22: MAP

Lisa Yan May 27, 2020

Quick slide reference

3 Maximum a Posteriori Estimator

LIVE

LIVE

LIVE

- 11 Bernoulli MAP: Choosing a prior
- 23b_bernoulli_any_prior

15 Bernoulli MAP: Conjugate prior

22c_bernoulli_conjugate

- 24 Common conjugate distributions
- 36 Choosing hyperparameters for conjugate prior
- 43 Bayesian Envelope demo

22a_map

Maximum a Posteriori Estimator

Consider a sample of n i.i.d. random variables X_1, X_2, \dots, X_n (data).

Maximum Likelihood Estimator (MLE)

What is the parameter θ that **maximizes the likelihood** of our observed data (X_1, X_2, \dots, X_n) ? $L(\theta) = f(X_1, X_2, \dots, X_n | \theta)$ $= \prod_{i=1}^n f(X_i | \theta)$ $\theta_{MLE} = \arg \max f(X_1, X_2, \dots, X_n | \theta)$

likelihood of data

Review

Observations:

- MLE maximizes probability of observing data given a parameter θ .
- If we are estimating θ , shouldn't we maximize the probability of θ directly?

Today: **Bayesian estimation** using the Bayesian definition of probability!

Maximum A Posterior (MAP) Estimator

Consider a sample of *n* i.i.d. random variables $X_1, X_2, ..., X_n$ (data).

Maximum Likelihood Estimator (MLE) What is the parameter θ that **maximizes the likelihood** of our observed data (X_1, X_2, \dots, X_n) ?

 $L(\theta) = f(X_1, X_2, \dots, X_n | \theta)$ $= \prod_{i=1}^n f(X_i | \theta)$

$$\theta_{MLE} = \arg \max_{\theta} f(X_1, X_2, \dots, X_n | \theta)$$

likelihood of data

Maximum a Posteriori (MAP) Estimator

Given our observed data $(X_1, X_2, ..., X_n)$, what is the **most likely** parameter θ ?

$$\theta_{MAP} = \arg \max_{\theta} f(\theta | X_1, X_2, \dots, X_n)$$
posterior distribution
of θ

Maximum A Posterior (MAP) Estimator

Consider a sample of *n* i.i.d. random variables $X_1, X_2, ..., X_n$ (data).

<u>def</u> The Maximum a Posteriori (MAP) Estimator of θ is the value of θ that maximizes the posterior distribution of θ .

$$\theta_{MAP} = \arg\max_{\theta} f(\theta | X_1, X_2, \dots, X_n)$$

Solving for θ_{MAP}

- Observe data: X_1, X_2, \dots, X_n , all i.i.d.
- Let likelihood be same as MLE: $f(X_1, X_2, ..., X_n | \theta) = \prod f(X_i | \theta)$
- Let the prior distribution of θ be $g(\theta)$.

$$\theta_{MAP} = \arg \max_{\theta} f(\theta | X_1, X_2, ..., X_n) = \arg \max_{\theta} \frac{f(X_1, X_2, ..., X_n | \theta) g(\theta)}{h(X_1, X_2, ..., X_n)}$$
(Bayes' Theorem

$$= \arg \max_{\theta} \frac{g(\theta) \prod_{i=1}^n f(X_i | \theta)}{h(X_1, X_2, ..., X_n)}$$
(independence)

$$= \arg \max_{\theta} g(\theta) \prod_{i=1}^n f(X_i | \theta)$$
(1/h(X₁, X₂, ..., X_n) is a positive constant w.r.t. θ

$$= \arg \max_{\theta} \left(\log g(\theta) + \sum_{i=1}^n \log f(X_i | \theta) \right)$$
(Lise Yan, CS109, 2020

$$= \operatorname{Stanford University}$$

θ_{MAP} : Interpretation 1

- Observe data: X_1, X_2, \dots, X_n , all i.i.d.
- Let likelihood be same as MLE: $f(X_1, X_2, ..., X_n | \theta) = \prod_i f(X_i | \theta)$
- Let the prior distribution of θ be $g(\theta)$.

$$\theta_{MAP} = \arg \max_{\theta} f(\theta | X_1, X_2, ..., X_n) = \arg \max_{\theta} \frac{f(X_1, X_2, ..., X_n | \theta)g(\theta)}{h(X_1, X_2, ..., X_n)} \quad \text{(Bayes' Theorem)}$$

$$= \arg \max_{\theta} \frac{g(\theta) \prod_{i=1}^n f(X_i | \theta)}{h(X_1, X_2, ..., X_n)} \quad \text{(independence)}$$

$$= \arg \max_{\theta} g(\theta) \prod_{i=1}^n f(X_i | \theta) \quad (1/h(X_1, X_2, ..., X_n) \text{ is a positive constant w.r.t. } \theta)$$

$$= \arg \max_{\theta} \left(\log g(\theta) + \sum_{i=1}^n \log f(X_i | \theta) \right) \quad \theta_{MAP} \text{ maximizes} \text{ log prior + log-likelihood}$$

θ_{MAP} : Interpretation 2

- Observe data: X_1, X_2, \dots, X_n , all i.i.d.
- Let likelihood be same as MLE: $f(X_1, X_2, ..., X_n | \theta) = \prod f(X_i | \theta)$
- Let the prior distribution of θ be $g(\theta)$.

$$\theta_{MAP} = \arg \max_{\theta} f(\theta | X_1, X_2, ..., X_n) = \arg \max_{\theta} f(\theta | X_1, X_2, ..., X_n) = \arg \max_{\theta} \frac{g(\theta) \prod_{i=1}^n f(X_i | \theta)}{h(X_1, X_2, ..., X_n)}$$
(independence)

$$= \arg \max_{\theta} g(\theta) \prod_{i=1}^n f(X_i | \theta)$$
(1/h(X₁, X₂, ..., X_n) is a positive constant w.r.t. θ)

$$= \arg \max_{\theta} \left(\log g(\theta) + \sum_{i=1}^n \log f(X_i | \theta) \right)$$
$$\theta_{MAP} \text{ maximizes} \text{ log prior + log-likelihood}$$

$$g_{MAP} = \log (1 + \log$$

Mode: A statistic of a random variable

The **mode** of a random variable *X* is defined as:

 $\begin{array}{ll} (X \text{ discrete,} & \text{ arg} \\ \text{PMF } p(x)) \end{array}$

 $\arg \max_{x} p(x)$

 $\arg \max f(x)$ (X continuous, PDF f(x)) $\boldsymbol{\chi}$

- Intuitively: The value of X that is "most likely."
- Note that some distributions may not have a unique mode (e.g., Uniform distribution, or Bernoulli(0.5))

$$\theta_{MAP} = \arg\max_{\theta} f(\theta | X_1, X_2, \dots, X_n)$$

 θ_{MAP} is the most likely θ given the data X_1, X_2, \dots, X_n .

22b_bernoulli_any_prior

Bernoulli MAP: Choosing a prior

How does MAP work? (for Bernoulli)

Stanford University 12

MAP for Bernoulli

- Flip a coin 8 times. Observe n = 7 heads and m = 1 tail.
- Choose a prior on θ . What is θ_{MAP} ?

Suppose we pick a prior $\theta \sim \mathcal{N}(0.5, 1^2)$. $g(\theta) = \frac{1}{\sqrt{2\pi}} e^{-(p-0.5)^2/2}$

1. Determine log
prior + log
likelihood
$$= \log\left(\frac{1}{\sqrt{2\pi}}e^{-(p-0.5)^2/2}\right) + \log\left(\binom{n+m}{n}p^n(1-p)^m\right)$$

$$= -\log(\sqrt{2\pi}) - (p-0.5)^2/2 + \log\binom{n+m}{n} + n\log p + m\log(1-p)$$
2. Differentiate

2. Differentiate w.r.t. (each) θ , set to 0

3. Solve resulting equations

$$-(p-0.5) + \frac{n}{p} - \frac{m}{1-p} = 0$$

cubic equations why

We should choose an "easier" prior. This one is hard!

A better approach: Use conjugate distributions

22c_bernoulli_conjugate

Bernoulli MAP: Conjugate prior

Beta is a conjugate distribution for Bernoulli

Review

Beta is a **conjugate distribution** for Bernoulli, meaning:

- Prior and posterior parametric forms are the same
- Practically, conjugate means easy update: Add numbers of "successes" and "failures" seen to Beta parameters.
- You can set the prior to reflect how fair/biased you think the experiment is apriori.

PriorBeta(
$$a = n_{imag} + 1, b = m_{imag} + 1$$
)ExperimentObserve n successes and m failuresPosteriorBeta($a = n_{imag} + n + 1, b = m_{imag} + m + 1$)

Mode of Beta(a, b):

$$\frac{a-1}{a+b-2}$$

Beta parameters a, b are called hyperparameters. Interpret Beta(a, b): a + b - 2 trials, of which a - 1 are successes

(we'll prove this in a few minutes)

Lisa Yan, CS109, 2020

Stanford University 16

How does MAP work? (for Bernoulli)

Conjugate strategy: MAP for Bernoulli

- Flip a coin 8 times. Observe n = 7 heads and m = 1 tail. Define as data, D
- Choose a prior on θ . What is θ_{MAP} ?
- 1. Choose a prior
- 2. Determine posterior

Suppose we pick a prior $\theta \sim \text{Beta}(a, b)$.

Because Beta is a conjugate distribution for Bernoulli, the posterior distribution is $\theta | D \sim \text{Beta}(a + n, b + m)$

3. Compute MAP

$$\theta_{MAP} = \frac{a+n-1}{a+n+b+m-2}$$

(mode of Beta(a + n, b + m))

MAP in practice

- Flip a coin 8 times. Observe n = 7 heads and m = 1 tail.
- What is the MAP estimator of the Bernoulli parameter *p*, if we assume a prior on *p* of Beta(2, 2)?

MAP in practice

- Flip a coin 8 times. Observe n = 7 heads and m = 1 tail.
- What is the MAP estimator of the Bernoulli parameter p, if we assume a prior on p of Beta(2, 2)?
- 1. Choose a prior

Before flipping the coin, we imagined 2 trials: 1 imaginary head, 1 imaginary tail.

2. Determine posterior

Posterior distribution of θ given observed data is Beta(9,3)

3. Compute MAP

$$\theta_{MAP} = \frac{8}{10}$$

After the coin, we saw 10 trials: 8 heads (imaginary and real), 2 tails (imaginary and real).

Proving the mode of Beta

From first principles: MAP for Bernoulli, conjugate prior

- Flip a coin 8 times. Observe n = 7 heads and m = 1 tail.
- Choose a prior on θ . What is θ_{MAP} ?

Suppose we pick a prior $\theta \sim \text{Beta}(a, b)$. $g(\theta = p) = \frac{1}{\beta}p^{a-1}(1-p)^{b-1}$ normalizing constant, β

1. Determine log prior + log likelihood

$$\log g(\theta) + \log f(X_1, X_2, \dots, X_n | \theta) = \log \left(\frac{1}{\beta} p^{a-1} (1-p)^{b-1}\right) + \log \left(\binom{n+m}{n} p^n (1-p)^m\right)$$
$$= \log \frac{1}{\beta} + (a-1)\log(p) + (b-1)\log(1-p) + \log \binom{n+m}{n} + n\log p + m\log(1-p)$$

2. Differentiate w.r.t. (each) θ , $\frac{a-1}{p} + \frac{n}{p} - \frac{b-1}{1-p} - \frac{m}{1-p} = 0$ set to 0

3. Solve (next slide)

Lisa Yan, CS109, 2020

Stanford University 22

From first principles: MAP for Bernoulli, conjugate prior

- Flip a coin 8 times. Observe n = 7 heads and m = 1 tail.
- Choose a prior θ . What is θ_{MAP} ?

Suppose we pick a prior $\theta \sim \text{Beta}(a, b)$. $g(\theta) = \frac{1}{\beta}p^{a-1}(1-p)^{b-1}$

normalizing constant, β

3. Solve for
$$p$$

$$\frac{a-1}{p} + \frac{n}{p} - \frac{b-1}{1-p} - \frac{m}{1-p} = 0 \quad \text{(from previous slide)}$$

$$\implies \frac{a+n-1}{p} - \frac{b+m-1}{1-p} = 0$$

$$\theta_{MAP} = \frac{a+n-1}{a+n+b+m-2} \quad \bigtriangledown$$

The mode of the posterior, Beta(a + n, b + m)! If we choose a conjugate prior, we avoid calculus with MAP: just report mode of posterior.

Lisa Yan, CS109, 2020

22: MAP

Lisa Yan May 27, 2020

Review

Observe data

Choose model with parameter θ

Choose prior on θ

Two valid interpretations of θ_{MAP}

Mode of posterior distribution of θ

Find
$$\theta_{MAP} = \arg \max_{\theta} f(\theta | X_1, X_2, ..., X_n)$$

$$= \arg \max_{\theta} \left(\log g(\theta) + \sum_{i=1}^n \log f(X_i | \theta) \right)$$

$$distribution of \theta$$
or
$$maximize$$

$$\log prior + \log-likelihood$$

If we choose a conjugate prior, we avoid calculus with MAP: just report mode of posterior.

LIVE

Conjugate distributions

Quick MAP for Bernoulli and Binomial

Beta(a, b) is a conjugate prior for the probability of success in the Bernoulli and Binomial distributions.

$$f(a) = \frac{1}{B(a,b)} x^{a-1} (1-x)^{b-1}$$

PriorBeta(a, b)
Saw a + b - 2 imaginary trials: a - 1 successes, b - 1 failuresExperimentObserve n + m new trials: n successes, m failuresPosteriorBeta(a + n, b + m)MAP: $p = \frac{a + n - 1}{a + b + n + m - 2}$

Review

Conjugate distributions

MAP estimator:

$$\theta_{MAP} = \arg\max_{\theta} f(\theta | X_1, X_2, \dots, X_n)$$

The mode of the posterior distribution of θ

Distribution parameter	Conjugate distribution
Bernoulli p	Beta
Binomial <i>p</i>	Beta
Multinomial p_i	Dirichlet
Poisson λ	Gamma
Exponential λ	Gamma
Normal μ	Normal
Normal σ^2	Inverse Gamma

CS109: We'll only focus on MAP for Bernoulli/Binomial p, Multinomial p_i , and Poisson λ .

Lisa Yan, CS109, 2020

Multinomial is Multiple times the fun

Dirichlet $(a_1, a_2, ..., a_m)$ is a conjugate for Multinomial.

• Generalizes Beta in the same way Multinomial $f(x_1, x_2, ..., x_m) = \frac{1}{B(a_1, a_2, ..., a_m)} \prod_{i=1}^m x_i^{a_i-1}$

PriorDirichlet $(a_1, a_2, ..., a_m)$
Saw $(\sum_{i=1}^m a_i) - m$ imaginary trials, with $a_i - 1$ of outcome iExperimentObserve $n_1 + n_2 + \dots + n_m$ new trials, with n_i of outcome i

Posterior Dirichlet $(a_1 + n_1, a_2 + n_2, \dots, a_m + n_m)$

MAP:

$$p_{i} = \frac{a_{i} + n_{i} - 1}{\left(\sum_{i=1}^{m} a_{i}\right) + \left(\sum_{i=1}^{m} n_{i}\right) - m}$$

Stanford University 29

Lisa Yan, CS109, 2020

Gamma(α, β) is conjugate for Poisson Mode: $\frac{\alpha-1}{\beta}$

Let λ be the average # of successes in a time period.

1. What does it mean to have a prior of $\theta \sim \text{Gamma}(11,5)$?

Observe 10 imaginary events in 5 time periods, i.e., observe at Poisson rate = 2

Now perform the experiment and see 11 events in next 2 time periods.

- 2. Given your prior, what is the posterior distribution?
- **3.** What is θ_{MAP} ?

Gamma(α, β) is conjugate for Poisson Mode: $\frac{\alpha-1}{\beta}$

Let λ be the average # of successes in a time period.

1. What does it mean to have a prior of $\theta \sim \text{Gamma}(11,5)$?

Observe 10 imaginary events in 5 time periods, i.e., observe at Poisson rate = 2

Now perform the experiment and see 11 events in next 2 time periods.

2. Given your prior, what is the posterior distribution?

 $(\theta | n \text{ events in } k \text{ periods}) \sim \text{Gamma}(22, 7)$

3. What is θ_{MAP} ?

 $\theta_{MAP} = 3$, the updated Poisson rate

Interlude for jokes/announcements

https://xkcd.com/1725/

Problem Set 6 Extension!

New deadline: Thur, 8/13, 1pm

Note: You don't have to wait for the final live lecture to finish p-set 6. All relevant material is covered by prior lectures and the recorded videos.

What Role Should Employers Play in Testing Workers?

One nascent strategy circulating among public health experts is running **"pooled" coronavirus tests**, in which a workplace could combine multiple saliva or nasal swabs into one larger sample representing dozens of employees.

https://www.nytimes.com/2020/05/22/business/employerscoronavirus-testing.html

LIVE

Choosing hyperparameters for conjugate prior

Where'd you get them priors?

- Let θ be the probability a coin turns up heads.
- Model θ with 2 different priors:
- Prior 1: Beta(3,8): 2 imaginary heads, 7 imaginary tails mode: $\frac{2}{9}$
- Prior 2: Beta(7,4): 6 imaginary heads, 3 imaginary tails mode: $\frac{6}{9}$

Now flip 100 coins and get 58 heads and 42 tails.

- 1. What are the two posterior distributions?
- 2. What are the modes of the two posterior distributions?

Where'd you get them priors?

- Let θ be the probability a coin turns up heads.
- Model θ with 2 different priors:
- Prior 1: Beta(3,8): 2 imaginary heads, 7 imaginary tails mode: ²/₉
 Prior 2: Beta(7,4): 6 imaginary heads,
 - 3 imaginary tails mode: $\frac{6}{9}$

Now flip 100 coins and get 58 heads and 42 tails.

Posterior 1: Beta(61,50)mode: $\frac{60}{109}$ Posterior 2: Beta(65,46)mode: $\frac{64}{109}$ As long as we collect enough data,
posteriors will converge to the true value.

Lisa Yan, CS109, 2020

Laplace smoothing

MAP with Laplace smoothing: a prior which represents *k* imagined observations of each outcome.

- Categorical data (i.e., Multinomial, Bernoulli/Binomial)
- Also known as additive smoothing

Laplace estimateImagine k = 1 of each outcome
(follows from Laplace's "law of succession")

Example: Laplace estimate for coin probabilities from aforementioned experiment (100 coins: 58 heads, 42 tails)

heads
$$\frac{59}{102}$$
 tails $\frac{43}{102}$

Laplace smoothing:

• Easy to implement/remember

Back to our happy Laplace

Consider our previous 6-sided die.

- Roll the dice n = 12 times.
- Observe: 3 ones, 2 twos, 0 threes, 3 fours, 1 fives, 3 sixes

Recall θ_{MLE} :

 $p_1 = 3/12, p_2 = 2/12, p_3 = 0/12,$ $p_4 = 3/12, p_5 = 1/12, p_6 = 3/12$

What are your Laplace estimates for each roll outcome?

Back to our happy Laplace

Consider our previous 6-sided die.

- Roll the dice n = 12 times.
- Observe: 3 ones, 2 twos, 0 threes, 3 fours, 1 fives, 3 sixes

Recall θ_{MLE} :

 $p_1 = 3/12, p_2 = 2/12, p_3 = 0/12,$ $p_4 = 3/12, p_5 = 1/12, p_6 = 3/12$

What are your Laplace estimates for each roll outcome?

$$p_i = \frac{X_i + 1}{n + m}$$

$$p_1 = 4/18, p_2 = 3/18, p_3 = 1/18,$$

 $p_4 = 4/18, p_5 = 2/18, p_6 = 4/18$

Laplace smoothing:

- Easy to implement/remember
- Avoids estimating a parameter of 0

LIVE

Bayesian Envelope Demo

Two envelopes

Two envelopes: One contains X, the other contains 2X.

- Select an envelope and <u>open it</u>.
- Before opening the envelope, think either <u>equally</u> good.
- Then you can choose to stay with your envelope or switch to the other one.

Is the following reasoning valid?

- Let Y =\$ in envelope you selected.
- Let Z = \$ in other envelope.

 $E[Z|Y] = \frac{1}{2} \cdot \frac{Y}{2} + \frac{1}{2} \cdot 2Y = \frac{5}{4}Y$

What really happened by opening the envelope?

Two envelopes

Two envelopes: One contains \$*X*, the other contains \$2*X*.

- Select an envelope and open it.
- Before opening the envelope, think either equally good.

Is the following reasoning valid?

- Let *Y* = \$ in envelope you selected.
- Let Z =\$ in other envelope.

 $E[Z|Y] = \frac{1}{2} \cdot \frac{Y}{2} + \frac{1}{2} \cdot 2Y = \frac{5}{4}Y$

- Assumes all values of X (where 0 < X < ∞) equally likely
- Infinitely many values of X
- So not a true probability distribution over *X* (does not integrate to 1)

Follow-up: What happened by opening the envelope?

Are all values equally likely?

Stanford University 46

Two envelopes

Two envelopes: One contains \$*X*, the other contains \$2*X*.

- Select an envelope and open it.
- Before opening the envelope, think either equally good.

Is the following reasoning valid?

- Let *Y* = \$ in envelope you selected.
- Let Z =\$ in other envelope.

 $E[Z|Y] = \frac{1}{2} \cdot \frac{Y}{2} + \frac{1}{2} \cdot 2Y = \frac{5}{4}Y$

- Assumes all values of X (where 0 < X < ∞) equally likely
- Infinitely many values of X
- So not a true probability distribution over *X* (does not integrate to 1)

What really happened by opening the envelope?

Two envelopes: The subjectivity of probability

Your belief about the content of envelopes:

• Since implied distribution over *X* is not a true probability distribution, what *i*s our distribution over *X*?

Frequentist

Play game infinitely many times, see how often different values come up

Problem: you can only play game once

Bayesian

Have prior belief of distribution of X

- Prior belief is a subjective probability (as are <u>all</u> probabilities)
- Can answer questions when no/limited data
- As we get more data, prior belief "swamped" by data

Two envelopes: The subjectivity of probability

The envelope, please

Bayesian: Have a prior distribution over X, P(X)

- Let Y =\$ in envelope you selected. Open envelope to determine Y.
- Let Z =\$ in other envelope.

If Y > E[Z|Y], keep your envelope, otherwise switch. No inconsistency!!

- Opening envelope provides data to compute P(X|Y)
- ...which allows you to compute E[Z|Y]

Of course, need to think about your prior distribution over *X*...

Bayesian probability: It doesn't matter how you determine your prior, but you <u>must</u> have one (whatever it is)

Imagine if envelope you opened contained \$20.01. Should you switch?

How much is a half cent?

Lisa Yan, CS109, 2020

Have a wonderful Wednesday!