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21a_mle_multinomial

MLE:
Multinomial




Okay, just one more MLE with the Multinomial

Consider a sample of n I.i.d. random variables where

 Each element is drawn from one of m outcomes.
P(outcome i) = p;, where > 72 p; = 1

 X; = # of trials with outcome i, where }12, X; = n

Staring at my math homework like

Let’s give an
example!
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Okay, just one more MLE with the Multinomial

Consider a sample of n I.i.d. random variables where

Each element is drawn from one of m outcomes.
P(outcome i) = p;, where > 72 p; = 1

X; = # of trials with outcome i, where 12, X; = n

6
Example: Suppose each RV is outcome of 6-sided die. m = 6, Zpi =1
Roll the dice n = 12 times. .
Observe data: 3 ones, 2 twos, 0 threes, 3 fours, 1 fives, 3 sixes

Xl — 3)X2 — 2,X3 — O’
X4:3'X5:1'X6:3 CheCk:X1 -|—X2-|—_|_X6:12
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Okay, just one more MLE with the Multinomial

Consider a sample of n I.i.d. random variables where

Each element is drawn from one of m outcomes.
P(outcome i) = p;, where > 72 p; = 1

X; = # of trials with outcome i, where 12, X; = n

What is the likelihood of observing
the sample(Xy, X5, ..., X)),
given the probabilities p4, vy, ..., Pm?

n!
X1 X5 X!

X1, Xp Xm
pl pz ...pm

X1, Xp Xm
pl pz ces pm
n!

X X, X,

P1yDP2 . yPm
Xl XZ Xm
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Okay, just one more MLE with the Multinomial

Consider a sample of n I.i.d. random variables where

Each element is drawn from one of m outcomes.
P(outcome i) = p;, where > 72 p; = 1

X; = # of trials with outcome i, where 12, X; = n
What is the likelihood of observing

the sample(Xy, X5, ..., X)),
given the probabilities p4, vy, ..., Pm?

" (v )
. Xl X2 ) Xm Tt M
Xl!XZ!”’Xm!pl %, Pm XUYZ',.)?(W\ ?31 P‘Z ?

X1, Xp Xm
pl pz ces pm
n!

X X, X,

P1yDP2 . yPm
Xl XZ Xm
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Okay, just one more MLE with the Multinomial

Consider a sample of n I.i.d. random variables where

Each element is drawn from one of m outcomes.
P(outcome i) = p;, where > 72 p; = 1

X; = # of trials with outcome i, where 12, X; = n

What is the likelihood of observing B=(ps, - I nl

the sample(Xy, X3, -, X)), L(0) = 35 ' . 'pflpéfz oo pm
given the probabilities p4, vy, ..., Pm? 1-A42:

LL(6) = log(n!) — z log(X;!) + ZX log(p;), suchthat it p; =1 1

Lol

Optimize with X;  Intuitively, probability
Lagrange multipliers in OMmLE: Di =  p, = proportion of outcomes
extra slides n
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MLE for X;

When MLEs attack! Multinomial: Pi = 5

Consider a 6-sided die.
* Rollthe dice n = 12 times.

* Observe: 3 ones, 2 twos, 0 threes, 3 fours, 1 fives, 3 sixes

Lisa Yan, C$109, 2020 Stanford University 9



MLE for X;

When MLEs attack! Multinomial: Pi = 3,

n

Consider a 6-sided die.
Roll the dice n = 12 times.

Observe: 3 ones, 2 twos, 0 threes, 3 fours, 1 fives, 3 sixes
OmLE:

py = 3/12

p, =2/12 MLE: you'll never...EVER... roll a three.
ps = 0/12 ! Do you really believe that?

Py = 3/12

ps = 1/12

Pe = 3/12 Today: A new definition of

probability!

Lisa Yan, C$109, 2020 Stanford University 10
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Bayesian
Statistics




When MLEs attack! Review

* MLE: you’ll never...EVER... roll a three.
* Do you really believe that?

Roll more!
Prob. = frequency But what if you cannot
G in limit observe anymore rolls?
Frequentist

Lisa Yan, C$109, 2020 Stanford University 12




Today's plan

Today we are going to learn something unintuitive,
beautiful, and useful!

We are going to think of probabilities as
random variables.

Lisa Yan, CS109, 2020 Stanford University 13




Let’s play a game

Roll 2 dice. If neither roll is a 6, m@ ‘
you win (event W). Else, | win (event W¢). | $ ﬁ ﬁ
* Before you play, what’s the probability that you win? 7D

- Play once. What's the probability that you win? ~ ?()
* Play three more times. What'’s the probability that you win? 7(u)

V2 &)

Frequentist Bayesian

wait hold up this
situation is whack tho

Bayesian statistics: Update your prior beliefs of probability.

Lisa Yan, C$109, 2020 Stanford University 14



Bayesian probability

Bayesian statistics: Probability is a reasonable expectation
representing a state of knowledge.

Mixing discrete and continuous random variables,
combined with Bayes’ Theorem, allows us to reason about
probabilities as random variables.

Lisa Yan, CS109, 2020 Stanford University 15




A new definition of probability

Flip a coin n + m times, come up with n heads.

We don’t know the probability 8 that the coin
comes up heads.

The world’s first coin

Frequentist Bayesian
0 is a single value. 0 is a random variable.
| n n
6 = n+171nrr_1)oo ST S, 6’s continuous support: (0, 1)

Lisa Yan, C$109, 2020 Stanford University 16



Mixing discrete and continuous

Let X be a continuous random variable, and
N be a discrete random variable.

Bayes’ . pN|X(n|x)fX(x)
Theorem: frn(xIn) = py (1)
’X’((\Lﬂ’l
— = Y)P(X = x) X Ey A xlX
Intuition: P(X =x|N =n) = PN = npl)((N_zin;(X = x) %,E[/ZCSXL?QCM xfx[ )
fX|N(x|7’l)€/( = PV = nlX = x)fx(x)ek fX|N(x|7’l) = leXg:Z:{X(X)

P(N = n)

Lisa Yan, C$109, 2020 Stanford University 17




All your Bayes are belong to us

Let X,Y be continuous and M, N be discrete random variables.

pNM(n|m)pp(m)

OG Bayes: pun(mIn) =

pn(n)
Mix Bayes #1.: e (x|n) = PN x(n]x)fx(x) -
pn(n)
Mix Bayes #2: pix(1]x) = fxin&xImpn(n) iy
fx(x)
All continuous: Frqy Cely) = DX

fy(y)

Lisa Yan, C$109, 2020 Stanford University 18




Mixing discrete and continuous

Let 6 be a random variable for the probability your coin comes up heads,
and N be the number of heads you observe in an experiment. n» HicdS

likelihood  prior

A M CEVAC)
7N py(n)
normalization constant
Prior belief of parameter 6 fo(x)
_ikelihood of N = n heads, given parameter 8 = x. Pnio (n]x)
Posterior updated belief of parameter 6. fon (x|n)

More in live lecture!

Lisa Yan, C$109, 2020 Stanford University 19
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Beta random variable

def A Beta random variable X is defined as follows:

1
XNBeta (a, b) PDF  f(x) = Bla.b) x4 1(1 — x)b—1

a>0b>0
Support of X: (0,1)

where B(a, b) = folx“‘l(l — x)?~1dx, normalizing constant

- Vari Var(X) = ab
a+b ariance Var(X) = 3 2(a + b + D

j‘B[&\b) X C\ ?<> C&ZC“ -~
9@@ £ (1207 (o\x

Expeotation E[X] =

Lisa Yan, C$109, 2020 Stanford University 21




Beta RV with different a, b

1
XNBeta (a, b) PDF f(x) = Bab) x%1(1 — x)b—1

a>0b>0 )
Support of X: (0,1) where B(a, b) = fo x%1(1 — x)?~1dx, normalizing constant
. o=4 o & oy L= '(_
s0, Ccoadbel . 3.0 -
40 - 'l Beta(O.2,0.bS) Beta(0.8,0.2) . Beta(1,1)=Uni(0,1)
a :
30 11 :: 20 —I~ e\ta(i,g) ....... .

\ : S~ e + a third case
N iy 10+ S (next slide)
1.0 —.. \ D e * 66‘.6,\?-{9 ------ ™ - ~ o
P R et 00 L5 | | | ~<.

00 02 04 06 08 1.0 00 02 04 06 08 1.0

Note: PDF symmetric whena = b

Lisa Yan, C$109, 2020 Stanford University 22




Beta RV with different a, b X~Beta(a, b)
Oy b pesrtNC VS

. . 50 - |
Match PDF to distribution: >1 10 |V eeu0208 Seta05.02)
4.0 - 3.0 4| ;
2.0\ ;
3.0 10 N\ Beta0808) ./
0.0 '-........I.T..ﬁ..?l ...... .Ig-;"'_' I_ - ,I
2.0 00 02 04 06 08 1.0
3.0 ~
10 20 —\Be\ta(l,g) .......
0.0 o Beta(L,]) ~ ~ _ e
63’}?\?’&\ ........ S S - ~
0.0 e’ T T T T = =
A. Beta(b,d) 00 02 04 06 08 10
B. Beta(2,8) s
C. Beta(8,2) -

Lisa Yan, C$109, 2020 Stanford University 23




Beta RV with different a, b

Match PDF to distribution:

4.0

3.0

2.0

1.0

0.0

B. Beta(2,8)

/ \

C. Beta(8,2)

A.Beta(5,5)

A. Beta(b,d)
5. Beta(2,8)
C. Beta(8,2)

X~Beta(a, b)
5.0 - :
4.0 - '| Beta(0.2,0.8) Beta(0.8. 0.2) ;
3.0 41!
2.0\ ;
10 N\a__ Beta0808) S
O_O "-......;....:..?I.----w'lﬁ'g'._ I_ - ’I
00 02 04 06 08 10
3.0 -
20 ey L
Beta(, ]~ ~ et
1.0 44—+ ~
36‘?\%{9’ ...... S o -_
0.0 == T T T T = =
00 02 04 06 08 1.0

In CS109, we focus on Betas where
a, b are both positive integers.

Lisa Yan, CS109, 2020
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Beta random variable

def A Beta random variable X is defined as follows:

X~Beta(a, b)

a>0b>0

> Support of X: (0,1)

Beta can be a distribution of probabilities.

Lisa Yan, C$109, 2020 Stanford University 25




Beta can be a distribution of probabilities. X~Beta(a, b)

P
o
J

Beta(2,8) Beta(8,2)
1 Beta parameters a, b could

301, Beta(5,5 -
, Betbdo) come from an experiment...

But which one?
Stay tuned...

Lisa Yan, C$109, 2020 Stanford University 26







Flipping a coin
with unknown
probability




A new definition of probability Review

Flip a coin n + m times, comes up with n heads.

We don’t know the probability 8 that the coin
comes up heads.

The world’s first coin

Frequentist Bayesian
0 is a single value. 0 is a random variable.
| n n
6 = n+171nrr_1)oo ST S, 6’s continuous support: (0, 1)

Lisa Yan, C$109, 2020 Stanford University 29



Flip a coin with unknown probability

. LT, 1
Flip a coin n + m times, observe n heads.

» Before our experiment, 6 (the probability that the coin
comes up heads) can be any probability.
* Let N = number of heads.

* Given 8 = x, coin flips are independent.
What is our updated belief of 6 after we observe N = n?

What are reasonable distributions of the following?
1. 6

2. N =x

3. O|N

Lisa Yan, CS109, 2020
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Flip a coin with unknown probability

Flip a coin n + m times, observe n heads.

Before our experiment, 6 (the probability that the coin <
comes up heads) can be any probability.

Let N = number of heads.

Given 6 = x, coin flips are independent.

What is our updated belief of 8 after we observe N = n?

What are reasonable distributions of the following?
0 Bayesian prior 8~Uni(0,1)

N|0=x  Likelihood(N|6 = x~Bin(n + m, x)

O|N=n Bayesian posterior. Use Bayes’

Lisa Yan, CS109, 2020
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Flip a coin with unknown probability

Flip a coin n + m times, observe n heads.

Prior:
Before our experiment, X (the probability that the coin 8~Uni(0,1)
comes up heads) can be any probability.
Let N = number of heads. Likelihood:
Given X = x, coin flips are independent. N|6 = x~Bin(n + m, x)

What is our updated belief of X after we observe N = n?  Posterior: fgy(6]n)

&
> R mY e
foin(xIn) = Pujo(nx)fe (x) _ ( n )am(1 -1 \
N PN (n) PN(Tl) Jc*: xn C\’f)h - i
m R
_ [\ n n(q n 1 1
S py() xH(1 =)™ = B x™(1 —x)™, where c = J x™(1 — x)Mdx
- 0
constant, — (‘"_ﬂvj

doesn’t depend on x Lisa Yan, CS109, 2020 On () Stanford University 32



Let’s try it out

1. Start with a §~Uni(0,1) over -
probability that a coin lands heads. = 20 Prior belief, X

Hﬁ 1.0

0.0

0.0 02 04 06 08 1.0
X

2. Flip a coin 8 times. Observe n = 7

heads and m = 1 tail okay

3. What is our posterior belief of the fon (xIn) = 1 x”(1—x)!
probability 87 1

n="=+ . .
¢ normalizes to valid PDF

Wait a minute...

Lisa Yan, CS109, 2020 Stanford University 33




Beta RV with different a, b a

. 4
XNBeta (a, b) PDF  f(x) = Bab) x21(1 — x)b—1

a>0,b>0 .
Support of X: (0,1) where B(a, b) = fO x%1(1 — x)?~1dx, normalizing constant
o L
1 oo
fon(xIn) = - x”(1—x)* is the PDF for Beta(8, 2)!

¢ normalizes to valid PDF
\ <1 ( 2\
By X |~ %)

Lisa Yan, CS109, 2020 Stanford University 34




Let’s try it out

4.0 -
3.0
N\ . .
\2 50 | Prior belief, X
= 1.0
0.0 T T T T 1
00 02 04 06 08 10
X
okay

3. What is our posterior belief of the fon (xIn) = 1 x”(1—x)!
probability 67? ¢

¢ normalizes to valid PDF

Beta(8,2)

Lisa Yan, CS109, 2020 Stanford University 35




What is our posterior belief of the probability 67

Start with a 8~Uni(0,1) over probability
Observe n = 7 successes and m = 1 failures
Your new belief about the probability of @ is:

1

1
foin(xIn) = - x’(1 —x)',wherec = f x"(1—2x)tdx
0

Posterior belief, 8| N

Posterior belief, 8|N: 4.0 -
Beta(a = 8,b = 2) S 30 -
1 E 20 -
— _ +8-1 _ 2-1 =
f9|N(x|7’l) - x°7 (1 —x) & 10 -
_ _ 0.0 . . . . |
Beta(a = ? +1b= ’7’;% +1) 00 02 04 06 0.8 1.0

SWCCLSAN %N\W Lisa Yan, CS109, 2020 —xX = Stanford University 36



CS109 focus: Beta where a, b both positive integers x~Beta(a, b)

4.0 1 Beta(2,8) Beta(8,2) If a, b are positive integers,
R Beta parameters a, b could

301, Beta(5,5) _
\ come from an experiment:
2.0

1.0 a = “successes” + 1

b = “failures” + 1

0.0

 Beta (in CS109) models the randomness of the
probability of experiment success.
 Beta parameters depend our data and our prior.

Lisa Yan, CS109, 2020 Stanford University 37




Bayes’ on the waves

p(I’NNEAR IPICKEDUP

IPIJKEDLP M NEAR p IM NERR
ﬂSEP&ELL THE OCEAN THE OCEAN

P(52se

™ Vv

\\Cis g‘ﬂﬂj
H )
k\

STAMISTICALLY SPEAKING, IF YOU PICK UP A
SEASHELL AND DOV HOLD IT TOYOUR EAR,
YoU CAN PROBABLY HEAR THE. OCEAN.

Lisa Yan, CS109, 2020

b lCCC) , CoVA

Stanford University 38



@ B0

Interlude for
jokes/announcements




Announcements

/Gurading clarification A
Two examples A
https://us.edstem.org/courses/109/discussion/

@7686 Y

Problem Set 6: No late days or on-time bonus

Musk-Suos 31

Lisa Yan, CS109, 2020
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https://us.edstem.org/courses/109/discussion/67686

Interesting probability news

4b. Compute 2. Scale q(x) b
A p(x2) and Cq(x2) a consta:t Cy
4a. o Ca(x2) /
. . . Compute Cq‘/‘.\r ‘7“’, .................... Sb. Another
Why Rejection Sampling Is e Z draw 2 rom |
. . q(x) P(XLJJeerrrssnnnnnnnins Unlf(O,CQ(XZ)
Useful in Cat Modeling TarBE ) Gelect
P | — v (x) proposal
5a. Draw ul 7 distri. g(x)
from = Je--fqemm e fmm e - |
Unif(0,Cq(x1)) » 1 :
NOte: Cat MOdel | ng 33 Draw x1 7 x1\ " x2 :\\ 3b. Another draw x2 from q(x)
] from q(x) 6a. Accept x1 6b. Reiect x2
= Catastrophe Modeling since ul<p(x1) S

since u2>p(x2)

(e.g., earthquakes, hurricanes, etc.)

https://www.air-worldwide.com/blog/posts/2018/9/why-rejection-

sampling-is-useful-in-cat-modeling/
CS109 Current Events Spreadsheet

Lisa Yan, C$109, 2020 Stanford University 41



https://docs.google.com/spreadsheets/d/1ijvvCoCKG86gITqSxYEPL_77U7VK__mn-ChvyDkhXX4/
https://www.air-worldwide.com/blog/posts/2018/9/why-rejection-sampling-is-useful-in-cat-modeling/

Conjugate
distributions




A note about our prior

Start with a 8~Uni(0,1) over

probability that a coin lands heads. Prior belief, X

0.0

0.0 02 04 06 08 1.0
X

Flip a coin 8 times. Observe n = 7

heads and m = 1 tail okay

What is our posterior belief of the fon (xIn) = 1 x”(1—x)!
probability 67

¢ normalizes to valid PDF

Wait another minute...

Lisa Yan, CS109, 2020 Stanford University 43




Beta RV with different a, b Review

o—v*A-/
ﬁ— o=l o L=1 c\}b’>’]_ o
OLOHb = 3.0 - Beta(1,1)=Uni(0,1} b ¢ £
B
2.0 4<% .
50 7, : 0 ~ (5’2) ...... X 4.0 1 B. Beta(2,8) C. Beta(8,2)
4.0 : Beta(0.2,0.8) Beta(0.8. 0.2):_: Beta(j_ :B -~ et . ,—\\
3.0 {1 1.0 ’ LA foo ABEEBS) S
20 1" QD) S~
10 NG Beta0808) L 6?’}?. ---- S~
OO ....... \ﬁ‘— ..... a.___ - 0.0 o T T T T =
00 02 04 06 08 1.0 00 02 04 06 08 1.0

Lisa Yan, CS109, 2020 Stanford University 44




A note about our prior

Start with a 8~Uni(0,1) over :Z
probability that a coin lands heads. = 20 Prior belief, X
HE 1.0 -
Beta(l,l) 0.0

0.0 02 04 06 08 1.0
X

Check this out. Beta(a = 1,b = 1):

xa—l(l . x)b—l

flx) = B(a.b)

1
fol 1dx

=1 where)0 < x <1

Lisa Yan, CS109, 2020 Stanford University 45




Beta is a conjugate distribution for Bernoulli

Beta is a conjugate distribution for Bernoulli, meaning:
* Prior and posterior parametric forms are the same

(proof on next slide)

Lisa Yan, CS109, 2020 Stanford University 46




Beta is a conjugate distribution for Bernoulli

Beta is a conjugate distribution for Bernoulli, meaning:
If our prior belief of the parameter is Beta, and
Our experiment is Bernoulli, then (observe n successes, m failures)

Our posterior is also Beta.
%

i
Proof:  O~Beta(a, b) N|8~Bin(n + m, x)

— B
n m 1 a— _
f@ (X|n) _ pN|9(n|x)f9(x) _ (TL -I,';lm)x (1—x) 'B(a,b)x 1(1_x)b 1
" py (1) py (1)

=C-x"(1—x)" -x*1(1—-x)P1?

_ (. nrd1(] _ gymeben Rodon (NEA M+b )

Lisa Yan, CS109, 2020 Stanford University 47



Beta is a conjugate distribution for Bernoulli | This is the main
takeaway of |

Beta is a conjugate distribution for Bernoulli, meaning; Beta.

Prior and posterior parametric forms are the same

Practically, conjugate means easy update:
Add number of “heads” and “tails” seen to Beta parameters.

You can set the prior to reflect how biased you think the coin is apriori:

O~Beta(a,b): haveseen (a + b — 2) imaginary trials, where ]
(a — 1) are heads, (b — 1) tails

Then Beta(1,1) = Uni(0, 1) means we haven’t seen any imaginary trials

Prior Beta(a = nypgg + 1,0 = Mypeg + 1)
Experiment Observe n successes and m failures

Posterior Beta(a = Njmag T 1+ 1, b= Mimag T M + 1)

Lisa Yan, CS109, 2020 Stanford University 48




Prior Beta(a = nypag + 1,0 = Mypggy + 1)

The enchanted die Posterior Beta(a = Mimag + 1 + 1, b = Mimag +m + 1)

Let 6 be the probability of rolling a 6 on Lisa’s die.
* Prior: Imagine 5 die rolls where only 6 showed up ﬂ

* QObservation: roll it a few times...

What is the updated distribution of 8 after our observation?

Beta PDF
Parameters
: a 2
Check out the demo! ¢ ., & :
o

. T T T T T T T T T 11
00 01 02 03 04 05 06 07 08 03 10 9 9

Lisa Yan, CS109, 2020 Stanford University 49



http://web.stanford.edu/class/cs109/demos/beta.html

Medicinal Beta

Before being tested, a medicine is believed to “work” 80% of the time.
The medicine is tried on 20 patients.
It “works” for 14, “doesn’t work” for 6.

What is your new belief that the drug “works”?

Frequentist

Let 8 be the probability
your drug works.

14

20 ' A frequentist view will not incorporate
prior/expert belief about probability.

Lisa Yan, CS109, 2020 Stanford University 50




Medicinal Beta

Before being tested, a medicine is believed to “work” 80% of the time.
The medicine is tried on 20 patients.
It “works” for 14, “doesn’t work” for 6.

What is your new belief that the drug “works”?

Bayesian
Let 6 be the probability

your drug works.
6 is a random variable.

Lisa Yan, C$109, 2020 Stanford University 51




Prior Beta(a = nypag + 1,0 = Mypggy + 1)

Medicinal Beta Posterior Beta(a = nypgg + n+ 1,0 = Mypag + m+ 1)

Before being tested, a medicine is believed to “work”™ 80% of the time.
The medicine is tried on 20 patients.
It “works” for 14, “doesn’t work” for 6.

What is your new belief that the drug “works”? (Bayesian interpretation)

What is the prior distribution of 67 (select all that apply)
6~Beta(1,1) = Uni(0,1)
6~Beta(81,101)
0 ~Beta(80, 20)
0~Beta(81,21)
0~Beta(5s, 2)

&

Lisa Yan, C$109, 2020 Stanford University 52



Prior Beta(a = nypag + 1,0 = Mypggy + 1)

MediCinal Beta Posterior Beta(a = nypqg + n+1,b = Mypey + m+ 1)

* Before being tested, a medicine is believed to “work” 80% of the time.
* The medicine is tried on 20 patients.
* |t “works” for 14, “doesn’t work” for ©.

What is your new belief that the drug “works”? (Bayesian interpretation)

What is the prior distribution of 67 (select all that apply)
6~Beta(1,1) = Uni(0,1)
6~Beta(81,101)
6 ~Beta(80, %9 Q

301\

A.
B.
C.
@ 6~Beta(81, 21) Interpretation: 80 successes / 100 imaginary trials
(

P EANEA
6~Beta(5, 2) W sucets | magrabinls

you can choose either based on how strong your belief is (an engineering choice).

We choose E on next slide)

Lisa Yan, CS109, 2020 Stanford University 53




Prior Beta(a = nypag + 1,0 = Mypggy + 1)

MediCinal Beta Posterior Beta(a = nypgg + n+ 1,0 = Mypag + m+ 1)

Before being tested, a medicine is believed to “work” 80% of the time.
The medicine is tried on 20 patients.
It “works” for 14, “doesn’t work” for 6.

What is your new belief that the drug “works”? (Bayesian interpretation)
Prior: 0~Beta(a = 5,b = 2) 2-8 :
Posterior: O~Beta(a =5+ 14,b=2+4+6) 30 Posterior
~Beta(a = 19,b = 8) 2.0 - [\
1.0 - \)(\O‘....
0.0 II T T |

Lisa Yan, CS109, 2020 Stanford University 54



Prior Beta(a = nypag + 1,0 = Mypggy + 1)

MEdiCinal BEta Posterior Beta(a = nypqg + n+1,b = Mypey + m+ 1)

Before being tested, a medicine is believed to “work” 80% of the time.
The medicine is tried on 20 patients.
It “works” for 14, “doesn’t work” for 6.

What is your new belief that the drug “works”? (Bayesian interpretation)
d
Prior: 6~Beta(a =5,b = 2) 2-8 : o
Posterior: A~Beta(a =5+ 14,b =2+6) 30 - Posterior
~Beta(a = 19,b = 8) 2.0 -
What do you report to pharmacists? é:ﬁ 1 I_m”\ff\,‘f‘.--'
Expectation of posterior 0.0 02 04 O. . 0 X
Mode of posterior
Distribution of posterior -
Nothing 3/
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Prior Beta(a = nypag + 1,0 = Mypggy + 1)

MediCinal Beta Posterior Beta(a = nypgg + n+ 1,0 = Mypag + m+ 1)

Before being tested, a medicine is believed to “work” 80% of the time.
The medicine is tried on 20 patients.
It “works” for 14, “doesn’t work” for 6.

What is your new belief that the drug “works”? (Bayesian interpretation)
mode
Prior: 0~Beta(a = 5,b = 2) i-g ‘
Posterior: 6~Beta(a =5+ 14,b=2+4+6) 30 Posterior
~Beta(a = 19,b = 8) 2.0 -
: 1.0 - o .
What do you report to pharmacists? 00 LSS
a 19 00 02 04 06 08 10 7%
= = ~ (0.7
E16] a+b 19+8 0-70
a—1 18 In CS109, we report the mode: The
mode(d) = ————— =15 ~ 0.72 “most likely” parameter given the data.

(we’ll derive the formula for Beta’s mode next lecture) ..o 5000 Stanford University 56



Food for thought

= In this lecture: If we don’t know the parameter p,
o Bayesian statisticians will:
Treat the parameter p as a random variable

XNBer(p) 0 with a Beta priqr distribution
Perform an experiment

Based on experiment outcomes, update the
posterior distribution of 6

A‘
0 0

K\—d Food for thought:

Any parameter for a “parameterized”

random variable can be thought of as Y~]\[‘(‘u, 0-2)
a random variable.

Lisa Yan, CS109, 2020
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Estimating our parameter directly

Maximum
Likelihood
Estimator

(MLE)

What is the parameter 0 L(O) =f(X1,X5,...,X,]0)
that maximizes the likelihood T
of our observed data B Df(xilg)

X1, X9, ey X )?
( 1,42 n) HMLE = arg maXf(X1,X2; ---;ang)

likelihood of data

Observations:

*  MLE maximizes probability of observing data
given a parameter 6.

* If we are estimating 8, shouldn’t we maximize See you
the probability of 8 directly? next time!

Lisa Yan, CS109, 2020 Stanford University 58



Extra: MLE:
Multinomial

derivation




Okay, just one more MLE with the Multinomial

Consider a sample of n I.i.d. random variables where

Each element is drawn from one of m outcomes.
P(outcome i) = p;, where > 72 p; = 1

X; = # of trials with outcome i, where 12, X; = n

What is the likelihood of observing n X x ¥
the Sample(XLX_z_; -_--;Xm)7 L(B) = XXX !p11p22 DPm
given the probabilities p4, vy, ..., Pm? 1: A2 m

LL(6) = log(n!) — z log(X;!) + zX log(p;), suchthat %, p; =

Optimize with X;  Intuitively, probability

Lagrange multipliers in OmLe: Pi = p; = proportion of outcomes

extra slides n o
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Optimizing MLE for Multinomial

H — (pl:Pz: . rpm)
OmLE = arg max LL(0), where Epl =1

Use Lagrange multipliers
to account for constraint

m (drop
Lagrange
multipliers: A(B) =LL(O) +1 p; — 1) EX log(p;) + A (Z p; — 1) non-p;
i=1 terms)
i i dA(O 1 .
leferentllate W.r.t. (0) —X,—+1=0 = . = _)ﬁ
each p;, in turn: op; D; : A
Solve for A, noting i =y, n
m m Epizi_jlzl $1=—z > A=-n
;Xi = Tl,;pi = 1: i—1 i—1

Substitute A into p; p; =
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