac{5/3 - 5/2}{\sqrt{5/12}}\right) \approx 0.0984$$

Let $X = \sum_{i=1}^{n} X_i$ be sum of i.i.d. RVs, where $X_i \sim \text{Uni}(0,1)$. $\mu = E[X_i] = 1/2$ $\sigma^2 = \text{Var}(X_i) = 1/12$

For different n, how close is the CLT approximation of $P(X \le n/3)$?

n = 10:



Exact

$$P(X \le 10/3) \approx 0.0337$$

CLT approximation

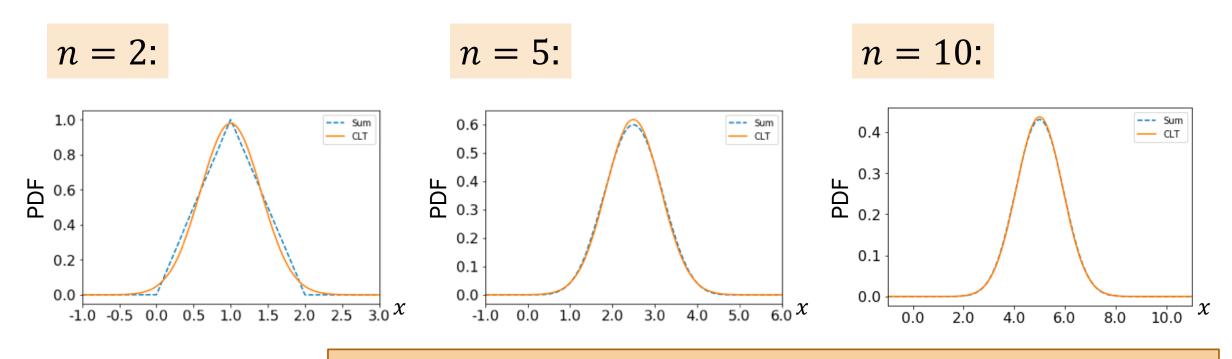
$$X \approx Y \sim \mathcal{N}(n\mu, n\sigma^2) \implies Y \sim \mathcal{N}(5, 5/6)$$

$$P(X \le 10/3) \approx P(Y \le 10/3)$$

$$=\Phi\left(\frac{10/3-5}{\sqrt{5/6}}\right) \approx 0.0339$$

Let $X = \sum_{i=1}^{n} X_i$ be sum of i.i.d. RVs, where $X_i \sim \text{Uni}(0,1)$. $\mu = E[X_i] = 1/2$ $\sigma^2 = \text{Var}(X_i) = 1/12$

For different n, how close is the CLT approximation of $P(X \le n/3)$?



Most books will tell you that CLT holds if $n \ge 30$, but it can hold for smaller n depending on the distribution of your i.i.d. X_i 's.

Sum/average/ max of i.i.d. random variables

What about other functions?

Let $X_1, X_2, ..., X_n$ be i.i.d., where $E[X_i] = \mu$, $Var(X_i) = \sigma^2$. As $n \to \infty$:

$$\sum_{i=1}^{n} X_i \sim \mathcal{N}(n\mu, n\sigma^2)$$

Sum of i.i.d. RVs

Average of i.i.d. RVs (sample mean)

Max of i.i.d. RVs

What about other functions?

Let $X_1, X_2, ..., X_n$ be i.i.d., where $E[X_i] = \mu$, $Var(X_i) = \sigma^2$. As $n \to \infty$:

$$\sum_{i=1}^{n} X_i \sim \mathcal{N}(n\mu, n\sigma^2)$$

Sum of i.i.d. RVs

Average of i.i.d. RVs (sample mean)

Max of i.i.d. RVs

Distribution of sample mean

Let
$$X_1, X_2, ..., X_n$$
 be i.i.d., where $E[X_i] = \mu$, $Var(X_i) = \sigma^2$. As $n \to \infty$:

Define:
$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$
 (sample mean) $Y = \sum_{i=1}^{n} X_i$ (sum)

$$Y \sim \mathcal{N}(n\mu, n\sigma^2)$$
 (CLT, as $n \to \infty$)

$$\bar{X} = \frac{1}{n}Y$$

$$\bar{X} \sim \mathcal{N}(?,?)$$

(Linear transform of a Normal)

$$\mathbb{E}[X] = \frac{1}{n} \mathbb{E}[Y] = \mu$$

$$Var(X) = \frac{1}{n}^{2} Var(Y) = \frac{1}{n}^{2} n \sigma^{2} = \frac{\sigma^{2}}{n}$$

$$X \sim N(\mu, \pi)$$

Distribution of sample mean

Let
$$X_1, X_2, ..., X_n$$
 be i.i.d., where $E[X_i] = \mu$, $Var(X_i) = \sigma^2$. As $n \to \infty$:

Define:
$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$
 (sample mean) $Y = \sum_{i=1}^{n} X_i$ (sum)

$$Y \sim \mathcal{N}(n\mu, n\sigma^2)$$
 (CLT, as $n \to \infty$)

$$\bar{X} = \frac{1}{n}Y$$

$$\bar{X} \sim \mathcal{N}\left(\mu, \frac{\sigma^2}{n}\right)$$

(Linear transform of a Normal)

$$\frac{1}{n} \sum_{i=1}^{n} X_i \sim \mathcal{N}(\mu, \frac{\sigma^2}{n})$$

The average of i.i.d. random variables (i.e., sample mean) is normally distributed with mean μ and variance σ^2/n .

Demo: http://onlinestatbook.com/stat_sim/sampling_dist/

What about other functions?

Let $X_1, X_2, ..., X_n$ be i.i.d., where $E[X_i] = \mu$, $Var(X_i) = \sigma^2$. As $n \to \infty$:

$$\sum_{i=1}^{n} X_i \sim \mathcal{N}(n\mu, n\sigma^2)$$

Sum of i.i.d. RVs

$$\frac{1}{n} \sum_{i=1}^{n} X_i \sim \mathcal{N}(\mu, \frac{\sigma^2}{n})$$

Average of i.i.d. RVs (sample mean)

Gumbel

Max of i.i.d. RVs

(see Fisher-Tippett Gnedenko Theorem)

(live)

18: Central Limit Theorem

Lisa Yan May 15, 2020

Think

Slide 36 has a question to go over by yourself.

Post any clarifications here!

https://us.edstem.org/courses/109/discussion/64187

Think by yourself: 2 min

Quick check

What dimensions are the following RVs? (Let X_i be i.i.d. with mean μ)

$$1. X_2$$

2.
$$(X_1, X_2, ..., X_n)$$

$$3. \sum_{i=1}^{n} X_i$$

$$4. \quad \frac{1}{n} \sum_{i=1}^{n} X_i$$

$$\frac{1}{n}\sum_{i=1}^{n}\mu$$

B.
$$n$$
 -D random variable (a vector)

Quick check

What dimensions are the following RVs? (Let X_i be i.i.d. with mean μ)

- 2. $(X_1, X_2, ..., X_n)$ $\mathcal{E}_{(aka a sample)}$

- (aka the sample mean)

- 1-D random variable
- B. n -D random variable (a vector)
- C. not a random variable

Dice game

As
$$n \to \infty$$
:
$$\sum_{i=1}^{n} X_i \sim \mathcal{N}(n\mu, n\sigma^2)$$

You will roll 10 6-sided dice $(X_1, X_2, ..., X_{10})$.

- Let $X = X_1 + X_2 + \cdots + X_{10}$, the total value of all 10 rolls.
- You win if $X \le 25$ or $X \ge 45$.

To the demo!

Discussion

Slide 50 has a question to discuss together.

Post any clarifications here! Or just unmute!

https://us.edstem.org/courses/109/discussion/64187

Think by yourself: 1 min

Discuss (as a class): 3 min

Dice game

As
$$n \to \infty$$
:
$$\sum_{i=1}^{n} X_i \sim \mathcal{N}(n\mu, n\sigma^2)$$

You will roll 10 6-sided dice $(X_1, X_2, ..., X_{10})$.

• Let $X = X_1 + X_2 + \cdots + X_{10}$, the total value of all 10 rolls.

• You win if $X \le 25$ or $X \ge 45$.

And now the truth (according to the CLT)...

1. Define RVs and state goal.

$$E[X_i] = 3.5,$$

 $Var(X_i) = 35/12$

Want: $P(X \le 25 \text{ or } X \ge 45)$

Approximate:

2. Solve.

Dice game

As
$$n \to \infty$$
: $\sum_{i=1}^{n} X_i \sim \mathcal{N}(n\mu, n\sigma^2)$

You will roll 10 6-sided dice $(X_1, X_2, ..., X_{10})$.

- Let $X = X_1 + X_2 + \cdots + X_{10}$, the total value of all 10 rolls.
- You win if $X \le 25$ or $X \ge 45$.

And now the truth (according to the CLT)...

1. Define RVs and state goal.

$$E[X_i] = 3.5,$$

 $Var(X_i) = 35/12$

2. Solve.

Want:

$$P(X \le 25 \text{ or } X \ge 45)$$

Approximate:

$$X \approx Y \sim \mathcal{N}(10(3.5), 10(35/12))$$
discrete — continues

$$1 - P(25.5 \le Y \le 44.5)$$

Dice game

As
$$n \to \infty$$
:
$$\sum_{i=1}^{n} X_i \sim \mathcal{N}(n\mu, n\sigma^2)$$

You will roll 10 6-sided dice $(X_1, X_2, ..., X_{10})$.

- Let $X = X_1 + X_2 + \cdots + X_{10}$, the total value of all 10 rolls.
- You win if $X \le 25$ or $X \ge 45$.

And now the truth (according to the CLT)...

1. Define RVs and state goal.

$$E[X_i] = 3.5,$$

 $Var(X_i) = 35/12$

Want: $P(X \le 25 \text{ or } X \ge 45)$

Approximate:

 $X \approx Y \sim \mathcal{N}(10(3.5), 10(35/12))$

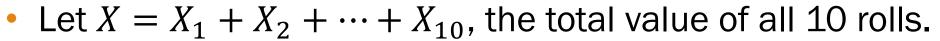
$$P(Y \le 25.5) + P(Y \ge 44.5) = \Phi\left(\frac{25.5 - 35}{\sqrt{10(35/12)}}\right) + \left(1 - \Phi\left(\frac{44.5 - 35}{\sqrt{10(35/12)}}\right)\right)$$

$$\approx \Phi(-1.76) + (1 - \Phi(1.76)) \approx (1 - 0.9608) + (1 - 0.9608) = 0.0784$$

Dice game

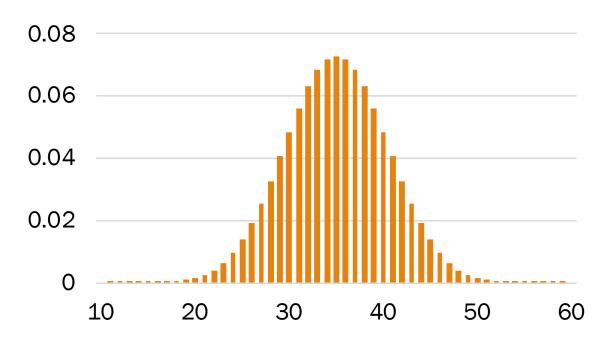
As
$$n \to \infty$$
:
$$\sum_{i=1}^{n} X_i \sim \mathcal{N}(n\mu, n\sigma^2)$$

You will roll 10 6-sided dice $(X_1, X_2, ..., X_{10})$.



• You win if $X \le 25$ or $X \ge 45$.

And now the truth (according to the CLT)...



(by CLT)

$$\approx P(Y \le 25.5) + P(Y \ge 44.5)$$

$$\approx 0.0784$$

(by computer)

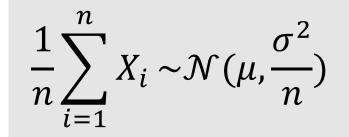
$$P(X \le 25 \text{ or } X \ge 45) \approx 0.0780$$

Working with the CLT

Let $X_1, X_2, ..., X_n$ i.i.d., where $E[X_i] = \mu$, $Var(X_i) = \sigma^2$. As $n \to \infty$:

$$\sum_{i=1}^{n} X_i \sim \mathcal{N}(n\mu, n\sigma^2)$$

Sum of i.i.d. RVs



Average of i.i.d. RVs (sample mean)

If X_i is discrete:

Use the continuity correction on Y!

Crashing website

- Let X = number of visitors to a website, where $X \sim Poi(100)$.
- The server crashes if there are ≥ 120 requests/minute.

What is P(server crashes in next minute)?

Strategy:

Poisson (exact)

$$P(X \ge 120) = \sum_{k=120}^{\infty} \frac{(100)^k e^{-100}}{k!} \approx 0.0282$$

Strategy:

CLT

(approx.)

How would we involve CLT here?

Crashing website

- Let X = number of visitors to a website, where $X \sim Poi(100)$.
- The server crashes if there are ≥ 120 requests/minute.

What is P(server crashes in next minute)?

$$P(X \ge 120) = \sum_{k=120}^{\infty} \frac{(100)^k e^{-100}}{k!} \approx 0.0282$$

$$Poi(100) \sim \sum_{i=1}^{n} Poi(100/n)$$

$$X \approx Y \sim \mathcal{N}(n\mu, n\sigma^2)$$

$$\mu = 100/n = \sigma^2$$

$$X \approx Y \sim \mathcal{N}(n\mu, n\sigma^2)$$

$$\mu = 100/n = \sigma^2$$

$$(W) = 1100 \text{ Tooler}$$

Want:
$$P(X \ge 120) \approx P(Y \ge 119.5)$$

Solve
$$P(Y \ge 119.5) = 1 - \Phi\left(\frac{119.5 - 100}{\sqrt{100}}\right) = 1 - \Phi(1.95) \approx 0.0256$$

Magnitude 6.5 earthquake

Affected countries: United States and Mexico 35 miles from Tonopah, NV · 4:03 AM

Interlude for jokes/announcements

Las Vegas

Announcements

Quiz #2

Time frame: Thursday 5/21 12:00am-11:59pm PT

Covers: Up to and including Lecture 17

Review session (Tim): Saturday 5/16 12-2pm PT

https://stanford.zoom.us/j/92275547392

Info and practice:

up

Python tutorial #3 (Julie)

When: Friday 5/15 1:30-2:30PT

https://stanford.zoom.us/j/487421836

Recorded online

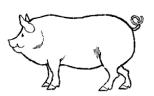
Useful for: pset5, pset6

Note: If you have an emergency situation during the quiz, please contact Lisa and Cooper. We will try our best to accommodate.

Problem Set 5: has been released early for quiz practice, due after quiz

Interesting probability news

Improving students' attitudes to chance with games and activities



Greedy Pig

Get Your M&Ms

Statistically-significant changes in students' attitudes had occurred (p < .05). At the end of the project, students reported:

- greater enjoyment when learning about chance
- less anxiety and worry when working on chance
- greater motivation and desire to learn more about chance in class,
- and an increased perception of the usefulness of chance in their lives.

https://core.ac.uk/download/pdf/143858603.pdf

CS109 Current Events Spreadsheet

As
$$n \to \infty$$
: $\frac{1}{n} \sum_{i=1}^{n} X_i \sim \mathcal{N}(\mu, \frac{\sigma^2}{n})$

Want to find the mean (clock) runtime of an algorithm, $\mu = t$ sec.

 Suppose variance of runtime is $\sigma^2 = 4 \text{ sec}^2$. Run algorithm repeatedly (i.i.d. trials):

- X_i = runtime of i-th run (for $1 \le i \le n$)
- Estimate runtime to be average of n trials, \bar{X}

How many trials do we need s.t. estimated time = $t \pm 0.5$ with 95% certainty?

1. Define RVs and state goal.

(CLT)
$$\bar{X} \sim \mathcal{N}\left(t, \frac{4}{n}\right)$$

Want:
$$P(t - 0.5 \le \bar{X} \le t + 0.5) = 0.95$$

(linear transform of
$$\bar{X}$$
 a normal)

$$\bar{X} - t \sim \mathcal{N}\left(0, \frac{4}{n}\right)$$

$$P(-0.5 \le \overline{X} - t \le 0.5) = 0.95$$

As
$$n \to \infty$$
: $\frac{1}{n} \sum_{i=1}^{n} X_i \sim \mathcal{N}(\mu, \frac{\sigma^2}{n})$

Want to find the mean (clock) runtime of an algorithm, $\mu = t$ sec.

• Suppose variance of runtime is $\sigma^2 = 4 \sec^2$.

Run algorithm repeatedly (i.i.d. trials):

- X_i = runtime of i-th run (for $1 \le i \le n$)
- Estimate runtime to be average of n trials, \bar{X}

How many trials do we need s.t. estimated time = $t \pm 0.5$ with 95% certainty?

1. Define RVs and state goal.

$$\bar{X} - t \sim \mathcal{N}\left(0, \frac{4}{n}\right)$$

$$0.95 = P(-0.5 \le \bar{X} - t \le 0.5)$$

$$0.95 = F_{\bar{X}-t}(0.5) - F_{\bar{X}-t}(-0.5)$$

$$= \Phi\left(\frac{0.5-0}{\sqrt{4/n}}\right) - \Phi\left(\frac{-0.5-0}{\sqrt{4/n}}\right) = 2\Phi\left(\frac{\sqrt{n}}{4}\right) - 1$$

As
$$n \to \infty$$
: $\frac{1}{n} \sum_{i=1}^{n} X_i \sim \mathcal{N}(\mu, \frac{\sigma^2}{n})$

Want to find the mean (clock) runtime of an algorithm, $\mu = t$ sec.

 Suppose variance of runtime is $\sigma^2 = 4 \text{ sec}^2$ Run algorithm repeatedly (i.i.d. trials):

- X_i = runtime of i-th run (for $1 \le i \le n$)
- Estimate runtime to be average of n trials, X

How many trials do we need s.t. estimated time = $t \pm 0.5$ with 95% certainty?

1. Define RVs and state goal.

$$\bar{X} - t \sim \mathcal{N}\left(0, \frac{4}{n}\right)$$

$$0.95 = P(-0.5 \le \bar{X} - t \le 0.5) \quad 0.975 = \Phi(\sqrt{n}/4)$$

$$0.95 = F_{\bar{X}-t}(0.5) - F_{\bar{X}-t}(-0.5)$$

$$= \Phi\left(\frac{0.5 - 0}{\sqrt{4/n}}\right) - \Phi\left(\frac{-0.5 - 0}{\sqrt{4/n}}\right) = 2\Phi\left(\frac{\sqrt{n}}{4}\right) - 1$$

$$0.975 = \Phi(\sqrt{n}/4)$$

$$\sqrt{n}/4 = \Phi^{-1}(0.975) \approx 1.96 \qquad n \approx 62$$

As
$$n \to \infty$$
: $\frac{1}{n} \sum_{i=1}^{n} X_i \sim \mathcal{N}(\mu, \frac{\sigma^2}{n})$

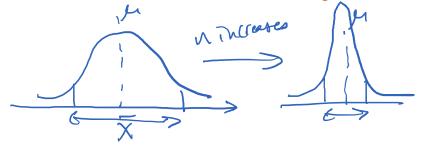
Want to find the mean (clock) runtime of an algorithm, $\mu = t$ sec.

Suppose variance of runtime is $\sigma^2 = 4 \text{ sec}^2$. Run algorithm repeatedly (i.i.d. trials):

- X_i = runtime of i-th run (for $1 \le i \le n$)
- Estimate runtime to be average of *n* trials, *X*

How many trials do we need s.t. estimated time = $t \pm 0.5$ with 95% certainty?

 $n \approx 62$



Interpret: As we increase n (the size of our sample):

- The variance of our sample mean, σ^2/n decreases
- The probability that our sample mean is close to the true mean μ increases

Wonderful form of cosmic order

I know of scarcely anything so apt to impress the imagination as the wonderful form of cosmic order expressed by the "[Central limit theorem]". The law would have been personified by the Greeks and deified, if they had known of it. It reigns with serenity and in complete self-effacement, amidst the wildest confusion. The huger the mob, and the greater the apparent anarchy, the more perfect is its sway. It is the supreme law of Unreason. Whenever a large sample of chaotic elements are taken in hand and marshalled in the order of their magnitude, an unsuspected and most beautiful form of regularity proves to have been latent all along.

> Sir Francis Galton (of the Galton Board)

Next time

- Central Limit Theorem: Sample mean $\bar{X} \mathcal{N} \simeq (\mu, \sigma^2/n)$
 - If we know μ and σ^2 , we can compute probabilities on sample mean \bar{X} of a given sample size n

In real life:

- Yes, the CLT still holds....
- But we often don't know μ or σ^2 of our original distribution
- However, we can collect data (a sample of size n)!
- How do we **estimate** the values μ and σ^2 from our sample?

...until next time!

18f_extra_clt_history

Extra: History of the CLT

Once upon a time...

DOCTRINE OF CHANCES:

OR,

A Method of Calculating the Probability of Events in Play.

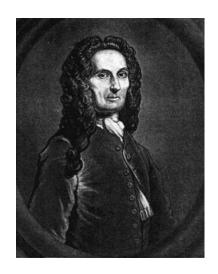
(0,10,100,100) in the contradiction of the contr

By A. De Moivre. F. R. S.

r and r

L 0 N D 0 N:

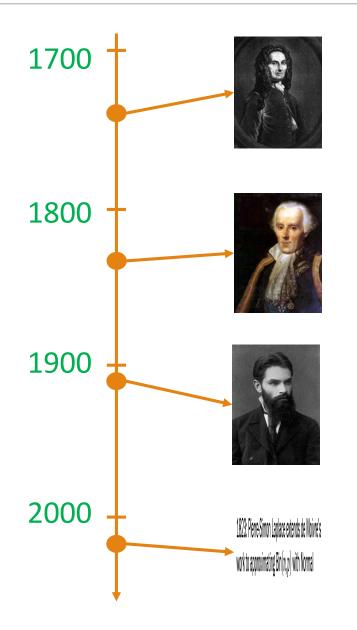
Printed by W. Pearfon, for the Author. M DCCXVIII.



Abraham de Moivre CLT for $X \sim \text{Ber}(1/2)$ 1733

Aubrey Drake Graham (Drake)

A short history of the CLT



1733: CLT for $X \sim \text{Ber}(1/2)$ postulated by Abraham de Moivre

1823: Pierre-Simon Laplace extends de Moivre's work to approximating Bin(n, p) with Normal

1901: Alexandr Lyapunov provides precise definition and rigorous proof of CLT

2018: Drake releases Scorpion

- It was his 5th studio album, bringing his total # of songs to 190
- Mean quality of subsamples of songs is normally distributed (thanks to the Central Limit Theorem)

 Stanford University
 54