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20a_intro

Intro to
parameter
estimation




Story so far

A‘t thlS p0|nt | P(Fu=1)=01 PU=1)=08
If you are given a model with all the Y ~Poi(5) @
necessary probabilities, you can \7

Y P Y Xy, o, Xy 0iid. ﬂ ﬁ

make predictions.
P X;~Ber(0.2),
X=Z?z1Xi

P(Fev=1|Flu=1)=0-9 P(T=1|Flu=0,U=0)=01
P(Fev=1|Flu=0)=0-05 P(T=1|Flu=0,U=1)=0.8
P(T=1|Fy =1,U=0) =09
PT=1|F,=1,U=1)=10

But what if you want to learn the probabilities in the model?

(I wish...
another day)

Machine Learning
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Al and Machine Learning

/

Deep
Learning

Machine
Learning

Artificial

IntelligenceJ

ML: Rooted in probability theory
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Alright, so Deep Learning now?

Tensor Flow

Not so fast...
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Once upon a time...

...there was parameter estimation.
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Recall some estimators

Xq1,X5, ..., X, are n i.i.d. random variables,
where X; drawn from distribution F with E[X;] = u, Var(X;) = o*.

_ 1
Sample mean: X = - X; unbiased estimate of u

n
=1

1
n—1

n
Sample variance: S% = E(Xi — X)? unbiased estimate of g2
i=1
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What are parameters?

def Many random variables we have learned so far are parametric models:

Distribution = model + parameter 6

ex The distribution Ber(0.2) = Bernoulli model, parameter 8 = 0.2.

For each of the distributions below, what is the parameter 67
Ber(p) 6=p
Poi(1)
Uni(a, B)
N(wo?)

&
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What are parameters?

def Many random variables we have learned so far are parametric models:

Distribution = model + parameter 6

ex The distribution Ber(0.2) = Bernoulli model, parameter 8 = 0.2.

For each of the distributions below, what is the parameter 67

Ber(p) 0=p
Poi(A1) =21
Uni(e, B) 0 = (a,p)
N o?) 0 = (4,0°)

Y=mX+b 0 =(m,b)

Lisa Yan, CS109, 2020

0 is the parameter of a distribution.
6 can be a vector of parameters!
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Why do we care?

In the real world, we don’t know the “true” parameters.

But we do get to observe data:  (# times coin comes up heads, lifetimes of

disk drives produced, # visitors to website
per day, etc.)

def estimator 8: random variable estimating parameter 6 from data.

In parameter estimation,

We use the point estimate of parameter estimate (best single value):
Better understanding of the process producing data

Future predictions based on model
Simulation of future processes
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Maximum
Likelihood
Estimator




Defining the likelihood of data: Bernoulli

Consider a sample of n i.i.d. random variables X, X5, ..., X,,.
X; was drawn from distribution F = Ber(8) with unknown parameter 6.
Observed data:
10,0,1,1,1,1,1,1,1,1] (n = 10)

How likely was the observed data if 6 = 0.47?
o.L- O. 4%

P(sample|@ = 0.4) = (0.4)8(0.6)% = 0.000236

Likelihood of data
given parameter 8 = 0.4 Is there a better
parameter 67
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Defining the likelihood of data

Consider a sample of n i.i.d. random variables X, X5, ..., X,,.
X; was drawn from a distribution with density function f(X;|8).

Observed data: (X, X5, ..., X,,) Or mass

Likelihood question:
How likely is the observed data (X4, X5, ..., X,,) given parameter 67

Likelihood function, L(6): .
L(O) = f (X1 X, Xl = | | FCXIO)
i=1

This is just a product, since X; are i.i.d.
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Defining the likelihood of data

L) = | [reaie
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Maximum Likelihood Estimator

Consider a sample of n i.i.d. random variables X;, X5, ..., X,,, drawn from a
distribution f(X;]0).

def The Maximum Likelihood Estimator (MLE) of 8 is the value of 8 that
maximizes L(6).

HMLE = daIrg max L(Q)
6

Lisa Yan, C$109, 2020 Stanford University 18




Maximum Likelihood Estimator

Consider a sample of n i.i.d. random variables X;, X5, ..., X,,, drawn from a
distribution f(X;]0).

def The Maximum Likelihood Estimator (MLE) of 8 is the value of 8 that
maximizes L(6).

HMLE = dI'g MdxX L(Q)
6

Likelihood of your sample

L) = | [reaie

For continuous X;, f(X;|8) is PDF; for discrete X;, f(X;|0) is PMF
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Maximum Likelihood Estimator

Consider a sample of n i.i.d. random variables X;, X5, ..., X,,, drawn from a

distribution f(X;]0).

def The Maximum Likelihood Estimator (MLE) of 8 is the value of 8 that

maximizes L(6).

HMLE = daIrg max L(Q)
6

The argument 6
that maximizes L(6)

Lisa Yan, CS109, 2020

Stay tuned!
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New function: arg max

The argument x that

darg max f(x) maximizes the function f(x).

X

1. max f(x)?

Let f(x) = —x? + 4,
where —2 < x < 2.

2. argmax f(x)?

2

Lisa Yan, C$109, 2020 Stanford University 22




New function: arg max

The argument x that

darg max f(x) maximizes the function f(x).

X

1. max f(x)?

Let f(x) = —x? + 4, — 4

where =2 < x < 2.
2. argmax f(x)?

=0
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Argmax and log

The argument x that
maximizes the function f(x).

arg max f(x)

X

= arg max log f (x)
X

f(x) lggf (x)
Let f(x) = —x? + 4, T

where —2 < x < 2.

argmax f(x) =0
X

Lisa Yan, C$109, 2020 Stanford University 24




Logs all around

* Logisincreasing: - Log of product = sum of logs:
x <y logx <logy

log(ab) =loga +logh
\0g*

* Natural logs

% - o ﬁ b\) log,x =Inx
,(

Vxdx - ﬁ\xﬁﬂ% [ob X
=5 (o]0 < leg (%)
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Argmax properties

The argument x that

darg max f(x) maximizes the function f(x).

X

arg max ]Og f(X) (log is an increasing function:
by x <y <logx <logy)

arg max (C log f(x)) (x <y e clogx <clogy)
X

for any positive constant c¢
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Argmax properties

How do we compute argma

Lisa Yan, C$109, 2020 Stanford University 27



Finding the argmax with calculus

% a2
X = arg max f(x) Let f(x) = —x* + 4,
X where —2 < x < 2.
Differentiate w.r.t. Z (x)
argmax’s argument

d a B
af(X):E(X +4) = 2X

Set to 0 and solve 2x =0 = x=0 11

Make sure X Check f(X +€) < f(X)
IS @ maximum Often ignored in expository derivations
We’ll ignore it here too
(and won’t require it in class)
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Maximum Likelihood Estimator

Consider a sample of n i.i.d. random =
variables X4, X5, ..., X,,, drawn from a L(B) = Hf(Xile)
distribution f(X;|0). i=1

0, Maximizes the likelihood of our Oy = arg max L(6)
sample, L(6): g

0, also maximizes the log-likelihood Oy g = arg max LL(6)
function, LL(6): 6

n n
LL(6B) =logL(0) =log (1_[ f(Xi|9)> = 2 log f(X;]6) LL(6) is often easier to
i=1 i=1 differentiate than L(8).

Lisa Yan, C$109, 2020 Stanford University 29
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MLE: Bernoulli




Computing the MLE Omig = arg max LL(0)

General approach for finding 8, , the MLE of 8:

1. Determine 2. Differentiate LL(0) 3. Solve resulting
formula for LL(O) w.r.t. (each) (simultaneous)
equations
i To maximize:
LL(6) = 2 log £(X:|0) dLL(60) ALL(6) (algebra or
L 00 FY R 0 computer)

4. Make sure derived 8, ¢ is @ maximum

* Check LL(HMLE + E) < LL(HMLE)
* Often ignored in expository derivations
 We’'ll ignore it here too (and won't require it in class)

LL(0) is often easier to
differentiate than L(8).

Lisa Yan, C$109, 2020 Stanford University 31



Maximum Likelihood with Bernoulli

Consider a sample of ni.i.d. RVs X{, X, ..., X,,. | * Let X;~Ber(p).
What |S HMLE —_ pMLE?

n
1. Determine _
formula for LL(6) LL(9) = Z log £ (Xi[p)
1=

Lisa Yan, C$109, 2020 Stanford University 32




Maximum Likelihood with Bernoulli

Consider a sample of ni.i.d. RVs X3, X5, ..., X,,. | ° Let X;~Ber(p).
What is Oy = PuLe? © fXilp) =p*i(1 —p)t

n
1. Determine
formula for LL(6) LL(9) = Z log £ (Xi[p)
l:

f(Xilp) = p™i(1 —p)* "t where X; € {0,1}
Xi=1 ket = p (-p7 =
Y=o =0l P = p0 ()0 | —p

* |s differentiable with respect to p
* Valid PMF over discrete domain

Lisa Yan, CS109, 2020 Stanford University 33




Maximum Likelihood with Bernoulli

Consider a sample of ni.i.d. RVs X3, X5, ..., X,,. | ° Let X;~Ber(p).
What is Oy = PuLe? © fXilp) =pt(A —p)iTY

n

1. Determine _ _ l 1-X,

formula for LL(0) LL(B)—Zlogf(XJp) zlog(p =P
l:

C
X Fxi logx
D{)P X GOU ?) :C]Df)?(

n

Z[x logp + (1= X)) log(1 ~ p)

=1 A

— Y(logp) + (n — Y)log(1 — p), where ¥ = zx

Lisa Yan, CS109, 2020 Stanford Unlver51ty 34




Maximum Likelihood with Bernoulli

Consider a sample of ni.i.d. RVs X, X,, ..., X,,. | ° Let X;~Ber(p).
What is Oy = PuLe? © fXilp) =pt(A —p)iTY

LL(O)
n
=Y(ogp) + (n—Y)log(1 —p), where Y = EXL-
i=1

2. Differentiate LL(8) JOLL(0) _y 1 v -1 0
w.r.t. (each) 6, setto O op ;_I_ (n—Y) 1—-p

Lisa Yan, CS109, 2020 Stanford University 35




Maximum Likelihood with Bernoulli

Consider a sample of ni.i.d. RVs X3, X5, ..., X,,. | ° Let X;~Ber(p).
What is Oy = PuLe? © fXilp) =pt(A —p)iTY

LL(O)

n
=Y(ogp) + (n—Y)log(1 —p), where Y = EXL-
i=1

JdLL(6 1 —1
()=Y—+(n—Y)—=0
dp p 1-p
o SN (-p) =Pl 4
3. Solve resulting f(gf TP g - e np X Y Y

equations

Lisa Yan, CS109, 2020 Stanford University 36




Maximum Likelihood with Bernoulli

Consider a sample of n i.i.d. RVs X4, X5, ..., X,,.
What |S HMLE — pMLE?

| et Xi~Ber(p).
fX;|lp) = p%i(1 —p)t~*

| 1 1 — MLE of the Bernoulli parameter,
Solve resulting Pmie = 2V = ;z X: | pumwg, is the unbiased estimate of
equations i=1 the mean, X (sample mean)

Lisa Yan, CS109, 2020
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MLE of Bernoulli is the sample mean

b Y /

Bernoulli

fXilp) = p*i(1 —p)t=,
where X; € {0,1}

Lisa Yan, C$109, 2020 Stanford University 38




Quick check

You draw n i.i.d. random variables X, X, ..., X;, from the distribution F,
yielding the following sample:

10,0,1,1,1,1,1,1,1,1] (n = 10)
Suppose distribution F = Ber(p) with unknown parameter p.

What is py; g, the MLE of the parameter p?

1.0

0.5 &

0.8 PMLE = ;2

0.2 =1 )

None/other W=

Lisa Yan, CS109, 2020 Stanford University 39




Quick check

You draw n i.i.d. random variables X4, X, ..., X;, from the distribution F,
yielding the following sample:

10,0,1,1,1,1,1,1,1,1] (n = 10)
Suppose distribution F = Ber(p) with unknown parameter p.

What is py; g, the MLE of the parameter p?

1.0

0.5 &
0.8 PMLE = ;2
0.2 i=1

None/other
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Quick check

You draw n i.i.d. random variables X4, X, ..., X;, from the distribution F,
yielding the following sample:

10,0,1,1,1,1,1,1,1,1] (n = 10)
Suppose distribution F = Ber(p) with unknown parameter p.

What is py;; g, the MLE of the parameter p? 0.8
What is the likelihood L(8) of this particular sample?

¥ pl
f(X;lp) = p*i(1 — p)!~*t where X; € {0,1} 0.3 0.9
L(O®) =| | f(X;|p) Wwheref =p
i

=p°(1-p)*

Lisa Yan, C$109, 2020 Stanford University 41
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Computing the MLE Review

SOU/WP(-@. X\)XLI"'/XV\
General approach for finding 8,z , the MLE of 8: L&) =4(¥., &, /X ]6)
= al6)

1. Determine 2. Differentiate LL(0) 3. Solve resulting
formula for LL(6) w.r.t. (each) (simultaneous)
equations
i To maximize:
LL(6) = 2 log £(X:|0) dLL(60) ALL(6) (algebra or
L 00 FY R 0 computer)

4. Make sure derived 8, ¢ is @ maximum

* Check LL(HMLE + E) < LL(HMLE)
* Often ignored in expository derivations
 We’'ll ignore it here too (and won't require it in class)

LL(0) is often easier to
differentiate than L(0).
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Maximum Likelihood with Poisson

Consider a sample of n i.i.d. RVs X, X5, ..., X,,.

. Oy
What IS HMLE — AMLE? lo ‘E = LOj Cr "[0%\0
lo @\05 \030» 1 Lbﬁ;o %
1. Determine LL(H) —Elog( A
formula for LL(6)

© Let X;~Poi(1).
- PMF: f(Xi|D) =
8]

X;!

) = z(—/lloge + X;log A —log X;!)

(using natural

= —ni+ log(1) ZX 2 log(X;!) log, Ine =1)

Lisa Yan, CS109, 2020
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Maximum Likelihood with Poisson

Consider a sample of n i.i.d. RVs X{, X5, ..., X,,. Let X;~Poi(1). P
What is Oy 5 = Ayp? PMF: fX:|d) = X

LL(O) =

n n
= —nl + log(1) z X; — 2 log(X;!)
i=1 i=1

Differentiate LL(6) OLL(8) ,
w.r.t. (each) @, setto O Y
n n a 1 n
1 1 0X;! None/other/ (5 )
_n+zZXi+nlog/1—in!- ox, —n+szi don’t know \\?J
=1 i=1 i=1 h

Lisa Yan, CS109, 2020 Stanford University 46




Maximum Likelihood with Poisson

Consider a sample of ni.i.d. RVs X, X5, ..., X,,. ° Let X;~Poi(4). P
What is Oy 5 = Ayp? - PMF: f(Xi|A) = X

LL(B) =
= —nA+log(1) ) X;— ) log(X;!)
252,

. . n J 7
2. Differentiate LL(6) JdLL(O) _, QL {4\?\\ + % {"O D)(ij 5 [:—%iaé()@"\'>
= |

w.r.t. (each) 8, setto O oA ' o\}

D

X! 0X; don’t know

A. n n r C
1 1 ax;! 1 * None/other/
—n+ii51Xi+nlog/1—iél —Tl+z E X;
= = i=1

Lisa Yan, CS109, 2020 Stanford University 47



Maximum Likelihood with Poisson

Consider a sample of n i.i.d. RVs X, X,, ..., X,,. Let X;~Poi(A).
What is 815 = A1 5? PMF: fX:i|d) = X

LL(O) =

n n
= —nl + log(1) z X; — 2 log(X;!)
i=1 i=1

\ n
OLL(0) 1w 3& =\
EY ——Tl+zé Xi—O

n
. 1
Solve .resultlng Avip = _Z X;
equations n«
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Maximum Likelihood with Poisson

Consider a sample of n i.i.d. RVs X, X, ..., X,,. Let X;~Poi(A).
What is 815 = A1 5? PMF: fX:i|d) = X

LL(O) =

= —nl +log(1) i X; — Zn: log(X;!)

n
dLL(O) 1
=-—n+- E X; =
0A A = MLE of the Poisson
n parameter, Ay g, is the
: 1 : :
Solve resulting 1 N N unbiased estimate of the
. MLE = E i >
equations mean, X (sample mean)
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Quick check

A particular experiment can be modeled as a
Poisson RV with parameter A, in terms of
events/minute.

Collect data: observe 53 events over the next
10 minutes. What is A, 57

Is the Bernoulli MLE an unbiased estimator of
the Bernoulli parameter p?

Is the Poisson MLE an unbiased estimator of
the Poisson variance?

What does unbiased mean?

Lisa Yan, CS109, 2020

n
2 —12)(
MLE_n. l
=1

)
)

Stanford University 50



FRm D =n? XA N, B

Quick check cepi i = .
A particular experiment can be modeled as a 1 <&
Poisson RV with parameter A, in terms of AMLE = zX-

events/minute. |
Collect data: observe 53 events over the next ewé\ﬁ Dﬁ =X, ?&fxz,..ﬁ\,gm

10 minutes. What is Ay 7 2 Th = 3 .
N /\”L[;': o S3

|s the Bernoulli MLE an unbiased gst%))maétor of ]ﬂ? =7
he B I ? v Ser(p) &
the Bernoulli parameter p? 4 P g zﬂ ;;DQ - M= P

Is the Poisson MLE an unbiased estimator of _ - _ =2
the Poisson variance? YRl B Dce | ElX)=A=0

What does unbiased mean?| ynpiased: If you could repeat your experiment, on
average you would get what you are looking for.

E|estimator]| = true_thing

Lisa Yan, C$109, 2020 Stanford University 51




Interlude for
jokes/announcements




Announcements

o B
Quiz #2 Note: If you have an emergency
Time frame: Thursday 5/21 12:00am-11:59pm | situation duringthe quiz,

please contact Lisa and Cooper.
PT .
_ _ We will try our best to accommodate.
Covers: Up to and including Lecture 17
NS /
Problem Set 6: No s ~
late days or on-time Grading clarification
bonus Two examples
https://us.edstem.org/courses/109/discussion/
@7686 Y

Lisa Yan, CS109, 2020 Stanford University 53



https://us.edstem.org/courses/109/discussion/67686

Interesting probability news 4

Now let’s say the probabilities of a Yes in each of those steps go

., ] something like this:
Bernoulli’s trials can tell you N
1. Initial contact: 10%@
h oW man @) b a I IC at IONS 2. Soft phone interview? 80% (recruiters are optimistic, that's what
Y] PP pays them) P sgl Pusre l Lok
to sen d 3. Phone interview: 50% (you're a good engineer, but companies like
to think they're tough)

4. On-site interviews: 60% (you're already here, that’s good)
5. Chat with offer giver: 80% (only red flags will mess it up)
6. Job offer

Are th ese tria |S independent? } That gives you an overall conversion rate of
0.1*0.8*0.5%0.6%0.8 = 0.02 == @which sounds really tough. I

see now what Anastacia meant.

Now if we plug that into the formula for Bernoulli trials on
WolframAlpha we see that if you apply for 30 jobs, that gives you a

https://swizec.com/blog/bernoullis-trials-can-
tell-many-job-applications-send/swizec/7677 3109 Current Events Spreadsheet

Lisa Yan, CS109, 2020 Stanford University 54



https://docs.google.com/spreadsheets/d/1ijvvCoCKG86gITqSxYEPL_77U7VK__mn-ChvyDkhXX4/
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Maximum Likelihood with Uniform

Consider a sample of n i.i.d. random variables X, X5, ..., X,,.

= (Kp) (1
LetXl'NUr”(a,ﬁ). f(Xlla,ﬁ) =<'B—a | CZ_Xi_,B
. 0 otherwise
1. Determi O\f (1"
. Determine :
_ if a<Xx{,X5, ..,Xn <
formula for L(6) L(#) = 5 (,3 — 01) b n=F
0 otherwise o’
: 3K
Z(\ 05(@4\ ‘C(ﬂex\lkz/“‘ix\hip’ , OP
2. Differentiate LL(6) A Great let’s do it
w.r.t. (each) 8, setto O B. Differentiation is hard
@ Constrainta < x1,X5, ..., Xy < f K?{)

makes differentiation hard

Lisa Yan, CS109, 2020 Stanford University 55



Example sample from a Uniform

Consider a sample of n i.i.d. random variables X, X5, ..., X,,.
( 1 \"
L(9)=<(ﬁ_a) if anl,xZ,...,anﬁ

L 0 otherwise

Let Xi~Uni(a,,B).

Suppose X;~Uni(0,1). 10.15, 0.20,0.30, 0.40, 0.65, 0.70,0.75]
You observe data:

Unile =0 ,=1 )
Which parameters _
would give you Uniar = 0.15, = 0.75)
measdrrem L(6)7? Uni(a = 0.15,8 = 0.70) —
[M%@&P K‘.?.j

Lisa Yan, CS109, 2020 Stanford University 56




Example sample from a Uniform

Consider a sample of n i.i.d. random variables X, X5, ..., X,,.

Let Xi~Uni(a,,B).

SupposéX,;~Uni(0,1).
You observe data:

Which parameters
would give you
maximum L(6)7?
\ineg b

( 1 \"
L(9)=<(ﬁ_a)‘ if anl,xZ,...,anﬁ

L 0 otherwise

0.15,0.20, 030, 0.40, 0.65,0.70, 0.75]
Unil@=0 ,B=1 ) (@@)7=1
Uni(a = 0.15,8 = 0.75) (=) =595 <
Uni(ar = 0.15, = 0.70) () -0=0

0.55
=

Original parameters may not yield maximum likelihood.
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Maximum Likelihood with Uniform

Consider a sample of n i.i.d. random variables X, X5, ..., X,,.

( n
. 1
Let X;~Uni(a, B). L(9) = ! (,B—a) if a <xq,%5, .,%, <P
L 0 otherwise
Omre: Qe = min(xq, X3, ..., Xy ) Bure = max(xy, X3, ..., Xn)

Intuition:

Want interval size (f — a) to be as small

as possible to maximize likelihood function
per datapoint

Need to make sure all observed data is in
interval (if not, then L(8) = 0)

Lisa Yan, CS109, 2020 Stanford University 58
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Small samples = problems with MLE

Maximum Likelihood Estimator 0y, : 0,5 = arg max L(8)
Best explains data we have seen 0

Does not attempt to generalize to unseen data.

(MLE for Bernoulli p,

n
1
== ) X,
In many cases,  HMLE n; l Sample mean Poisson A, Normal )

Unbiased (E[upr] = u regardless of size of sample, n)

. For some cases, like Uniform:  ayr = «, Bure < B

Biased. Problematic for small sample size
Example: If n = 1 then a = (, yielding an invalid distribution

Lisa Yan, CS109, 2020 Stanford University 59




Properties of MLE

Maximum Likglihood Estimator: 0,5 = arg max L(8)
Best explains data we have seen 0

Does not attempt to generalize to unseen data.

Often used when sample size n is large relative to parameter space
Potentially biased (though asymptotically less so, as n — o)

Consistent: lim P(|6 — 6| < &) = 1 where e > 0

n—00

As n — oo (i.e., more data), probability that 8 significantly differs from 8 is zero

Lisa Yan, CS109, 2020 Stanford University 60




Maximum Likelihood with Normal

Consider a sample of n i.i.d. random variables X, X5, ..., X,,.

Let X;~ NV (i, 02). F(X;|p 02) = e~ (Xi=)?/(20?)
21O
- _ 2
Whatis Oy e = (Umre, OmLe)?
Determine

formula for LL(6)

o (] 2 (207
LL<9>=;108(mge‘“‘i‘”) /) 2[—1og(v— 7) = (Xi = 1)?/(207)]

(using natural log)

= — z log(V2ma) — 2[()(1' —)?/(20°)]
i=1 =1
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Maximum Likelihood with Normal

Consider a sample of n i.i.d. random variables X, X5, ..., X,,.
Let X;~ NV (u, 02). F(X;|u 02) = e~ (Xi—w)?/(20%)

Whatis Oy = (UL OrLe)?

Differentiate LL(6)
w.r.t. (each) 8, setto O

MR Lie) = =Y log(VZe) = ¥ [(X; — 1)?/(202)]
i=1 =1

ALL(O) N0
S = 20— /(20

20

=

1
n
1
= ?2(&' —u) =0
i=1
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Maximum Likelihood with Normal

Consider a sample of n i.i.d. random variables X, X5, ..., X,,.
Let X;~ NV (u, 02). F(X;|u 02) = e~ (Xi—w)?/(20%)

Whatis Oy = (UL OrLe)?

Differentiate LL(6)
w.r.t. (each) 8, setto O
n

LL(Q) = — Z ]Og(ma) _ z[(Xi . M)z/(ZO'Z)] with respect tcia
(=1 i=1

a 9 n n
2O N1 D, 20 = /20

do :
i=1

%i(xi—uﬁo =——+—Z(X —W?=0
=1
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Maximum Likelihood with Normal

Consider a sample of n i.i.d. random variables X, X5, ..., X,,.
Let X;~ NV (u, 02). F(X;|u 02) = e~ (Xi—w)?/(20%)

. ) 270
What is Oyre = (MmLe, Oie)?
n
Solve resulting Two equations, i L _ n 1 ,
equations two unknowns: 52 iZl(Xl ,Ll) =0 + E(X li) =0
F | 1 n 1 n n
irst, solve
| V. _zXl——z‘uzo — EXlzn‘u = Uyip = — ZX
for umre:  o° o2 . .
=1 i=1 =1 unbiased  i=1
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Maximum Likelihood with Normal

Consider a sample of n i.i.d. random variables X, X5, ..., X,,.

Let X;~ N (u, 02). F(X;|p 02) = o~ (Xi—1)?/(20?)
210
- _ 2
Whatis Oy e = (Umre, OmLe)?
n
Solve resulting Two equations, 1 N _n _z 2 _
equations two unknowns: 42 Z(Xl W =0 o + g3 (X =" =0

UMLE = z X;

unbiased =1

Next, solve 1 <
for oy k- gz(xi—ﬂ)z — :z(X — W?* =o°n = Ojjp = = Z(X UmLE)

biased i=1
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