21: Beta

Lisa Yan May 22, 2020

Quick slide reference

3 MLE: Multinomial 21a_mle_multinomial 11 Bayesian statistics/Beta sneak peek 21b_bayesian 20 The Beta RV 21c_beta 37 Flipping a coin with unknown probability Theorem CIVE * Extra: MLE: Multinomial Derivation 21e_extra

21a_mle_multinomial

MLE: Multinomial

Consider a sample of n i.i.d. random variables where

- Each element is drawn from one of m outcomes. $P(\text{outcome } i) = p_i$, where $\sum_{i=1}^{m} p_i = 1$
- $X_i = #$ of trials with outcome *i*, where $\sum_{i=1}^{m} X_i = n$

Staring at my math homework like

Let's give an example!

Consider a sample of n i.i.d. random variables where

- Each element is drawn from one of m outcomes. $P(\text{outcome } i) = p_i$, where $\sum_{i=1}^{m} p_i = 1$
- $X_i = #$ of trials with outcome *i*, where $\sum_{i=1}^{m} X_i = n$

Example: Suppose each RV is outcome of 6-sided die.

 $m = 6, \sum$ $i = 1$ 6 $p_i = 1$

- Roll the dice $n = 12$ times.
- Observe data: 3 ones, 2 twos, 0 threes, 3 fours, 1 fives, 3 sixes

$$
X_1 = 3, X_2 = 2, X_3 = 0,
$$

\n
$$
X_4 = 3, X_5 = 1, X_6 = 3
$$

\nCheck: $X_1 + X_2 + \dots + X_6 = 12$

Check:
$$
X_1 + X_2 + \cdots + X_6 = 12
$$

Consider a sample of n i.i.d. random variables where

- Each element is drawn from one of m outcomes. $P(\text{outcome } i) = p_i$, where $\sum_{i=1}^{m} p_i = 1$
- $X_i = #$ of trials with outcome *i*, where $\sum_{i=1}^{m} X_i = n$
- 1. What is the likelihood of observing the sample $(X_1, X_2, ..., X_m)$, given the probabilities $p_1, p_2, ..., p_m$?

A.
$$
\frac{n!}{X_1! X_2! \cdots X_m!} p_1^{X_1} p_2^{X_2} \cdots p_m^{X_m}
$$

B.
$$
p_1^{X_1} p_2^{X_2} \cdots p_m^{X_m}
$$

C.
$$
\frac{n!}{X_1! X_2! \cdots X_m!} X_1^{p_1} X_2^{p_2} \cdots X_m^{p_m}
$$

Consider a sample of n i.i.d. random variables where

- Each element is drawn from one of m outcomes. $P(\text{outcome } i) = p_i$, where $\sum_{i=1}^{m} p_i = 1$
- $X_i = #$ of trials with outcome *i*, where $\sum_{i=1}^{m} X_i = n$
- 1. What is the likelihood of observing the sample $(X_1, X_2, ..., X_m)$, given the probabilities $p_1, p_2, ..., p_m$?

(A)

\n
$$
\frac{n!}{X_1! X_2! \cdots X_m!} p_1^{X_1} p_2^{X_2} \cdots p_m^{X_m}
$$
\n**B.**

\n
$$
p_1^{X_1} p_2^{X_2} \cdots p_m^{X_m}
$$
\n**C.**

\n
$$
\frac{n!}{X_1! X_2! \cdots X_m!} X_1^{p_1} X_2^{p_2} \cdots X_m^{p_m}
$$

$$
(x_{1},x_{2},...,x_{m})\begin{matrix}x_{1} & x_{2} & x_{m} \\ y_{2} & \cdots & y_{m} \end{matrix})
$$

Consider a sample of n i.i.d. random variables where

- Each element is drawn from one of m outcomes. $P(\text{outcome } i) = p_i$, where $\sum_{i=1}^{m} p_i = 1$
- $X_i = #$ of trials with outcome *i*, where $\sum_{i=1}^{m} X_i = n$
- 1. What is the likelihood of observing the sample $(X_1, X_2, ..., X_m)$, given the probabilities $p_1, p_2, ..., p_m$?

2. What is θ_{MLE} ?

$$
LL(\theta) = \log(n!) - \sum_{i=1}^{m} \log(X_i!) + \sum_{i}^{m} X_i \log(p_i),
$$
 such that $\sum_{i=1}^{m} p_i = 1$
Optimize with
Lagrange multipliers in
extra slides
extra slides

$$
\theta_{MLE}: p_i = \frac{X_i}{n} \quad \text{Intuitively, probability}\n\n $p_i = \text{proportion of outcomes}$
$$

 $L(\theta) =$

 $n!$

 $p_1^{X_1}p_2^{X_2}\cdots p_m^{X_m}$

 $X_1! X_2! \cdots X_m!$

8

MLE for Multinomial: X_i \overline{n}

Consider a 6-sided die.

- Roll the dice $n = 12$ times.
- Observe: 3 ones, 2 twos, 0 threes, 3 fours, 1 fives, 3 sixes

What is θ_{MLE} ?

$$
p_{1}=\frac{3}{12}
$$

\n $p_{2}=\frac{2}{12}$
\n $p_{3}=\frac{9}{12}$
\n $p_{4}=\frac{3}{12}$
\n $p_{5}=\frac{3}{12}$
\n $p_{6}=\frac{3}{12}$

MLE for Multinomial: X_i \overline{n}

Consider a 6-sided die.

- Roll the dice $n = 12$ times.
- Observe: 3 ones, 2 twos, 0 threes, 3 fours, 1 fives, 3 sixes

 θ_{MLE} :

$$
p_1 = 3/12\n p_2 = 2/12\n p_3 = 0/12\n p_4 = 3/12\n p_5 = 1/12\n p_6 = 3/12
$$

- MLE: you'll never... EVER... roll a three.
- Do you really believe that?

Today: A new definition of probability!

21b_bayesian

Bayesian Statistics

Review

Consider a 6-sided die.

- Roll the dice $n = 12$ times.
- Observe: 3 ones, 2 twos, 0 threes, 3 fours, 1 fives, 3 sixes

 θ_{MLE} :

```
p_1 = 3/12p_2 = 2/12p_3 = 0/12 .
p_4 = 3/12p_5 = 1/12p_6 = 3/12
```
- MLE: you'll never... **EVER**... roll a three.
- Do you really believe that?

 $\frac{1}{2}$ Roll more! Prob. = frequency in limit

But what if you cannot observe anymore rolls?

Today we are going to learn something unintuitive, beautiful, and useful!

We are going to think of probabilities as random variables.

Let's play a game

Roll 2 dice. If *neither* roll is a 6, you win (event W). Else, I win (event W^C).

- $P(W)$ Before you play, what's the probability that you win?
- $P(\omega)$ Play once. What's the probability that you win?
- Play three more times. What's the probability that you win? $P(\omega)$

 $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ $P(W) = \begin{pmatrix} -1 \\ 6 \end{pmatrix}$ **Frequentist** $P(W)$ 5 6 $\overline{2}$ Bayesian wait hold up this situation is whack tho

Bayesian statistics: Update your prior beliefs of probability.

Bayesian statistics: Probability is a reasonable expectation representing a state of knowledge.

Mixing discrete and continuous random variables, combined with Bayes' Theorem, allows us to reason about probabilities as random variables.

A new definition of probability

Flip a coin $n + m$ times, come up with n heads. We don't know the probability θ that the coin comes up heads.

The world's first coin

Bayesian

 θ is a random variable.

 θ 's continuous support: (0, 1)

Mixing discrete and continuous

Let X be a continuous random variable, and N be a discrete random variable.

Bayes'
\nTheorem:
\n
$$
f_{X|N}(x|n) = \frac{p_{N|X}(n|x)f_X(x)}{p_N(n)}
$$
\nIntuition:
\n
$$
P(X = x|N = n) = \frac{P(N = n|X = x)P(X = x)}{P(N = n)} \int_{\chi - \frac{\ell x}{2}}^{\chi + \frac{\ell x}{2}} \chi(\chi) d\chi \approx \mathcal{E}_{\chi} \chi(\chi)
$$
\n
$$
f_{X|N}(x|n) \in \mathcal{E}_{\chi} = \frac{P(N = n|X = x)f_X(x) \in \mathcal{E}_{\chi}}{P(N = n)} \qquad f_{X|N}(x|n) = \frac{p_{N|X}(n|x)f_X(x)}{p_N(n)}
$$

All your Bayes are belong to us

Let X , Y be continuous and M , N be discrete random variables.

0G Bayes:

\n
$$
p_{M|N}(m|n) = \frac{p_{N|M}(n|m)p_M(m)}{p_N(n)}
$$
\nMix Bayes #1:

\n
$$
f_{X|N}(x|n) = \frac{p_{N|X}(n|x)f_X(x)}{p_N(n)}
$$
\nMix Bayes #2:

\n
$$
p_{N|X}(n|x) = \frac{f_{X|N}(x|n)p_N(n)}{f_X(x)}
$$
\nAll continuous:

\n
$$
f_{X|Y}(x|y) = \frac{f_{Y|X}(y|x)f_X(x)}{f_Y(y)}
$$

Mixing discrete and continuous

Let θ be a random variable for the probability your coin comes up heads,
and N he the number of heads you observe in an experiment at the fiels and N be the number of heads you observe in an experiment.

$$
f_{\theta|N}(x|n) = \frac{p_{N|\theta}(n|x)f_{\theta}(x)}{p_N(n)}
$$

normalization constant

- Prior belief of parameter θ f_{\alpha} $f_{\theta}(x)$
- Likelihood of $N = n$ heads, given parameter $\theta = x$. $p_{N|\theta}(n|x)$
- Posterior updated belief of parameter θ . $f_{\theta|N}(x|n)$

Stanford University 19 More in live lecture!

21c_beta

Beta RV
• MLE Mutthouid Oisavabe

-
-
-

Beta random variable

def A Beta random variable X is defined as follows:

$$
X \sim \text{Beta}(a, b) \qquad \text{PDF} \qquad f(x) = \frac{1}{B(a, b)} x^{a-1} (1-x)^{b-1}
$$
\n
$$
a > 0, b > 0 \qquad \text{where } B(a, b) = \int_0^1 x^{a-1} (1-x)^{b-1} dx, \text{ normalizing constant}
$$
\n
$$
\text{Expectation } E[X] = \frac{a}{a+b} \qquad \text{Variance } \text{Var}(X) = \frac{ab}{(a+b)^2 (a+b+1)}
$$
\n
$$
\oint_{\text{Beta}(b)} \int_0^{a-1} (\frac{1}{x})^{b-1} dx = 1
$$

Note: PDF symmetric when $a = b$

 $X \sim Beta(a, b)$

 $X \sim Beta(a, b)$

Beta random variable

def A Beta random variable X is defined as follows:

$X \sim \text{Beta}(a, b)$	PDF	$f(x) = \frac{1}{B(a, b)} x^{a-1} (1-x)^{b-1}$	
$a > 0, b > 0$	\n where $B(a, b) = \int_0^1 x^{a-1} (1-x)^{b-1} dx$, normalizing constant\n		
Expectation	$E[X] = \frac{a}{a+b}$	\n Variance	\n Var(X) = $\frac{ab}{(a+b)^2 (a+b+1)}$ \n

Beta can be a distribution of probabilities.

Beta can be a distribution of probabilities.

Beta parameters a, b could come from an experiment…

But which one? Stay tuned…

 $X \sim Beta(a, b)$

21: Beta

Lisa Yan May 22, 2020

Flipping a coin with unknown probability

A new definition of probability

Flip a coin $n + m$ times, comes up with n heads. We don't know the probability θ that the coin comes up heads.

Review

The world's first coin

Bayesian

 θ is a random variable.

 θ 's continuous support: (0, 1)

Flip a coin with unknown probability

Flip a coin $n + m$ times, observe *n* heads.

- Before our experiment, θ (the probability that the coin comes up heads) can be any probability.
- Let $N =$ number of heads.
- Given $\theta = x$, coin flips are independent.

What is our updated belief of θ after we observe $N = n$?

What are reasonable distributions of the following?

- θ
- 2. $N|\theta = x$

 $\theta|N$

Flip a coin with unknown probability

Flip a coin $n + m$ times, observe n heads.

- Before our experiment, θ (the probability that the coin ϵ comes up heads) can be any probability.
- Let $N =$ number of heads.
- Given $\theta = x$, coin flips are independent.

What is our updated belief of θ after we observe $N = n$?

What are reasonable distributions of the following?

- 1. θ Bayesian prior $\theta \sim$ Uni $(0,1)$
- 2. $N|\theta \geq \gamma$ Likelihood $(N | \theta = x)$ ~Bin $(n + m, x)$
- 3. $\theta | N = n$ Bayesian posterior. Use Bayes'

Flip a coin with unknown probability

Flip a coin $n + m$ times, observe n heads.

- Before our experiment, X (the probability that the coin comes up heads) can be any probability.
- Let $N =$ number of heads.
- Given $X = x$, coin flips are independent.

What is our updated belief of X after we observe $N = n$? Posterior: $f_{\theta|N}(\theta|n)$

The con
\n
$$
\theta \sim \text{Uni}(0,1)
$$

\nLikelihood:
\n $N|\theta = x \sim \text{Bin}(n + m, x)$

32

Prior:

$$
f_{\theta|N}(x|\underline{n}) = \frac{p_{N|\theta}(n|x)f_{\theta}(x)}{p_N(n)} = \frac{\frac{n+m}{n}x^n(1-x)^m \cdot 1}{\frac{p_N(n)}{n}x^m(n)} \int_{0}^{1} \frac{1}{e} x^n (1-x)^m = \frac{1}{\frac{n}{n}x^n(1-x)^m} \int_{0}^{1} \frac{1}{e} x^n (1-x)^m dx
$$

constant,
doesn't depend on x

$$
f_{\theta|N}(x|\underline{n}) = \frac{p_{N}(\underline{n})}{\frac{p_N(n)}{\sqrt{n}}x^n(1-x)^m} = \frac{1}{\frac{n}{n}x^n(1-x)^m} \int_{0}^{1} \frac{1}{e} x^n (1-x)^m dx
$$

Let's try it out

1. Start with a $\theta \sim$ Uni $(0,1)$ over probability that a coin lands heads.

okay

3. What is our posterior belief of the probability θ ?

$$
f_{\theta|N}(x|\eta) = \frac{1}{c} x^7 (1-x)^1
$$

$$
c \text{ normalizes to valid PDF}
$$

Wait a minute…

Support of $X: (0, 1)$

 $a > 0, b > 0$

Review

$$
X \sim \text{Beta}(a, b) \qquad \text{PDF} \quad f(x) = \frac{1}{B(a, b)} x^{a-1} (1-x)^{b-1}
$$

 $\int_{0}^{1} x^{a-1} (1-x)^{b-1} dx$, normalizing constant

$$
f_{\theta|N}(x|n) = \frac{1}{c} x^7 (1-x)^1
$$
 is the PDF for Beta(8, 2)!

c normalizes to valid PDF
 $\frac{8}{5(8+1)}$ \times $\left(1-\chi\right)^{2-1}$

Let's try it out

1. Start with a $\theta \sim$ Uni $(0,1)$ over probability that a coin lands heads.

- 2. Flip a coin 8 times. Observe $n = 7$ heads and $m = 1$ tail
- 3. What is our posterior belief of the probability θ ?

$$
f_{\theta|N}(x|n) = \frac{1}{c} x^7 (1-x)^1
$$

okay

normalizes to valid PDF

$$
\mathsf{Beta}(8,2)
$$

3. What is our posterior belief of the probability θ ?

- Start with a $\theta \sim$ Uni $(0,1)$ over probability
- Observe $n = 7$ successes and $m = 1$ failures
- Your new belief about the probability of θ is:

$$
f_{\theta|N}(x|n) = \frac{1}{c} x^7 (1-x)^1
$$
, where $c = \int_0^1 x^7 (1-x)^1 dx$

CS109 focus: Beta where a , b both positive integers $X \sim Beta(a, b)$

If a, b are positive integers, Beta parameters a, *b* could come from an experiment:

> $a =$ "successes" + 1 $b =$ "failures" + 1

- Beta (in CS109) models the randomness of the probability of experiment success.
- Beta parameters depend our data and our prior.

Bayes' on the waves

STATISTICALLY SPEAKING, IF YOU PICK UP A SEASHELL AND DON'T HOLD IT TO YOUR EAR, YOU CAN PROBABLY HEAR THE OCEAN.

XKcd. Com

Interlude for jokes/announcements

Announcements

Grading clarification

Two examples

https://us.edstem.org/courses/109/d

67686

Problem Set 6: No late days or on-til
must subward,

Interesting probability news

Why Rejection Sampling Is [Useful in Cat Modeling](https://www.air-worldwide.com/blog/posts/2018/9/why-rejection-sampling-is-useful-in-cat-modeling/)

Note: Cat Modeling = Catastrophe Modeling (e.g., earthquakes, hurricanes, etc.)

https://www.air-worldwide.com/blog/posts/2018/9/why-rejectionsampling-is-useful-in-cat-modeling/

х1

6а.

sinc

Lisa Yan, CS109, 2020

4а.

 $p(x)$ and

 $q(x)$

Compute $\int_{0}^{Cq(x)}$

5a. Draw u1 from Unif $(0,Cq(x1))$

p(x1

3a. Draw x1

from $q(x)$

Conjugate distributions

A note about our prior

1. Start with a $\theta \sim$ Uni $(0,1)$ over probability that a coin lands heads.

- 2. Flip a coin 8 times. Observe $n = 7$ heads and $m = 1$ tail
- 3. What is our posterior belief of the probability θ ?

$$
\mathsf{Beta}(8,2)
$$

$$
f_{\theta|N}(x|n) = \frac{1}{c} x^7 (1-x)^1
$$

okay

normalizes to valid PDF

Wait another minute...

Stanford University 43

Note: PDF symmetric when $a = b$

A note about our prior

1. Start with a $\theta \sim$ Uni $(0,1)$ over probability that a coin lands heads.

2. Flip a coin 8 times. Observe $n = 7$ heads and $m = 1$ tail

3. What is our posterior belief of the probability θ ?

$$
Beta(8,2) \qquad \qquad = 1
$$

 $Beta(1,1)$

Check this out. Beta $(a = 1, b = 1)$:

$$
f(x) = \frac{1}{B(a, b)} x^{a-1} (1 - x)^{b-1}
$$

$$
= \frac{1}{\int_0^1 1 dx}
$$

where $0 < x < 1$

Beta is a conjugate distribution for Bernoulli

Beta is a **conjugate distribution** for Bernoulli, meaning:

• Prior and posterior parametric forms are the same

(proof on next slide)

Beta is a conjugate distribution for Bernoulli

Beta is a **conjugate distribution** for Bernoulli, meaning:

- 1. If our prior belief of the parameter is Beta, and
- 2. Our experiment is Bernoulli, then
- 3. Our posterior is also Beta.

(observe n successes, m failures)

Proof:
$$
\theta \sim \text{Beta}(a, b)
$$
 $N|\theta \sim \text{Bin}(n + m, x)$
\n
$$
f_{\theta|N}(x|n) = \frac{p_{N|\theta}(n|x)f_{\theta}(x)}{p_N(n)} = \frac{\binom{n+m}{m}x^n(1-x)^m \cdot \frac{1}{B(a,b)}x^{a-1}(1-x)^{b-1}}{p_N(n)}
$$
\n
$$
\text{constants that } = C \cdot x^n(1-x)^m \cdot x^{a-1}(1-x)^{b-1}
$$
\n
$$
= C \cdot x^{(n+a)-1}(1-x)^{(m+b)-1}
$$
\n
$$
\text{Beta}(\begin{pmatrix} n+\alpha_1 & m+\beta_1 \\ m+\beta_1 & m+\beta_1 \end{pmatrix})
$$
\n
$$
\text{Stanford University } \begin{pmatrix} a_1 & a_2 & a_3 \\ a_2 & a_3 & a_4 \end{pmatrix}
$$
\n
$$
\text{Stanford University } \begin{pmatrix} a_1 & a_2 & a_3 \\ a_2 & a_3 & a_4 \end{pmatrix}
$$

Beta is a conjugate distribution for Bernoulli

This is the main takeaway of Beta.

Beta is a **conjugate distribution** for Bernoulli, meaning:

- Prior and posterior parametric forms are the same
- Practically, conjugate means easy update: Add number of "heads" and "tails" seen to Beta parameters.

You can set the prior to reflect how biased you think the coin is apriori:

- $\theta \sim \text{Beta}(a, b)$: have seen $(a + b 2)$ imaginary trials, where $(a - 1)$ are heads, $(b - 1)$ tails
- Then Beta $(1, 1) =$ Uni $(0, 1)$ means we haven't seen any imaginary trials

Prior Beta $(a = n_{imag} + 1, b = m_{imag} + 1)$ Posterior Beta $\left(a = n_{imag} + p + 1, b = m_{imag} + m + 1\right)$ Experiment Observe n successes and m failures

The enchanted die

Prior Beta $(a$ Posterior Beta $(a$

Let θ be the p[robabi](http://web.stanford.edu/class/cs109/demos/beta.html)lity of rolling a 6 on Lisa's d

- Prior: Imagine 5 die rolls where only 6 showe
- Observation: roll it a few times...

What is the updated distribution of θ after our o

- Before being tested, a medicine is believed to "work" 80% of the time.
- The medicine is tried on 20 patients.
- It "works" for 14, "doesn't work" for 6.

What is your new belief that the drug "works"?

A frequentist view will not incorporate prior/expert belief about probability.

- Before being tested, a medicine is believed to "work" 80% of the time.
- The medicine is tried on 20 patients.
- It "works" for 14, "doesn't work" for 6.

What is your new belief that the drug "works"?

Frequentist

Let θ be the probability your drug works.

$$
\theta \approx \frac{14}{20} = 0.7
$$

Prior Beta $(a = n_{imag} + 1, b = m_{imag} + 1)$ Posterior Beta $(a = n_{imag} + n + 1, b = m_{imag} + m + 1)$

- Before being tested, a medicine is believed to "work" 80% of the time.
- The medicine is tried on 20 patients.
- It "works" for 14, "doesn't work" for 6.

What is your new belief that the drug "works"?

What is the prior distribution of θ ? (select all that apply)

- A. $\theta \sim \text{Beta}(1, 1) = \text{Uni}(0, 1)$
- B. $\theta \sim \text{Beta}(81, 101)$
- C. $\theta \sim \text{Beta}(80, 20)$
- D. $\theta \sim \text{Beta}(81, 21)$
- E. $\theta \sim \text{Beta}(5, 2)$

(Bayesian interpretation)

Prior Beta $(a = n_{imag} + 1, b = m_{imag} + 1)$ Posterior Beta $(a = n_{imag} + n + 1, b = m_{imag} + m + 1)$

- Before being tested, a medicine is believed to "work" 80% of the time.
- The medicine is tried on 20 patients.
- It "works" for 14, "doesn't work" for 6.

What is your new belief that the drug "works"?

What is the prior distribution of θ ? (select all that apply)

- A. $\theta \sim \text{Beta}(1, 1) = \text{Uni}(0, 1)$
- B. $\theta \sim \text{Beta}(81, 101)$

C. $\theta \sim \text{Beta}(80, 20)$

(Bayesian interpretation)

 θ ~Beta(81, 21) Interpretation: 80 successes / 100 imaginary trials 4 of successes 15 imaginary trials θ ~Beta(5,2) (you can choose either based on how strong your belief is (an engineering choice). We choose E on next slide)

Prior Beta $(a = n_{imag} + 1, b = m_{imag} + 1)$ Posterior Beta $(a = n_{imag} + n + 1, b = m_{imag} + m + 1)$

- Before being tested, a medicine is believed to "work" 80% of the time.
- The medicine is tried on 20 patients.
- It "works" for 14, "doesn't work" for 6.

What is your new belief that the drug "works"?

Prior:
$$
\theta \sim \text{Beta}(a = 5, b = 2)
$$

Posterior:
$$
\theta \sim \text{Beta}(a = 5 + 14, b = 2 + 6)
$$

 $\sim \text{Beta}(a = 19, b = 8)$

(Bayesian interpretation)

Prior Beta $(a = n_{imag} + 1, b = m_{imag} + 1)$ Posterior Beta $(a = n_{i_{\text{mag}}} + n + 1, b = m_{i_{\text{mag}}} + m + 1)$

- Before being tested, a medicine is believed to "work" 80% of the time.
- The medicine is tried on 20 patients.
- It "works" for 14, "doesn't work" for 6.

What is your new belief that the drug "works"?

$$
Prior: \qquad \theta \sim Beta(a = 5, b = 2)
$$

Posterior: $\theta \sim \text{Beta}(a = 5 + 14, b = 2 + 6)$ \sim Beta $(a = 19, b = 8)$

What do you report to pharmacists?

- A. Expectation of posterior
- B. Mode of posterior
- Distribution of posterior
- D. Nothing

Prior Beta $(a = n_{imag} + 1, b = m_{imag} + 1)$ Posterior Beta $(a = n_{imag} + n + 1, b = m_{imag} + m + 1)$

- Before being tested, a medicine is believed to "work" 80% of the time.
- The medicine is tried on 20 patients.
- It "works" for 14, "doesn't work" for 6.

What is your new belief that the drug "works"?

Prior:
$$
\theta \sim \text{Beta}(a = 5, b = 2)
$$

Posterior: $\theta \sim \text{Beta}(a = 5 + 14, b = 2 + 6)$

$$
\sim \text{Beta}(a=19, b=8)
$$

What do you report to pharmacists? $\frac{1.8}{0.0}$

$$
E[\theta] = \frac{a}{a+b} = \frac{19}{19+8} \approx 0.70
$$

mode(θ) = $\frac{a-1}{a+b-2} = \frac{18}{18+7} \approx 0.72$

CS109, 2020 (we'll derive the formula for Beta's mode next lecture)

0.0 0.2 0.4 0.6 0.8 1.0 χ In CS109, we report the mode: The "most likely" parameter given the data.

1.0

2.0

3.0

4.0

5.0

(Bayesian interpretation)

Food for thought

 $X \sim Ber(p)$

In this lecture: If we don't know the parameter p , Bayesian statisticians will:

- Treat the parameter p as a random variable
	- θ with a Beta prior distribution
- Perform an experiment
- Based on experiment outcomes, update the posterior distribution of θ

Food for thought:

Any parameter for a "parameterized" random variable can be thought of as a random variable.

 $Y \sim \mathcal{N}(\mu, \sigma^2)$

Estimating our parameter directly

(our focus so far)

Maximum Likelihood **Estimator** (MLE)

What is the parameter θ that maximizes the likelihood of our observed data $(x_1, x_2, ..., x_n)$?

$$
L(\theta) = f(X_1, X_2, ..., X_n | \theta)
$$

$$
= \prod_{i=1}^n f(X_i | \theta)
$$

$$
\theta_{MLE} = \arg \max_{\theta} f(X_1, X_2, ..., X_n | \theta)
$$

Observations:

- MLE maximizes probability of observing data given a parameter θ .
- If we are estimating θ , shouldn't we maximize the probability of θ directly?

See you next time!

likelihood of data

(extra)

Extra: MLE: Multinomial derivation

Consider a sample of n i.i.d. random variables where

- Each element is drawn from one of m outcomes. $P(\text{outcome } i) = p_i$, where $\sum_{i=1}^{m} p_i = 1$
- $X_i = #$ of trials with outcome *i*, where $\sum_{i=1}^{m} X_i = n$
- 1. What is the likelihood of observing the sample $(X_1, X_2, ..., X_m)$, given the probabilities $p_1, p_2, ..., p_m$? $L(\theta) =$ $n!$ $X_1! X_2! \cdots X_m!$ $p_1^{X_1}p_2^{X_2}\cdots p_m^{X_m}$

2. What is θ_{MLE} ?

$$
LL(\theta) = \log(n!) - \sum_{i=1}^{m} \log(X_i!) + \sum_{i}^{m} X_i \log(p_i),
$$
 such that $\sum_{i=1}^{m} p_i = 1$
Optimize with
Lagrange multipliers in
extra slides

$$
\theta_{MLE}: p_i = \frac{X_i}{n} \quad \text{Intuitively, probability} \quad p_i = \text{proportion of outcomes} \quad \text{extra slides} \quad \text{Stanford University} \quad \text{for}
$$

Optimizing MLE for Multinomial

$$
\theta = (p_1, p_2, ..., p_m)
$$

\n
$$
\theta_{MLE} = \arg \max_{\theta} LL(\theta), \text{ where } \sum_{i=1}^{m} p_i = 1
$$

 $X_{\boldsymbol{i}}$

 \overline{n}

Use Lagrange multipliers to account for constraint

Lagrange
multipliers:
$$
A(\theta) = LL(\theta) + \lambda \left(\sum_{i=1}^{m} p_i - 1 \right) = \sum_{i}^{m} X_i \log(p_i) + \lambda \left(\sum_{i=1}^{m} p_i - 1 \right) \begin{matrix} \text{(drop} \\ \text{norms} \end{matrix}
$$

Differentiate w.r.t. each p_i , in turn:

Solve for λ , noting \sum $i = 1$ \overline{m} $X_i = n, \sum$ $i = 1$ \overline{m} $p_i = 1$:

Substitute λ into p_i

$$
\frac{\partial A(\theta)}{\partial p_i} = X_i \frac{1}{p_i} + \lambda = 0 \implies p_i = -\frac{X_i}{\lambda}
$$

$$
\sum_{i=1}^{m} p_i = \sum_{i=1}^{m} -\frac{X_i}{\lambda} = 1 \quad \Rightarrow 1 = -\frac{n}{\lambda} \qquad \Rightarrow \lambda = -n
$$

Lisa Yan, CS109, 2020

Stanford University 61