21: Beta

Lisa Yan May 22, 2020

Quick slide reference

3	MLE: Multinomial	21a_mle_multinomial
11	Bayesian statistics/Beta sneak peek	21b_bayesian
20	The Beta RV	21c_beta
37	Flipping a coin with unknown probability	LIVE
*	Extra: MLE: Multinomial Derivation	21e_extra

MLE: Multinomial

Consider a sample of n i.i.d. random variables where

- Each element is drawn from one of m outcomes. $P(\text{outcome } i) = p_i$, where $\sum_{i=1}^{m} p_i = 1$
- $X_i = \#$ of trials with outcome i, where $\sum_{i=1}^m X_i = n$

Staring at my math homework like

Let's give an example!

Consider a sample of n i.i.d. random variables where

- Each element is drawn from one of m outcomes. $P(\text{outcome } i) = p_i$, where $\sum_{i=1}^{m} p_i = 1$
- X_i = # of trials with outcome i, where $\sum_{i=1}^m X_i = n$

Example: Suppose each RV is outcome of 6-sided die.

$$m = 6, \sum_{i=1}^{n} p_i = 1$$

- Roll the dice n=12 times.
- Observe data: 3 ones, 2 twos, 0 threes, 3 fours, 1 fives, 3 sixes

$$X_1 = 3, X_2 = 2, X_3 = 0,$$

 $X_4 = 3, X_5 = 1, X_6 = 3$ Check: $X_1 + X_2 + \dots + X_6 = 12$

Consider a sample of n i.i.d. random variables where

- Each element is drawn from one of m outcomes. $P(\text{outcome } i) = p_i$, where $\sum_{i=1}^{m} p_i = 1$
- X_i = # of trials with outcome i, where $\sum_{i=1}^m X_i = n$
- 1. What is the likelihood of observing the sample $(X_1, X_2, ..., X_m)$, given the probabilities $p_1, p_2, ..., p_m$?

A.
$$\frac{n!}{X_1! X_2! \cdots X_m!} p_1^{X_1} p_2^{X_2} \cdots p_m^{X_m}$$

B.
$$p_1^{X_1} p_2^{X_2} \cdots p_m^{X_m}$$

C.
$$\frac{n!}{X_1! X_2! \cdots X_m!} X_1^{p_1} X_2^{p_2} \cdots X_m^{p_m}$$

Consider a sample of n i.i.d. random variables where

- Each element is drawn from one of m outcomes. $P(\text{outcome } i) = p_i$, where $\sum_{i=1}^{m} p_i = 1$
- X_i = # of trials with outcome i, where $\sum_{i=1}^m X_i = n$
- 1. What is the likelihood of observing the sample $(X_1, X_2, ..., X_m)$, given the probabilities $p_1, p_2, ..., p_m$?

$$\frac{n!}{X_1! \, X_2! \cdots X_m!} \, p_1^{X_1} \, p_2^{X_2} \cdots p_m^{X_m}$$

$$(x_1, x_2, \dots, x_m)$$
 P_1 P_2 P_m

B.
$$p_1^{X_1} p_2^{X_2} \cdots p_m^{X_m}$$

C.
$$\frac{n!}{X_1! X_2! \cdots X_m!} X_1^{p_1} X_2^{p_2} \cdots X_m^{p_m}$$

Consider a sample of n i.i.d. random variables where

- Each element is drawn from one of m outcomes. $P(\text{outcome } i) = p_i$, where $\sum_{i=1}^m p_i = 1$
- $X_i = \#$ of trials with outcome i, where $\sum_{i=1}^m X_i = n$
- 1. What is the likelihood of observing the sample $(X_1, X_2, ..., X_m)$, given the probabilities $p_1, p_2, ..., p_m$?

$$L(\theta) = \frac{n!}{X_1! X_2! \cdots X_m!} p_1^{X_1} p_2^{X_2} \cdots p_m^{X_m}$$

$$\log p_1^{X_1} > X_1! S_1$$

2. What is θ_{MLE} ?

$$LL(\theta) = \log(n!) - \sum_{i=1}^{m} \log(X_i!) + \sum_{i=1}^{m} X_i \log(p_i)$$
, such that $\sum_{i=1}^{m} p_i = 1$

Optimize with Lagrange multipliers in extra slides

$$\longrightarrow \theta_{MLE}: \ p_i = \frac{X_i}{n}$$

When MLEs attack!

MLE for $p_i = \frac{X_i}{n}$

Consider a 6-sided die.

- Roll the dice n = 12 times.
- Observe: 3 ones, 2 twos, 0 threes, 3 fours, 1 fives, 3 sixes

What is θ_{MLE} ?

When MLEs attack!

MLE for $p_i = \frac{X_i}{n}$

Consider a 6-sided die.

- Roll the dice n = 12 times.
- Observe: 3 ones, 2 twos, 0 threes, 3 fours, 1 fives, 3 sixes

θ_{MLE} :

$$p_1 = 3/12$$
 $p_2 = 2/12$
 $p_3 = 0/12$
 $p_4 = 3/12$
 $p_5 = 1/12$
 $p_6 = 3/12$

- MLE: you'll never...EVER... roll a three.
- Do you really believe that?

Today: A new definition of probability!

Bayesian Statistics

When MLEs attack!

Consider a 6-sided die.

- Roll the dice n = 12 times.
- Observe: 3 ones, 2 twos, 0 threes, 3 fours, 1 fives, 3 sixes

θ_{MLE} :

$$p_1 = 3/12$$
 $p_2 = 2/12$
 $p_3 = 0/12$
 $p_4 = 3/12$
 $p_5 = 1/12$
 $p_6 = 3/12$

- MLE: you'll never... EVER... roll a three.
- Do you really believe that?

But what if you cannot observe anymore rolls?

Today's plan

Today we are going to learn something unintuitive, beautiful, and useful!

We are going to think of probabilities as random variables.

Let's play a game

Roll 2 dice. If *neither* roll is a 6, you win (event W). Else, I win (event W^C).

- Before you play, what's the probability that you win?
- Play once. What's the probability that you win?
- Play three more times. What's the probability that you win? $P(\omega)$

$$P(W) = \left(\frac{5}{6}\right)^2$$

Bayesian

wait hold up this situation is whack tho

Bayesian statistics: Update your prior beliefs of probability.

Bayesian probability

Bayesian statistics: Probability is a reasonable expectation representing a state of knowledge.

Mixing discrete and continuous random variables, combined with Bayes' Theorem, allows us to reason about probabilities as random variables.

A new definition of probability

Flip a coin n + m times, come up with n heads.

We don't know the probability θ that the coin comes up heads.

The world's first coin

Frequentist

 θ is a single value.

$$\theta = \lim_{n+m \to \infty} \frac{n}{n+m} \approx \frac{n}{n+m}$$

Bayesian

 θ is a random variable.

 θ 's continuous support: (0, 1)

Mixing discrete and continuous

Let X be a continuous random variable, and N be a discrete random variable.

Bayes'

Theorem:

$$f_{X|N}(x|n) = \frac{p_{N|X}(n|x)f_X(x)}{p_N(n)}$$

Intuition:
$$P(X = x | N = n) = \frac{P(N = n | X = x)P(X = x)}{P(N = n)} \int_{\chi - \ell x/2}^{\chi + \ell x/2} \int_{\chi - \ell x/2}^{\chi + \ell x/2}$$

$$\int_{X^{-\xi x}/2} \int_{X} (x) dx \approx \mathcal{E}_{x} \int_{X} (x)$$

$$f_{X|N}(x|n)\varepsilon_{X} = \frac{P(N=n|X=x)f_{X}(x)\varepsilon_{X}}{P(N=n)} \qquad f_{X|N}(x|n) = \frac{p_{N|X}(n|x)f_{X}(x)}{p_{N}(n)}$$

All your Bayes are belong to us

Let X, Y be continuous and M, N be discrete random variables.

OG Bayes:

$$p_{M|N}(m|n) = \frac{p_{N|M}(n|m)p_{M}(m)}{p_{N}(n)}$$

Mix Bayes #1:

$$f_{X|N}(x|n) = \frac{p_{N|X}(n|x)f_X(x)}{p_N(n)}$$

Mix Bayes #2:

$$p_{N|X}(n|x) = \frac{f_{X|N}(x|n)p_N(n)}{f_X(x)}$$

All continuous:

$$f_{X|Y}(x|y) = \frac{f_{Y|X}(y|x)f_X(x)}{f_Y(y)}$$

Mixing discrete and continuous

Let θ be a random variable for the probability your coin comes up heads, n+m trials and N be the number of heads you observe in an experiment.

posterior
$$f_{\theta|N}(x|n) = \frac{\text{likelihood prior}}{p_{N|\theta}(n|x)f_{\theta}(x)}$$

$$p_{N}(n)$$

normalization constant

- Prior belief of parameter θ
- Likelihood of N=n heads, given parameter $\theta=x$.
- Posterior updated belief of parameter θ .

$$f_{\theta}(x)$$

$$p_{N|\theta}(n|x)$$

$$f_{\theta|N}(x|n)$$

Beta RV

· MLE Multinouiral Disavabre
· Bayesian Disaku
· Betaku
probability of a
probability

Beta random variable

def A Beta random variable X is defined as follows:

$$X \sim \text{Beta}(a, b)$$
 $a > 0, b > 0$

Support of X: (0,1)

PDF
$$f(x) = \frac{1}{B(a,b)} x^{a-1} (1-x)^{b-1}$$

where $B(a,b) = \int_0^1 x^{a-1} (1-x)^{b-1} dx$, normalizing constant

Expectation
$$E[X] = \frac{a}{a+b}$$

Variance
$$Var(X) = \frac{ab}{(a+b)^2(a+b+1)}$$

Beta RV with different *a*, *b*

Note: PDF symmetric when a = b

Match PDF to distribution: >1

- A. Beta(5,5)
- B. Beta(2,8)
- C. Beta(8,2)

Match PDF to distribution:

- B. Beta(2,8)
- C. Beta(8,2)

In CS109, we focus on Betas where a, b are both positive integers.

Beta random variable

def A Beta random variable X is defined as follows:

$$X \sim \text{Beta}(a,b)$$

$$a > 0, b > 0$$
Support of X : $(0,1)$

$$DF \quad f(x) = \frac{1}{B(a,b)} x^{a-1} (1-x)^{b-1}$$
where $B(a,b) = \int_0^1 x^{a-1} (1-x)^{b-1} dx$, normalizing constant

Expectation
$$E[X] = \frac{a}{a+b}$$
 Variance $Var(X) = \frac{ab}{(a+b)^2(a+b+1)}$

Beta can be a distribution of probabilities.

Beta parameters a, b could come from an experiment...

But which one? Stay tuned...

(live)

21: Beta

Lisa Yan May 22, 2020

Flipping a coin with unknown probability

A new definition of probability

Flip a coin n + m times, comes up with n heads.

We don't know the probability θ that the coin comes up heads.

The world's first coin

Frequentist

 θ is a single value.

$$\theta = \lim_{n+m \to \infty} \frac{n}{n+m} \approx \frac{n}{n+m}$$

Bayesian

 θ is a random variable.

 θ 's continuous support: (0, 1)

Flip a coin with unknown probability

Flip a coin n+m times, observe n heads.

- Before our experiment, θ (the probability that the coin comes up heads) can be any probability.
- Let N = number of heads.
- Given $\theta = x$, coin flips are independent.

What is our updated belief of θ after we observe N=n?

What are reasonable distributions of the following?

- 1. θ
- 2. $N|\theta=x$
- $\theta | N$

Flip a coin with unknown probability

Flip a coin n+m times, observe n heads.

- Before our experiment, θ (the probability that the coin comes up heads) can be any probability.
- Let N = number of heads.
- Given $\theta = x$, coin flips are independent.

What is our updated belief of θ after we observe N=n?

What are reasonable distributions of the following?

- Bayesian prior $\theta \sim Uni(0,1)$ 1. θ
- Likelihood $N|\theta = x$ \sim Bin(n + m, x)2. $N|\theta = x$
- 3. $\theta | N = \Lambda$ Bayesian posterior. Use Bayes'

Flip a coin with unknown probability

Flip a coin n + m times, observe n heads.

- Before our experiment, X (the probability that the coin comes up heads) can be any probability.
- Let N = number of heads.
- Given X = x, coin flips are independent.

Prior: $\theta \sim \text{Uni}(0,1)$

Likelihood:

$$N|\theta = x \sim \text{Bin}(n+m,x)$$

What is our updated belief of X after we observe N = n?

Posterior: $f_{\theta|N}(\theta|n)$

$$f_{\theta|N}(x|n) = \frac{p_{N|\theta}(n|x)f_{\theta}(x)}{p_{N}(n)} = \frac{\binom{n+m}{n}x^{n}(1-x)^{m} \cdot 1}{p_{N}(n)}$$

$$= \frac{\binom{n+m}{n}x^{n}(1-x)^{m}}{p_{N}(n)} = \frac{1}{c} x^{n}(1-x)^{m}, \text{ where } c = \int_{0}^{1} x^{n}(1-x)^{m} dx$$

$$= \frac{\binom{n+m}{n}}{p_{N}(n)} x^{n}(1-x)^{m} = \frac{1}{c} x^{n}(1-x)^{m}, \text{ where } c = \int_{0}^{1} x^{n}(1-x)^{m} dx$$

$$= \frac{\binom{n+m}{n}}{p_{N}(n)} x^{n}(1-x)^{m} = \frac{1}{c} x^{n}(1-x)^{m}, \text{ where } c = \int_{0}^{1} x^{n}(1-x)^{m} dx$$

$$= \frac{\binom{n+m}{n}}{p_{N}(n)} x^{n}(1-x)^{m} = \frac{1}{c} x^{n}(1-x)^{m}, \text{ where } c = \int_{0}^{1} x^{n}(1-x)^{m} dx$$

$$= \frac{\binom{n+m}{n}}{p_{N}(n)} x^{n}(1-x)^{m} = \frac{1}{c} x^{n}(1-x)^{m}, \text{ where } c = \frac{1}{c} x^{n}(1-x)^{m} dx$$

Let's try it out

1. Start with a $\theta \sim \text{Uni}(0,1)$ over probability that a coin lands heads.

2. Flip a coin 8 times. Observe n=7 heads and m=1 tail

3. What is our posterior belief of the probability θ ?

$$f_{\theta|N}(x|n) = \frac{1}{c} x^7 (1-x)^1$$

$$c \text{ normalizes to valid PDF}$$

Wait a minute...

Beta RV with different a, b

Review

Support of X: (0,1)

PDF
$$f(x) = \frac{1}{B(a,b)} x^{a-1} (1-x)^{b-1}$$

where
$$B(a,b) = \int_0^1 x^{a-1} (1-x)^{b-1} dx$$
, normalizing constant

$$f_{\theta|N}(x|n) = \frac{1}{c} x^7 (1-x)^1$$

is the PDF for Beta(8, 2)!

c normalizes to valid PDF

$$\frac{1}{\beta(8,1)} \times 8^{-1} \left(\left| - \times \right| \right)^{2-1}$$

Let's try it out

1. Start with a $\theta \sim \text{Uni}(0,1)$ over probability that a coin lands heads.

- 2. Flip a coin 8 times. Observe n=7heads and m=1 tail
- 3. What is our posterior belief of the probability θ ?

okay

$$f_{\theta|N}(x|n) = \frac{1}{c} x^7 (1-x)^1$$

c normalizes to valid PDF

Beta(8,2)

3. What is our posterior belief of the probability θ ?

- Start with a $\theta \sim \text{Uni}(0,1)$ over probability
- Observe n = 7 successes and m = 1 failures
- Your new belief about the probability of θ is:

$$f_{\theta|N}(x|n) = \frac{1}{c} x^7 (1-x)^1$$
, where $c = \int_0^1 x^7 (1-x)^1 dx$

Posterior belief, $\theta | N$:

 $f_{\theta|N}(x|n) = \frac{1}{c} x^{8-1} (1-x)^{2-1} \underbrace{\frac{\frac{2}{\aleph}}{\frac{\aleph}{\aleph}}}_{10}^{3.0}$ Beta(a = 8, b = 2) Beta(a = n + 1, b = m + 1)

Posterior belief, $\theta | N$

CS109 focus: Beta where *a*, *b* both positive integers

 $X \sim \text{Beta}(a, b)$

If a, b are positive integers, Beta parameters a, b could come from an experiment:

$$a =$$
 "successes" + 1
 $b =$ "failures" + 1

- Beta (in CS109) models the randomness of the probability of experiment success.
- Beta parameters depend our data and our prior.

Bayes' on the waves

STATISTICALLY SPEAKING, IF YOU PICK UP A SEASHELL AND DON'T HOLD IT TO YOUR EAR, YOU CAN PROBABLY HEAR THE OCEAN.

xKcd.com

Interlude for jokes/announcements

Announcements

Grading clarification

Two examples

https://us.edstem.org/courses/109/discussion/

67686

Problem Set 6: No late days or on-time bonus must subm + 1,

Interesting probability news

Why Rejection Sampling Is Useful in Cat Modeling

Note: Cat Modeling

= Catastrophe Modeling
(e.g., earthquakes, hurricanes, etc.)

https://www.air-worldwide.com/blog/posts/2018/9/why-rejection-sampling-is-useful-in-cat-modeling/

CS109 Current Events Spreadsheet

Conjugate distributions

A note about our prior

1. Start with a $\theta \sim \text{Uni}(0,1)$ over probability that a coin lands heads.

2. Flip a coin 8 times. Observe n=7 heads and m=1 tail

okay

3. What is our posterior belief of the probability θ ?

$$f_{\theta|N}(x|n) = \frac{1}{c} x^7 (1-x)^1$$

c normalizes to valid PDF

Beta(8,2)

Wait another minute...

Beta RV with different *a*, *b*

Note: PDF symmetric when a = b

A note about our prior

1. Start with a $\theta \sim \text{Uni}(0,1)$ over probability that a coin lands heads.

Beta(1,1)

2. Flip a coin 8 times. Observe n=7 heads and m=1 tail

3. What is our posterior belief of the probability θ ?

Beta(8,2)

Check this out. Beta(a = 1, b = 1):

$$f(x) = \frac{1}{B(a,b)} x^{a-1} (1-x)^{b-1}$$
$$= \frac{1}{\int_0^1 1 dx}$$

where 0 < x < 1

Beta is a conjugate distribution for Bernoulli

Beta is a conjugate distribution for Bernoulli, meaning:

Prior and posterior parametric forms are the same

(proof on next slide)

Beta is a conjugate distribution for Bernoulli

Beta is a conjugate distribution for Bernoulli, meaning:

- 1. If our prior belief of the parameter is Beta, and
- 2. Our experiment is Bernoulli, then

(observe *n* successes, *m* failures)

3. Our posterior is also Beta.

Proof:
$$\theta \sim \text{Beta}(a, b)$$

$$\theta \sim \text{Beta}(a, b)$$
 $N | \theta \sim \text{Bin}(n + m, x)$

$$f_{\theta|N}(x|n) = \frac{p_{N|\theta}(n|x)f_{\theta}(x)}{p_{N}(n)} = \frac{\binom{n+m}{m}x^{n}(1-x)^{m} \cdot \frac{1}{B(a,b)}x^{a-1}(1-x)^{b-1}}{p_{N}(n)}$$

constants that don't depend on
$$x$$
 = $C \cdot x^n (1-x)^m \cdot x^{a-1} (1-x)^{b-1}$
= $C \cdot x^{(n+a)-1} (1-x)^{(m+b)-1}$
Beta $(n+a) \in C$

Beta is a conjugate distribution for Bernoulli

This is the main takeaway of Beta.

Beta is a conjugate distribution for Bernoulli, meaning:

- Prior and posterior parametric forms are the same
- Practically, conjugate means easy update: Add number of "heads" and "tails" seen to Beta parameters.

You can set the prior to reflect how biased you think the coin is apriori:

- $\theta \sim \text{Beta}(a, b)$: have seen (a + b 2) imaginary trials, where (a-1) are heads, (b-1) tails
- Then Beta(1,1) = Uni(0,1) means we haven't seen any imaginary trials

Prior Beta
$$(\underline{a} = n_{imag} + 1, \underline{b} = m_{imag} + 1)$$

Experiment Observe n successes and m failures

Posterior Beta
$$(a = n_{imag} + p + 1, b = m_{imag} + m + 1)$$

The enchanted die

Prior Beta
$$(a=n_{imag}+1,b=m_{imag}+1)$$

Posterior Beta $(a=n_{imag}+n+1,b=m_{imag}+m+1)$

Let θ be the probability of rolling a 6 on Lisa's die.

- Prior: Imagine 5 die rolls where only 6 showed up
- Observation: roll it a few times...

What is the updated distribution of θ after our observation?

Check out the demo!

Parameters

b: 2

beta pdf

- Before being tested, a medicine is believed to "work" 80% of the time.
- The medicine is tried on 20 patients.
- It "works" for 14, "doesn't work" for 6.

What is your new belief that the drug "works"?

Frequentist

Let θ be the probability your drug works.

$$\theta \approx \frac{14}{20} = 0.7$$

Bayesian

A frequentist view will not incorporate prior/expert belief about probability.

- Before being tested, a medicine is believed to "work" 80% of the time.
- The medicine is tried on 20 patients.
- It "works" for 14, "doesn't work" for 6.

What is your new belief that the drug "works"?

Frequentist

Let θ be the probability your drug works.

$$\theta \approx \frac{14}{20} = 0.7$$

Bayesian

Let θ be the probability your drug works.

 θ is a random variable.

Prior Beta
$$(a=n_{imag}+1,b=m_{imag}+1)$$

Posterior Beta $(a=n_{imag}+n+1,b=m_{imag}+m+1)$

- Before being tested, a medicine is believed to "work" 80% of the time.
- The medicine is tried on 20 patients.
- It "works" for 14, "doesn't work" for 6.

What is your new belief that the drug "works"?

(Bayesian interpretation)

What is the prior distribution of θ ? (select all that apply)

- A. $\theta \sim \text{Beta}(1,1) = \text{Uni}(0,1)$
- B. $\theta \sim \text{Beta}(81, 101)$
- C. $\theta \sim \text{Beta}(80, 20)$
- D. $\theta \sim \text{Beta}(81, 21)$
- E. $\theta \sim \text{Beta}(5,2)$

Prior Beta
$$(a=n_{imag}+1,b=m_{imag}+1)$$

Posterior Beta $(a=n_{imag}+n+1,b=m_{imag}+m+1)$

- Before being tested, a medicine is believed to "work" 80% of the time.
- The medicine is tried on 20 patients.
- It "works" for 14, "doesn't work" for 6.

What is your new belief that the drug "works"?

(Bayesian interpretation)

What is the prior distribution of θ ? (select all that apply)

- A. $\theta \sim \text{Beta}(1,1) = \text{Uni}(0,1)$
- B. $\theta \sim \text{Beta}(81, 101)$
- C. $\theta \sim \text{Beta}(80, 20)$
- $\theta \sim \text{Beta}(81, 21)$ Interpretation: 80 successes / 100 imaginary trials
- 4 & Successes 15 imaginary trials $\theta \sim \text{Beta}(5,2)$

(you can choose either based on how strong your belief is (an engineering choice). We choose E on next slide) Stanford University 53

Lisa Yan, CS109, 2020

Prior Beta
$$(a=n_{imag}+1,b=m_{imag}+1)$$

Posterior Beta $(a=n_{imag}+n+1,b=m_{imag}+m+1)$

- Before being tested, a medicine is believed to "work" 80% of the time.
- The medicine is tried on 20 patients.
- It "works" for 14, "doesn't work" for 6.

What is your new belief that the drug "works"?

 $\theta \sim \text{Beta}(a = 5, b = 2)$ Prior:

 $\theta \sim \text{Beta}(a = 5 + 14, b = 2 + 6)$ Posterior:

 \sim Beta(a = 19, b = 8)

(Bayesian interpretation)

Prior Beta
$$(a=n_{imag}+1,b=m_{imag}+1)$$

Posterior Beta $(a=n_{imag}+n+1,b=m_{imag}+m+1)$

- Before being tested, a medicine is believed to "work" 80% of the time.
- The medicine is tried on 20 patients.
- It "works" for 14, "doesn't work" for 6.

What is your new belief that the drug "works"?

Prior: $\theta \sim \text{Beta}(a = 5, b = 2)$

Posterior: $\theta \sim \text{Beta}(a = 5 + 14, b = 2 + 6)$

 \sim Beta(a = 19, b = 8)

What do you report to pharmacists?

- A. Expectation of posterior
- B. Mode of posterior
- C. Distribution of posterior
- D. Nothing

(Bayesian interpretation)

Prior Beta
$$(a=n_{imag}+1,b=m_{imag}+1)$$

Posterior Beta $(a=n_{imag}+n+1,b=m_{imag}+m+1)$

- Before being tested, a medicine is believed to "work" 80% of the time.
- The medicine is tried on 20 patients.
- It "works" for 14, "doesn't work" for 6.

What is your new belief that the drug "works"?

Prior:
$$\theta \sim \text{Beta}(a = 5, b = 2)$$

Posterior:
$$\theta \sim \text{Beta}(a = 5 + 14, b = 2 + 6)$$

$$\sim$$
Beta($a = 19, b = 8$)

What do you report to pharmacists?

$$E[\theta] = \frac{a}{a+b} = \frac{19}{19+8} \approx 0.70$$

$$mode(\theta) = \frac{a-1}{a+b-2} = \frac{18}{18+7} \approx 0.72$$

(Bayesian interpretation)

In CS109, we report the mode: The "most likely" parameter given the data.

Food for thought

n this lecture:

 $X \sim \text{Ber}(p)$

Bayesian statisticians will:

- Treat the parameter p as a random variable θ with a Beta prior distribution
- Perform an experiment
- Based on experiment outcomes, update the posterior distribution of θ

Food for thought:

Any parameter for a "parameterized" random variable can be thought of as a random variable.

$$Y \sim \mathcal{N}(\mu, \sigma^2)$$

Estimating our parameter directly

(our focus so far)

Maximum Likelihood **Estimator** (MLE)

What is the parameter θ that maximizes the likelihood of our observed data $(x_1, x_2, ..., x_n)$?

$$L(\theta) = f(X_1, X_2, ..., X_n | \theta)$$

$$= \prod_{i=1}^{n} f(X_i | \theta)$$

$$\theta_{MLE} = \arg\max_{\theta} f(X_1, X_2, ..., X_n | \theta)$$
likelihood of data

Observations:

- MLE maximizes probability of observing data given a parameter θ .
- If we are estimating θ , shouldn't we maximize the probability of θ directly?

See you next time!

(extra)

Extra: MLE: Multinomial derivation

Okay, just one more MLE with the Multinomial

Consider a sample of n i.i.d. random variables where

- Each element is drawn from one of m outcomes. $P(\text{outcome } i) = p_i$, where $\sum_{i=1}^m p_i = 1$
- $X_i = \#$ of trials with outcome i, where $\sum_{i=1}^m X_i = n$
- 1. What is the likelihood of observing the sample $(X_1, X_2, ..., X_m)$, given the probabilities $p_1, p_2, ..., p_m$?

$$L(\theta) = \frac{n!}{X_1! X_2! \cdots X_m!} p_1^{X_1} p_2^{X_2} \cdots p_m^{X_m}$$

2. What is θ_{MLE} ?

$$LL(\theta) = \log(n!) - \sum_{i=1}^{m} \log(X_i!) + \sum_{i=1}^{m} X_i \log(p_i)$$
, such that $\sum_{i=1}^{m} p_i = 1$

Optimize with Lagrange multipliers in extra slides

$$\rightarrow \theta_{MLE} : p_i = \frac{X_i}{n}$$

Intuitively, probability $\theta_{MLE}: \ p_i = \frac{X_i}{n} \quad \text{Intuitively, probability}$ $p_i = \text{proportion of outcomes}$

Optimizing MLE for Multinomial

$$\theta = (p_1, p_2, ..., p_m)$$

$$\theta_{MLE} = \arg\max_{\theta} LL(\theta), \text{ where } \sum_{i=1}^{m} p_i = 1$$

Use Lagrange multipliers to account for constraint

Lagrange multipliers:

$$A(\theta) = LL(\theta) + \lambda \left(\sum_{i=1}^{m} p_i - 1\right) = \sum_{i=1}^{m} X_i \log(p_i) + \lambda \left(\sum_{i=1}^{m} p_i - 1\right) \text{ (drop non-}p_i \text{ terms)}$$

Differentiate w.r.t. each p_i , in turn:

$$\frac{\partial A(\theta)}{\partial p_i} = X_i \frac{1}{p_i} + \lambda = 0 \implies p_i = -\frac{X_i}{\lambda}$$

Solve for λ , noting

$$\sum_{i=1}^{m} X_i = n, \sum_{i=1}^{m} p_i = 1:$$

$$\sum_{i=1}^{m} p_i = \sum_{i=1}^{m} -\frac{X_i}{\lambda} = 1 \quad \Rightarrow 1 = -\frac{n}{\lambda} \qquad \Rightarrow \lambda = -n$$

Substitute λ into p_i

$$p_i = \frac{X_i}{n}$$