20: Maximum Likelihood Estimation

Lisa Yan May 20, 2020

Quick slide reference

3	Intro to parameter estimation	20a_intro
14	Maximum Likelihood Estimator	20b_mle
21	argmax and log-likelihood	20c_argmax
30	MLE: Bernoulli	20d_mle_bernoulli
42	MLE exercises: Poisson, Uniform, Gaussian	LIVE

Intro to parameter estimation

Story so far

At this point:

If you are given a model with all the necessary probabilities, you can make predictions.

Y∼Poi(5)

$$X_1, \dots, X_n$$
 i.i.d.
 $X_i \sim \text{Ber}(0.2),$
 $X = \sum_{i=1}^n X_i$

But what if you want to learn the probabilities in the model?

What if you want to learn the structure of the model, too?

(I wish... another day)

Machine Learning

AI and Machine Learning

ML: Rooted in probability theory

Alright, so Deep Learning now?

Not so fast...

Once upon a time...

...there was parameter estimation.

Recall some estimators

 X_1, X_2, \dots, X_n are n i.i.d. random variables, where X_i drawn from distribution F with $E[X_i] = \mu$, $Var(X_i) = \sigma^2$.

Sample mean:

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

unbiased **estimate** of μ

Sample variance:

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}$$

unbiased **estimate** of σ^2

What are parameters?

<u>def</u> Many random variables we have learned so far are parametric models:

Distribution = model + parameter θ

<u>ex</u> The distribution Ber(0.2) = Bernoulli model, parameter $\theta = 0.2$.

For each of the distributions below, what is the parameter θ ?

1.
$$Ber(p)$$

$$\theta = p$$

- $Poi(\lambda)$
- 3. Uni(α , β)
- 4. $\mathcal{N}(\mu, \sigma^2)$
- 5. Y = mX + h

What are parameters?

<u>def</u> Many random variables we have learned so far are parametric models:

Distribution = model + parameter θ

<u>ex</u> The distribution Ber(0.2) = Bernoulli model, parameter $\theta = 0.2$.

For each of the distributions below, what is the parameter θ ?

1.
$$Ber(p)$$

$$\theta = p$$

2.
$$Poi(\lambda)$$

$$\theta = \lambda$$

3. Uni(
$$\alpha$$
, β)

$$\theta = (\alpha, \beta)$$

4.
$$\mathcal{N}(\mu, \sigma^2)$$

$$\theta = (\mu, \sigma^2)$$

5.
$$Y = mX + b$$
 $\theta = (m, b)$

$$\theta = (m, b)$$

 θ is the parameter of a distribution.

$$\theta$$
 can be a vector of parameters!

Why do we care?

In the real world, we don't know the "true" parameters.

But we do get to observe data: (# times coin comes up heads, lifetimes of disk drives produced, # visitors to website

per day, etc.)

def estimator $\hat{\theta}$: random variable estimating parameter θ from data.

In parameter estimation,

We use the **point estimate** of parameter estimate (best single value):

- Better understanding of the process producing data
- Future predictions based on model
- Simulation of future processes

Defining the likelihood of data: Bernoulli

Consider a sample of n i.i.d. random variables $X_1, X_2, ..., X_n$.

- X_i was drawn from distribution $F = \text{Ber}(\theta)$ with unknown parameter θ .
- Observed data:

$$[0, 0, 1, 1, 1, 1, 1, 1, 1] (n = 10)$$

How likely was the observed data if $\theta = 0.4$?

$$P(\text{sample}|\theta = 0.4) = (0.4)^8(0.6)^2 = 0.000236$$

Likelihood of data given parameter $\theta = 0.4$

Is there a better parameter θ ?

Defining the likelihood of data

Consider a sample of n i.i.d. random variables $X_1, X_2, ..., X_n$.

- X_i was drawn from a distribution with density function $f(X_i|\theta)$. or mass
- Observed data: $(X_1, X_2, ..., X_n)$

Likelihood question:

How likely is the observed data $(X_1, X_2, ..., X_n)$ given parameter θ ?

Likelihood function, $L(\theta)$:

$$L(\theta) = f(X_1, X_2, ..., X_n | \theta) = \prod_{i=1}^n f(X_i | \theta)$$

This is just a product, since X_i are i.i.d.

Defining the likelihood of data

Consider a sample of n i.i.d. random variables $X_1, X_2, ..., X_n$, drawn from a distribution $f(X_i|\theta)$.

<u>def</u> The Maximum Likelihood Estimator (MLE) of θ is the value of θ that maximizes $L(\theta)$.

$$\theta_{MLE} = \underset{\theta}{\arg\max} \ L(\theta)$$

Consider a sample of n i.i.d. random variables $X_1, X_2, ..., X_n$, drawn from a distribution $f(X_i|\theta)$.

def The Maximum Likelihood Estimator (MLE) of θ is the value of θ that maximizes $L(\theta)$.

$$\theta_{MLE} = \arg\max_{\theta} \frac{L(\theta)}{L(\theta)}$$

Likelihood of your sample

$$L(\underline{\theta}) = \prod_{i=1}^{n} f(X_i | \theta)$$

For continuous X_i , $f(X_i|\theta)$ is PDF; for discrete X_i , $f(X_i|\theta)$ is PMF

Consider a sample of n i.i.d. random variables $X_1, X_2, ..., X_n$, drawn from a distribution $f(X_i|\theta)$.

<u>def</u> The Maximum Likelihood Estimator (MLE) of θ is the value of θ that maximizes $L(\theta)$.

$$\theta_{MLE} = \underset{\theta}{\operatorname{arg\,max}} L(\theta)$$

The argument θ that maximizes $L(\theta)$

Stay tuned!

argmax

New function: arg max

$$\underset{x}{\operatorname{arg max}} f(x)$$

The argument x that maximizes the function f(x).

Let
$$f(x) = -x^2 + 4$$
,
where $-2 < x < 2$.

 $1. \max_{x} f(x)?$

2. $\underset{x}{\text{arg max }} f(x)$?

New function: arg max

$$\underset{x}{\operatorname{arg max}} f(x)$$

The argument x that maximizes the function f(x).

Let
$$f(x) = -x^2 + 4$$
,
where $-2 < x < 2$.

- $1. \quad \max_{x} f(x)?$
 - =4
- 2. $\underset{x}{\text{arg max }} f(x)$?

Argmax and log

$$\underset{x}{\operatorname{arg max}} f(x)$$

The argument x that maximizes the function f(x).

$$= \underset{x}{\operatorname{arg max}} \log f(x)$$

Let
$$f(x) = -x^2 + 4$$
,
where $-2 < x < 2$.

$$\arg\max_{x} f(x) = 0$$

Logs all around

Log is increasing: $x < y \Leftrightarrow \log x < \log y$

Log of product = sum of logs:

$$\log(ab) = \log a + \log b$$

Natural logs

$$\log_e x = \ln x$$

Argmax properties

$$\underset{x}{\operatorname{arg max}} f(x)$$

The argument x that maximizes the function f(x).

$$= \underset{x}{\operatorname{arg max}} \log f(x)$$

(log is an increasing function:

$$x < y \Leftrightarrow \log x < \log y$$

$$= \arg\max_{x} (c \log f(x))$$

$$(x < y \Leftrightarrow c \log x < c \log y)$$

for any positive constant *c*

Argmax properties

arg arg max How do we compute argmax?

Finding the argmax with calculus

$$\hat{x} = \underset{x}{\arg\max} \ f(x)$$

Let
$$f(x) = -x^2 + 4$$
,
where $-2 < x < 2$.

Differentiate w.r.t. argmax's argument

$$\frac{d}{dx}f(x) = \frac{d}{dx}(x^2 + 4) = 2x$$

Set to 0 and solve

$$2x = 0 \Rightarrow \hat{x} = 0$$

- Check $f(\hat{x} \pm \epsilon) < f(\hat{x})$
- Often ignored in expository derivations
- We'll ignore it here too (and won't require it in class)

Consider a sample of n i.i.d. random variables $X_1, X_2, ..., X_n$, drawn from a distribution $f(X_i|\theta)$.

$$L(\theta) = \prod_{i=1}^{n} f(X_i | \theta)$$

 θ_{MLE} maximizes the likelihood of our sample, $L(\theta)$:

$$\theta_{MLE} = \underset{\theta}{\arg\max} \ L(\theta)$$

 θ_{MLE} also maximizes the log-likelihood function, $LL(\theta)$:

$$\theta_{MLE} = \underset{\theta}{\operatorname{arg\,max}} \ LL(\theta)$$

$$LL(\theta) = \log L(\theta) = \log \left(\prod_{i=1}^{n} f(X_i | \theta) \right) = \sum_{i=1}^{n} \log f(X_i | \theta)$$

 $LL(\theta)$ is often easier to differentiate than $L(\theta)$.

20d_mle_bernoulli

MLE: Bernoulli

Computing the MLE

General approach for finding θ_{MLE} , the MLE of θ :

- 1. Determine formula for $LL(\theta)$

$$LL(\theta) = \sum_{i=1}^{n} \log f(X_i | \theta)$$

2. Differentiate $LL(\theta)$ w.r.t. (each) θ

$$\frac{\partial LL(\theta)}{\partial \theta}$$

To maximize:
$$\frac{\partial LL(\theta)}{\partial \theta} = 0$$

3. Solve resulting (simultaneous) equations

> (algebra or computer)

- 4. Make sure derived $\hat{\theta}_{MLE}$ is a maximum
 - Check $LL(\theta_{MLE} \pm \epsilon) < LL(\theta_{MLE})$
 - Often ignored in expository derivations
 - We'll ignore it here too (and won't require it in class)

 $LL(\theta)$ is often easier to differentiate than $L(\theta)$.

Consider a sample of n i.i.d. RVs $X_1, X_2, ..., X_n$. What is $\theta_{MLE} = p_{MLE}$?

• Let $X_i \sim \text{Ber}(p)$.

Determine formula for $LL(\theta)$

$$LL(\theta) = \sum_{i=1}^{n} \log f(X_i|p)$$

 $f(X_i|p) = \begin{cases} p & \text{if } X_i = 1\\ 1 - p & \text{if } X_i = 0 \end{cases}$

- 2. Differentiate $LL(\theta)$ w.r.t. (each) θ , set to 0
- 3. Solve resulting equations

Consider a sample of n i.i.d. RVs $X_1, X_2, ..., X_n$. What is $\theta_{MLE} = p_{MLE}$?

- Let $X_i \sim \text{Ber}(p)$.
- $f(X_i|p) = p^{X_i}(1-p)^{1-X_i}$

Determine formula for $LL(\theta)$

$$LL(\theta) = \sum_{i=1}^{n} \log f(X_i|p)$$

$$f(X_i|p) = \begin{cases} p & \text{if } X_i = 1\\ 1 - p & \text{if } X_i = 0 \end{cases}$$

- 2. Differentiate $LL(\theta)$ w.r.t. (each) θ , set to 0
- 3. Solve resulting equations

$$f(X_{i}|p) = p^{X_{i}}(1-p)^{1-X_{i}} \text{ where } X_{i} \in \{0,1\}$$

$$X_{i} = 1 \qquad f(X_{i} = 1|p) = p^{1}(1-p)^{1-1} = p$$

$$X_{i} = 0 \qquad f(X_{i} = 0|p) = p^{0}(1-p)^{1-0} = 1-p$$

- Is differentiable with respect to p
- Valid PMF over discrete domain

Consider a sample of n i.i.d. RVs X_1, X_2, \dots, X_n . What is $\theta_{MLE} = p_{MLE}$?

- Let $X_i \sim \text{Ber}(p)$.
- $f(X_i|p) = p^{X_i}(1-p)^{1-X_i}$

1. Determine formula for $LL(\theta)$

$$LL(\theta) = \sum_{i=1}^{n} \log f(X_i|p) = \sum_{i=1}^{n} \log(p^{X_i}(1-p)^{1-X_i})$$

$$\log p^{X_i} + \log(p^{X_i}(1-p)^{1-X_i})$$

$$\log p^{X_i} + \log(p^{X_i}(1-p)^{1-X_i})$$

$$\log p^{X_i} + \log(p^{X_i}(1-p)^{1-X_i})$$

2. Differentiate $LL(\theta)$ w.r.t. (each) θ , set to 0

$$= \sum_{i=1}^{n} [X_{i} \log p + (1 - X_{i}) \log(1 - p)]$$

$$= \sum_{i=1}^{n} [X_{i} \log p + (1 - X_{i}) \log(1 - p)]$$

$$= \sum_{i=1}^{n} [X_{i} \log p + (1 - X_{i}) \log(1 - p)]$$

3. Solve resulting equations

$$= Y(\log p) + (n - Y) \log(1 - p)$$
, where $Y = \sum_{i=1}^{n} X_i$

Consider a sample of n i.i.d. RVs $X_1, X_2, ..., X_n$. What is $\theta_{MLE} = p_{MLE}$?

- Let $X_i \sim \text{Ber}(p)$.
- $f(X_i|p) = p^{X_i}(1-p)^{1-X_i}$

Determine formula for $LL(\theta)$

$$LL(\theta) = \sum_{i=1}^{n} [X_i \log p + (1 - X_i) \log(1 - p)]$$

$$= Y(\log p) + (n - Y) \log(1 - p), \text{ where } Y = \sum_{i=1}^{n} X_i$$

2. Differentiate $LL(\theta)$

Differentiate
$$LL(\theta)$$
 w.r.t. (each) θ , set to 0
$$\frac{\partial LL(\theta)}{\partial p} = Y \frac{1}{p} + (n - Y) \frac{-1}{1 - p} = 0$$

3. Solve resulting equations

Consider a sample of n i.i.d. RVs $X_1, X_2, ..., X_n$. What is $\theta_{MLE} = p_{MLE}$?

- Let $X_i \sim \text{Ber}(p)$.
- $f(X_i|p) = p^{X_i}(1-p)^{1-X_i}$

Determine formula for $LL(\theta)$

$$LL(\theta) = \sum_{i=1}^{n} [X_i \log p + (1 - X_i) \log(1 - p)]$$

$$= Y(\log p) + (n - Y) \log(1 - p), \text{ where } Y = \sum_{i=1}^{n} X_i$$

2. Differentiate $LL(\theta)$

Differentiate
$$LL(\theta)$$
 w.r.t. (each) θ , set to 0
$$\frac{\partial LL(\theta)}{\partial p} = Y \frac{1}{p} + (n - Y) \frac{-1}{1 - p} = 0$$

3. Solve resulting equations

$$\frac{1}{\sqrt{1-h}} = \frac{1-h}{\sqrt{1-h}} = \frac{1-h}$$

Maximum Likelihood with Bernoulli

Consider a sample of n i.i.d. RVs $X_1, X_2, ..., X_n$. What is $\theta_{MLE} = p_{MLE}$?

- Let $X_i \sim \text{Ber}(p)$.
- $f(X_i|p) = p^{X_i}(1-p)^{1-X_i}$

1. Determine formula for $LL(\theta)$

$$LL(\theta) = \sum_{i=1}^{n} [X_i \log p + (1 - X_i) \log(1 - p)]$$

$$= Y(\log p) + (n - Y) \log(1 - p), \text{ where } Y = \sum_{i=1}^{n} X_i$$

2. Differentiate $LL(\theta)$

Differentiate
$$LL(\theta)$$
 w.r.t. (each) θ , set to 0
$$\frac{\partial LL(\theta)}{\partial p} = Y \frac{1}{p} + (n - Y) \frac{-1}{1 - p} = 0$$

3. Solve resulting equations

$$p_{MLE} = \frac{1}{n}Y = \frac{1}{n}\sum_{i=1}^{n}X_i$$

MLE of the Bernoulli parameter, p_{MLE} , is the unbiased estimate of the mean, \bar{X} (sample mean)

MLE of Bernoulli is the sample mean

• You draw n i.i.d. random variables $X_1, X_2, ..., X_n$ from the distribution F, yielding the following sample:

$$[0, 0, 1, 1, 1, 1, 1, 1, 1] (n = 10)$$

- Suppose distribution F = Ber(p) with unknown parameter p.
- 1. What is p_{MLE} , the MLE of the parameter p?
 - A. 1.0
 - B. 0.5
 - C. 0.8
 - D. 0.2
 - E. None/other

$$p_{MLE} = \bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

• You draw n i.i.d. random variables $X_1, X_2, ..., X_n$ from the distribution F, yielding the following sample:

$$[0, 0, 1, 1, 1, 1, 1, 1, 1] (n = 10)$$

- Suppose distribution F = Ber(p) with unknown parameter p.
- 1. What is p_{MLE} , the MLE of the parameter p?
 - A. 1.0
 - B. 0.5
 - - D. 0.2
 - E. None/other

$$p_{MLE} = \bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

• You draw n i.i.d. random variables $X_1, X_2, ..., X_n$ from the distribution F, yielding the following sample:

$$[0, 0, 1, 1, 1, 1, 1, 1, 1] (n = 10)$$

- Suppose distribution F = Ber(p) with unknown parameter p.
- 1. What is p_{MLE} , the MLE of the parameter p?

C. 0.8

2. What is the likelihood $L(\theta)$ of this particular sample?

$$f(X_i|p) = p^{X_i}(1-p)^{1-X_i} \text{ where } X_i \in \{0,1\}$$

$$L(\theta) = \prod_{i=1}^n f(X_i|p) \text{ where } \theta = p$$

$$= p^8(1-p)^2$$

(live)

20: Maximum Likelihood Estimation

Lisa Yan May 20, 2020

Computing the MLE

Sample X, , X2, ..., Xn

General approach for finding θ_{MLE} , the MLE of θ : $\lfloor (b) = \sharp (X_1, X_2, \dots, X_n) \rbrace b$

1. Determine formula for $LL(\theta)$

 $LL(\theta) = \sum_{i} \log f(X_i | \theta)$

$$(\theta)$$

2. Differentiate $LL(\theta)$ w.r.t. (each) θ

$$\frac{\partial LL(\theta)}{\partial \theta}$$

To maximize: $\frac{\partial LL(\theta)}{\partial \theta} = 0$

3. Solve resulting (simultaneous) equations

> (algebra or computer)

- 4. Make sure derived $\hat{\theta}_{MLE}$ is a maximum
 - Check $LL(\theta_{MLE} \pm \epsilon) < LL(\theta_{MLE})$
 - Often ignored in expository derivations
 - We'll ignore it here too (and won't require it in class)

 $LL(\theta)$ is often easier to differentiate than $L(\theta)$.

Consider a sample of n i.i.d. RVs $X_1, X_2, ..., X_n$.

What is $\theta_{MLE} = \lambda_{MLE}$?

Determine formula for $LL(\theta)$

i.i.d. RVs
$$X_1, X_2, ..., X_n$$
.

• Let $X_i \sim \text{Poi}(\lambda)$.

• PMF: $f(X_i | \lambda) = \frac{e^{-\lambda} \lambda^{X_i}}{X_i!}$

• Let $X_i \sim \text{Poi}(\lambda)$.

• PMF: $f(X_i | \lambda) = \frac{e^{-\lambda} \lambda^{X_i}}{X_i!}$

• Let $X_i \sim \text{Poi}(\lambda)$.

• PMF: $f(X_i | \lambda) = \frac{e^{-\lambda} \lambda^{X_i}}{X_i!}$

• Let $X_i \sim \text{Poi}(\lambda)$.

• PMF: $f(X_i | \lambda) = \frac{e^{-\lambda} \lambda^{X_i}}{X_i!}$

• PMF: $f(X_i | \lambda) = \frac{e^{-\lambda} \lambda^{X_i}}{X_i!}$

• PMF: $f(X_i | \lambda) = \frac{e^{-\lambda} \lambda^{X_i}}{X_i!}$

• Let $X_i \sim \text{Poi}(\lambda)$.

• PMF: $f(X_i | \lambda) = \frac{e^{-\lambda} \lambda^{X_i}}{X_i!}$

Consider a sample of n i.i.d. RVs $X_1, X_2, ..., X_n$. What is $\theta_{MLE} = \lambda_{MLE}$?

• Let $X_i \sim \text{Poi}(\lambda)$. • PMF: $f(X_i|\lambda) = \frac{e^{-\lambda}\lambda^{X_i}}{X_i!}$

Determine formula for $LL(\theta)$

$$LL(\theta) = \sum_{i=1}^{n} \log \left(\frac{e^{-\lambda} \lambda^{X_i}}{X_i!} \right) = \sum_{i=1}^{n} (-\lambda \log e + X_i \log \lambda - \log X_i!)$$

$$= -n\lambda + \log(\lambda) \sum_{i=1}^{n} X_i - \sum_{i=1}^{n} \log(X_i!) \quad \text{(using natural log, ln } e = 1)$$

2. Differentiate $LL(\theta)$ w.r.t. (each) θ , set to 0

$$\frac{\partial LL(\theta)}{\partial \lambda} = ?$$

A.
$$-n + \frac{1}{\lambda} \sum_{i=1}^{n} X_i + n \log \lambda - \sum_{i=1}^{n} \frac{1}{X_i!} \cdot \frac{\partial X_i!}{\partial X_i}$$
B. $-n + \frac{1}{\lambda} \sum_{i=1}^{n} X_i$
None/other/don't know

$$-n + \frac{1}{\lambda} \sum_{i=1}^{n} X_i$$

Consider a sample of n i.i.d. RVs $X_1, X_2, ..., X_n$. What is $\theta_{MLE} = \lambda_{MLE}$?

- Let $X_i \sim \text{Poi}(\lambda)$. PMF: $f(X_i|\lambda) = \frac{e^{-\lambda}\lambda^{X_i}}{X_i!}$

1. Determine formula for $LL(\theta)$

$$LL(\theta) = \sum_{i=1}^{n} \log \left(\frac{e^{-\lambda} \lambda^{X_i}}{X_i!} \right) = \sum_{i=1}^{n} (-\lambda \log e + X_i \log \lambda - \log X_i!)$$

$$= -n\lambda + \log(\lambda) \sum_{i=1}^{n} X_i - \sum_{i=1}^{n} \log(X_i!)$$
 (using natural log, ln $e = 1$)

2. Differentiate $LL(\theta)$ w.r.t. (each) θ , set to 0

$$\frac{\partial LL(\theta)}{\partial \lambda} = 3$$

$$\frac{\partial LL(\theta)}{\partial \lambda} = ? \quad \frac{d}{d\lambda} \left[-n\lambda \right] + \frac{d}{d\lambda} \log \left(\lambda \right) \left(\sum_{i=1}^{n} \lambda_i \right) + \frac{d}{d\lambda} \left(-\sum_{i=1}^{n} \log \left(\lambda_i \right) \right)$$

A.
$$-n + \frac{1}{\lambda} \sum_{i=1}^{n} X_i + n \log \lambda - \sum_{i=1}^{n} \frac{1}{X_i!} \cdot \frac{\partial X_i!}{\partial X_i} \qquad -n + \frac{1}{\lambda} \sum_{i=1}^{n} X_i \qquad C.$$

$$-n + \frac{1}{\lambda} \sum_{i=1}^{n} X_i$$

Consider a sample of n i.i.d. RVs X_1, X_2, \dots, X_n . What is $\theta_{MLE} = \lambda_{MLE}$?

• Let $X_i \sim \text{Poi}(\lambda)$. • PMF: $f(X_i|\lambda) = \frac{e^{-\lambda}\lambda^{X_i}}{X_i!}$

1. Determine formula for $LL(\theta)$

$$LL(\theta) = \sum_{i=1}^{n} \log \left(\frac{e^{-\lambda} \lambda^{X_i}}{X_i!} \right) = \sum_{i=1}^{n} (-\lambda \log e + X_i \log \lambda - \log X_i!)$$

$$\frac{n}{X_i!} = \sum_{i=1}^{n} (-\lambda \log e + X_i \log \lambda - \log X_i!)$$
(using natural

 $= -n\lambda + \log(\lambda) \sum_{i=1}^{n} X_i - \sum_{i=1}^{n} \log(X_i!) \quad \text{(using natural log, ln } e = 1)$

2. Differentiate $LL(\theta)$ w.r.t. (each) θ , set to 0

$$\frac{\partial LL(\theta)}{\partial \lambda} = -n + \frac{1}{\lambda} \sum_{i=1}^{n} X_i = 0$$

3. Solve resulting equations

$$\lambda_{MLE} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

Consider a sample of n i.i.d. RVs $X_1, X_2, ..., X_n$. What is $\theta_{MLE} = \lambda_{MLE}$?

- Let $X_i \sim \text{Poi}(\lambda)$. PMF: $f(X_i|\lambda) = \frac{e^{-\lambda}\lambda^{X_i}}{X_i!}$

Determine formula for $LL(\theta)$

$$LL(\theta) = \sum_{i=1}^{n} \log \left(\frac{e^{-\lambda} \lambda^{X_i}}{X_i!} \right) = \sum_{i=1}^{n} (-\lambda \log e + X_i \log \lambda - \log X_i!)$$

$$= -n\lambda + \log(\lambda) \sum_{i=1}^{n} X_i - \sum_{i=1}^{n} \log(X_i!) \quad \text{(using natural log, ln } e = 1)$$

2. Differentiate $LL(\theta)$ w.r.t. (each) θ , set to 0

$$\frac{\partial LL(\theta)}{\partial \lambda} = -n + \frac{1}{\lambda} \sum_{i=1}^{n} X_i = 0$$

3. Solve resulting equations

$$\lambda_{MLE} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

MLE of the Poisson parameter, λ_{MLE} , is the unbiased estimate of the mean, \bar{X} (sample mean)

- 1. A particular experiment can be modeled as a Poisson RV with parameter λ , in terms of events/minute.
 - Collect data: observe 53 events over the next 10 minutes. What is λ_{MLE} ?
- 2. Is the Bernoulli MLE an unbiased estimator of the Bernoulli parameter p?
- 3. Is the Poisson MLE an unbiased estimator of the Poisson variance?
- 4. What does unbiased mean?

F[1bar {X}] = u?

X=12Xi~N(n, n)

A particular experiment can be modeled as a Poisson RV with parameter λ , in terms of events/minute.

 $\lambda_{MLE} = \frac{1}{n} \sum_{i} X_i$

Collect data: observe 53 events over the next 10 minutes. What is λ_{MLF} ?

Sample: $(X_1 = X_1, X_2 = X_2, ..., \lambda_6 = X_3)$ $(X_1 = X_1, X_2 = X_2, ..., \lambda_6 = X_3)$ $(X_1 = X_1, X_2 = X_2, ..., \lambda_6 = X_3)$ $(X_1 = X_1, X_2 = X_2, ..., \lambda_6 = X_3)$ $(X_1 = X_1, X_2 = X_2, ..., \lambda_6 = X_3)$

2. Is the Bernoulli MLE an unbiased estimator of X~Ber(p) the Bernoulli parameter p?

ELPMLE] = P E[\frac{1}{2}Xi] = E[X] = M = P

3. Is the Poisson MLE an unbiased estimator of XnPoil) IE[Inle] = E[X] = 7 = 02 the Poisson variance?

4. What does unbiased mean? $E[estimator] = true_thing$

Unbiased: If you could repeat your experiment, on average you would get what you are looking for.

TorF

Interlude for jokes/announcements

Announcements

Quiz #2

Thursday 5/21 12:00am-11:59pm Time frame:

PT

Up to and including Lecture 17 Covers:

Note: If you have an emergency situation during the quiz, please contact Lisa and Cooper. We will try our best to accommodate.

Problem Set 6: No late days or on-time bonus

Grading clarification

Two examples

https://us.edstem.org/courses/109/discussion/ 67686

Interesting probability news

Bernoulli's trials can tell you how many job applications to send

Are these trials independent?

Now let's say the probabilities of a Yes in each of those steps go something like this:

- 1. Initial contact: 10%
- 2. Soft phone interview. 80% (recruiters are optimistic, that's what pays them)
- 3. Phone interview: 50% (you're a good engineer, but companies like to think they're tough)
- 4. On-site interviews: 60% (you're already here, that's good)
- 5. Chat with offer giver: 80% (only red flags will mess it up)
- 6. Job offer

That gives you an overall conversion rate of

0.1*0.8*0.5*0.6*0.8 = 0.02 == 2% which sounds really tough. I see now what Anastacia meant.

Now if we plug that into the formula for Bernoulli trials on WolframAlpha we see that if you apply for 30 jobs, that gives you a

https://swizec.com/blog/bernoullis-trials-cantell-many-job-applications-send/swizec/7677

CS109 Current Events Spreadsheet

Maximum Likelihood with Uniform

Consider a sample of n i.i.d. random variables X_1, X_2, \dots, X_n .

Let
$$X_i \sim \text{Uni}(\alpha, \beta)$$
.

Let
$$X_i \sim \text{Uni}(\alpha, \beta)$$
.
$$f(X_i | \alpha, \beta) = \begin{cases} \frac{1}{\beta - \alpha} & \text{if } \alpha \leq x_i \leq \beta \\ 0 & \text{otherwise} \end{cases}$$

Determine formula for $L(\theta)$

2. Differentiate $LL(\theta)$ w.r.t. (each) θ , set to 0

$$L(\theta) = \begin{cases} \left(\frac{1}{\beta - \alpha}\right)^n & \text{if } \alpha \leq x_1, x_2, \dots, x_n \leq \beta \\ 0 & \text{otherwise} \end{cases}$$

$$\sum_{i=1}^{n} \log_{\beta} \left(\frac{1}{\beta - \alpha}\right)^n & \text{if } \alpha \leq x_1, x_2, \dots, x_n \leq \beta$$

- A. Great, let's do it
- B. Differentiation is hard
- Constraint $\alpha \leq x_1, x_2, \dots, x_n \leq \beta$ makes differentiation hard

Example sample from a Uniform

Consider a sample of n i.i.d. random variables X_1, X_2, \dots, X_n .

Let
$$X_i \sim \text{Uni}(\alpha, \beta)$$
.

$$L(\theta) = \begin{cases} \left(\frac{1}{\beta - \alpha}\right)^n & \text{if } \alpha \leq x_1, x_2, \dots, x_n \leq \beta \\ 0 & \text{otherwise} \end{cases}$$

Suppose $X_i \sim \text{Uni}(0,1)$. [0.15, 0.20, 0.30, 0.40, 0.65, 0.70, 0.75]

You observe data:

A. Uni($\alpha = 0$, $\beta = 1$)

Which parameters would give you maximum $L(\theta)$?

B. Uni(
$$\alpha = 0.15, \beta = 0.75$$
)

largest

C. Uni(
$$\alpha = 0.15, \beta = 0.70$$
)

Example sample from a Uniform

Consider a sample of n i.i.d. random variables X_1, X_2, \dots, X_n .

Let
$$X_i \sim \text{Uni}(\alpha, \beta)$$
.

$$L(\theta) = \begin{cases} \left(\frac{1}{\beta - \alpha}\right)^n & \text{if } \alpha \leq x_1, x_2, \dots, x_n \leq \beta \\ 0 & \text{otherwise} \end{cases}$$

You observe data:

Which parameters would give you maximum $L(\theta)$? largest

Suppose
$$X_i \sim \text{Uni}(0,1)$$
. [0.15, 0.20, 0.30, 0.40, 0.65, 0.70, 0.75]

A. Uni(
$$\alpha = 0$$
 , $\beta = 1$)

$$\beta = 1$$

$$(1)^7 = 1$$

B.
$$Uni(\alpha = 0.15, \beta = 0.75)$$

$$\left(\frac{1}{0.6}\right)^7 = 59.5 \quad \longleftarrow$$

C. Uni(
$$\alpha = 0.15, \beta = 0.70$$
)

$$\left(\frac{1}{0.55}\right)^6 \cdot 0 = 0$$

Original parameters may not yield maximum likelihood.

Maximum Likelihood with Uniform

Consider a sample of n i.i.d. random variables X_1, X_2, \dots, X_n .

Let
$$X_i \sim \text{Uni}(\alpha, \beta)$$
.

$$L(\theta) = \begin{cases} \left(\frac{1}{\beta - \alpha}\right)^n & \text{if } \alpha \leq x_1, x_2, \dots, x_n \leq \beta \\ 0 & \text{otherwise} \end{cases}$$

$$\theta_{MLE}$$
: $\alpha_{MLE} = \min(x_1, x_2, ..., x_n)$ $\beta_{MLE} = \max(x_1, x_2, ..., x_n)$

$$\beta_{MLE} = \max(x_1, x_2, \dots, x_n)$$

Intuition:

- Want interval size $(\beta \alpha)$ to be as small as possible to maximize likelihood function per datapoint
- Need to make sure all observed data is in interval (if not, then $L(\theta) = 0$)

(demo)

Small samples = problems with MLE

Maximum Likelihood Estimator θ_{MLE} :

$$\theta_{MLE} = \arg\max_{\theta} L(\theta)$$

- Best explains data we have seen
- Does not attempt to generalize to unseen data.
- In many cases, $\mu_{MLE} = \frac{1}{n} \sum_{i=1}^{n} X_i$ Sample mean (MLE for Bernoulli p_r) Poisson λ_r Normal μ)
 - Unbiased $(E[\mu_{MLE}] = \mu \text{ regardless of size of sample, } n)$
- For some cases, like Uniform: $\alpha_{MLE} \geq \alpha$, $\beta_{MLE} \leq \beta$
 - Biased. Problematic for small sample size
 - Example: If n=1 then $\alpha=\beta$, yielding an invalid distribution

Properties of MLE

Maximum Likelihood Estimator:

 $\theta_{MLE} = \arg\max L(\theta)$

- Best explains data we have seen
- Does not attempt to generalize to unseen data.

- Often used when sample size n is large relative to parameter space
- Potentially biased (though asymptotically less so, as $n \to \infty$)
- Consistent: $\lim_{n \to \infty} P(|\hat{\theta} \theta| < \varepsilon) = 1 \text{ where } \varepsilon > 0$

As $n \to \infty$ (i.e., more data), probability that $\hat{\theta}$ significantly differs from θ is zero

Consider a sample of n i.i.d. random variables X_1, X_2, \dots, X_n .

• Let
$$X_i \sim \mathcal{N}(\mu, \sigma^2)$$
.

$$f(X_i|\mu,\sigma^2) = \frac{1}{\sqrt{2\pi}\sigma} e^{-(X_i-\mu)^2/(2\sigma^2)}$$

What is $\theta_{MLE} = (\mu_{MLE}, \sigma_{MLE}^2)$?

- 1. Determine formula for $LL(\theta)$
- 2. Differentiate $LL(\theta)$ 3. Solve resulting w.r.t. (each) θ , set to 0
 - equations

$$LL(\theta) = \sum_{i=1}^{n} \log \left(\frac{1}{\sqrt{2\pi}\sigma} e^{-(X_i - \mu)^2/(2\sigma^2)} \right) = \sum_{i=1}^{n} \left[-\log(\sqrt{2\pi}\sigma) - (X_i - \mu)^2/(2\sigma^2) \right]$$
 (using natural log)

$$= -\sum_{i=1}^{n} \log(\sqrt{2\pi}\sigma) - \sum_{i=1}^{n} [(X_i - \mu)^2 / (2\sigma^2)]$$

Consider a sample of n i.i.d. random variables X_1, X_2, \dots, X_n .

• Let
$$X_i \sim \mathcal{N}(\mu, \sigma^2)$$
.

$$f(X_i|\mu,\sigma^2) = \frac{1}{\sqrt{2\pi}\sigma} e^{-(X_i-\mu)^2/(2\sigma^2)}$$

What is $\theta_{MLE} = (\mu_{MLE}, \sigma_{MLE}^2)$?

- 1. Determine formula for $LL(\theta)$
- 2. Differentiate $LL(\theta)$ 3. Solve resulting w.r.t. (each) θ , set to 0
 - equations

with respect to
$$\mu$$

$$LL(\theta) = -\sum_{i=1}^{n} \log(\sqrt{2\pi}\sigma) - \sum_{i=1}^{n} [(X_i - \mu)^2/(2\sigma^2)]$$

$$\frac{\partial LL(\theta)}{\partial \mu} = \sum_{i=1}^{n} [2(X_i - \mu)/(2\sigma^2)]$$

$$= \frac{1}{\sigma^2} \sum_{i=1}^{n} (X_i - \mu) = 0$$

$$\text{Lisa Yan, CS109, 2020}$$

Consider a sample of n i.i.d. random variables X_1, X_2, \dots, X_n .

• Let
$$X_i \sim \mathcal{N}(\mu, \sigma^2)$$
.

$$f(X_i|\mu,\sigma^2) = \frac{1}{\sqrt{2\pi}\sigma} e^{-(X_i-\mu)^2/(2\sigma^2)}$$

What is $\theta_{MLE} = (\mu_{MLE}, \sigma_{MLE}^2)$?

- 1. Determine formula for $LL(\theta)$
- 2. Differentiate $LL(\theta)$ 3. Solve resulting w.r.t. (each) θ , set to 0
 - equations

with respect to
$$\mu$$

$$LL(\theta) = -\sum_{i=1}^{n} \log(\sqrt{2\pi}\sigma) - \sum_{i=1}^{n} [(X_i - \mu)^2/(2\sigma^2)] \quad \text{with respect to } \sigma$$

$$\frac{\partial LL(\theta)}{\partial \mu} = \sum_{i=1}^{n} [2(X_i - \mu)/(2\sigma^2)] \quad \frac{\partial LL(\theta)}{\partial \sigma} = -\sum_{i=1}^{n} \frac{1}{\sigma} + \sum_{i=1}^{n} 2(X_i - \mu)^2/(2\sigma^3)$$

$$= \frac{1}{\sigma^2} \sum_{i=1}^{n} (X_i - \mu) = 0$$

$$= -\frac{n}{\sigma} + \frac{1}{\sigma^3} \sum_{i=1}^{n} (X_i - \mu)^2 = 0$$
University

$$\frac{\partial LL(\theta)}{\partial \mu} = -\sum_{i=1}^{n} \log(\sqrt{2\pi\sigma}) - \sum_{i=1}^{n} [(X_i - \mu)^2/(2\sigma^2)]$$

$$\frac{\partial LL(\theta)}{\partial \mu} = \sum_{i=1}^{n} [2(X_i - \mu)/(2\sigma^2)]$$

$$\frac{\partial LL(\theta)}{\partial \sigma} = -\sum_{i=1}^{n} \frac{1}{\sigma} + \sum_{i=1}^{n} 2(X_i - \mu)^2/(2\sigma^3)$$

$$= \frac{1}{\sigma^2} \sum_{i=1}^{n} (X_i - \mu) = 0$$

$$= -\frac{n}{\sigma} + \frac{1}{\sigma^3} \sum_{i=1}^{n} (X_i - \mu)^2 = 0$$
University

Consider a sample of n i.i.d. random variables X_1, X_2, \dots, X_n .

• Let $X_i \sim \mathcal{N}(\mu, \sigma^2)$.

$$f(X_i|\mu,\sigma^2) = \frac{1}{\sqrt{2\pi}\sigma} e^{-(X_i-\mu)^2/(2\sigma^2)}$$

What is $\theta_{MLE} = (\mu_{MLE}, \sigma_{MLE}^2)$?

equations

$$\frac{1}{\sigma^2} \sum_{i=1}^{n} (X_i - \mu) = 0$$

3. Solve resulting equations Two equations, two unknowns:
$$\frac{1}{\sigma^2} \sum_{i=1}^{n} (X_i - \mu) = 0 - \frac{n}{\sigma} + \frac{1}{\sigma^3} \sum_{i=1}^{n} (X_i - \mu)^2 = 0$$

First, solve for
$$\mu_{MLE}$$
:
$$\frac{1}{\sigma^2} \sum_{i=1}^n X_i - \frac{1}{\sigma^2} \sum_{i=1}^n \mu = 0 \quad \Rightarrow \quad \sum_{i=1}^n X_i = n\mu \quad \Rightarrow \quad \mu_{MLE} = \frac{1}{n} \sum_{i=1}^n X_i$$
 unbiased

Consider a sample of n i.i.d. random variables X_1, X_2, \dots, X_n .

• Let
$$X_i \sim \mathcal{N}(\mu, \sigma^2)$$
.

$$f(X_i|\mu,\sigma^2) = \frac{1}{\sqrt{2\pi}\sigma} e^{-(X_i-\mu)^2/(2\sigma^2)}$$

What is $\theta_{MLE} = (\mu_{MLE}, \sigma_{MLE}^2)$?

equations

$$\frac{1}{\sigma^2} \sum_{i=1}^n (X_i - \mu) = 0$$

3. Solve resulting equations Two equations, two unknowns:
$$\frac{1}{\sigma^2} \sum_{i=1}^n (X_i - \mu) = 0 - \frac{n}{\sigma} + \frac{1}{\sigma^3} \sum_{i=1}^n (X_i - \mu)^2 = 0$$

First, solve for
$$\mu_{MLE}$$
:

First, solve for
$$\mu_{MLE}$$
:
$$\frac{1}{\sigma^2} \sum_{i=1}^n X_i - \frac{1}{\sigma^2} \sum_{i=1}^n \mu = 0 \quad \Rightarrow \quad \sum_{i=1}^n X_i = n\mu \quad \Rightarrow \quad \mu_{MLE} = \frac{1}{n} \sum_{i=1}^n X_i$$
 unbiased unbiased

$$\Rightarrow \mu_{MLE} = \frac{1}{n} \sum_{i=1}^{n} X_i$$
 unbiased

Next, solve for
$$\sigma_{MLE}$$
:

Next, solve for
$$\sigma_{MLE}$$
:
$$\frac{1}{\sigma^3} \sum_{i=1}^n (X_i - \mu)^2 = \frac{n}{\sigma} \implies \sum_{i=1}^n (X_i - \mu)^2 = \sigma^2 n \implies \sigma_{MLE}^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \mu_{MLE})^2$$
 biased