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Maximum Likelihood Estimator

4

Maximum 
Likelihood 
Estimator

(MLE)

What is the parameter 𝜃
that maximizes the likelihood
of our observed data 
𝑋!, 𝑋", … , 𝑋# ?

𝜃$%& = arg max
'

𝑓 𝑋!, 𝑋", … , 𝑋#|𝜃

𝐿 𝜃 = 𝑓 𝑋!, 𝑋", … , 𝑋#|𝜃

= " 𝑓 𝑋!|𝜃
"

!#$

likelihood of data
Observations:
• MLE maximizes probability of observing 

data given a parameter 𝜃.
• If we are estimating 𝜃, shouldn’t we 

maximize the probability of 𝜃 directly?

Review

Today: Bayesian estimation
using the Bayesian 
definition of probability!

Consider a sample of 𝑛 i.i.d. random variables 𝑋', 𝑋(, … , 𝑋) (data).
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Maximum A Posterior (MAP) Estimator

5

Maximum 
Likelihood 
Estimator

(MLE)

What is the parameter 𝜃
that maximizes the likelihood
of our observed data 
𝑋!, 𝑋", … , 𝑋# ?

𝜃$%& = arg max
'

𝑓 𝑋!, 𝑋", … , 𝑋#|𝜃

𝐿 𝜃 = 𝑓 𝑋!, 𝑋", … , 𝑋#|𝜃

= " 𝑓 𝑋!|𝜃
"

!#$

Maximum
a Posteriori

(MAP) 
Estimator

Given our observed data 
𝑋!, 𝑋", … , 𝑋# ,

what is the most likely 
parameter 𝜃?

𝜃$() = arg max
'

 𝑓 𝜃|𝑋!, 𝑋", … , 𝑋#

likelihood of data

posterior distribution
of 𝜃

Consider a sample of 𝑛 i.i.d. random variables 𝑋', 𝑋(, … , 𝑋) (data).
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Maximum A Posterior (MAP) Estimator
Consider a sample of 𝑛 i.i.d. random variables 𝑋', 𝑋(, … , 𝑋) (data).
def The Maximum a Posteriori (MAP) Estimator of 𝜃 is the value of 𝜃 that 

maximizes the posterior distribution of 𝜃.

6

𝜃*+, = arg max
-

𝑓 𝜃|𝑋', 𝑋(, … , 𝑋)

Intuition with Bayes’ Theorem:

posterior
likelihood prior

𝑃 𝜃 data =
 𝑃 data 𝜃 𝑃 𝜃  

𝑃 data

𝐿 𝜃 , probability of data 
given parameter 𝜃

Before seeing data,
prior belief of 𝜃

After seeing 
data, posterior 

belief of 𝜃
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Solving for 𝜃!"#
• Observe data: 𝑋!, 𝑋", … , 𝑋#, all i.i.d. 
• Let likelihood be same as MLE:
• Let the prior distribution of 𝜃 be 𝑔 𝜃 .

7

𝜃$() = arg max
'

𝑓 𝜃|𝑋!, 𝑋", … , 𝑋# = arg max
'

𝑓 𝑋!, 𝑋", … , 𝑋#|𝜃 𝑔 𝜃
ℎ 𝑋!, 𝑋", … , 𝑋#

(Bayes’ Theorem)

= arg max
'

𝑔 𝜃 ∏ 𝑓 𝑋*| 𝜃#
*+!

ℎ 𝑋!, 𝑋", … , 𝑋# (independence)

= arg max
'

𝑔 𝜃 2 𝑓 𝑋*| 𝜃
#

*+!

(1/ℎ 𝑋$, 𝑋%, … , 𝑋" is a positive constant w.r.t. 𝜃)

= arg max
'

log 𝑔 𝜃 + 6 log 𝑓 𝑋*| 𝜃
#

*+!

𝑓 𝑋$, 𝑋%, … , 𝑋"|𝜃 = " 𝑓 𝑋!| 𝜃
"

!#$
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𝜃!"#: Interpretation 1
• Observe data: 𝑋!, 𝑋", … , 𝑋#, all i.i.d. 
• Let likelihood be same as MLE:
• Let the prior distribution of 𝜃 be 𝑔 𝜃 .

8

𝜃$() = arg max
'

𝑓 𝜃|𝑋!, 𝑋", … , 𝑋# = arg max
'

𝑓 𝑋!, 𝑋", … , 𝑋#|𝜃 𝑔 𝜃
ℎ 𝑋!, 𝑋", … , 𝑋#

(Bayes’ Theorem)

= arg max
'

𝑔 𝜃 ∏ 𝑓 𝑋*| 𝜃#
*+!

ℎ 𝑋!, 𝑋", … , 𝑋# (independence)

= arg max
'

𝑔 𝜃 2 𝑓 𝑋*| 𝜃
#

*+!

(1/ℎ 𝑋$, 𝑋%, … , 𝑋" is a positive constant w.r.t. 𝜃)

= arg max
'

log 𝑔 𝜃 + 6 log 𝑓 𝑋*| 𝜃
#

*+!

𝑓 𝑋$, 𝑋%, … , 𝑋"|𝜃 = " 𝑓 𝑋!| 𝜃
"

!#$

𝜃$() maximizes 
log prior + log-likelihood
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𝜃!"#: Interpretation 2
• Observe data: 𝑋!, 𝑋", … , 𝑋#, all i.i.d. 
• Let likelihood be same as MLE:
• Let the prior distribution of 𝜃 be 𝑔 𝜃 .

9

𝜃$() = arg max
'

𝑓 𝜃|𝑋!, 𝑋", … , 𝑋# = arg max
'

𝑓 𝑋!, 𝑋", … , 𝑋#|𝜃 𝑔 𝜃
ℎ 𝑋!, 𝑋", … , 𝑋#

(Bayes’ Theorem)

= arg max
'

𝑔 𝜃 ∏ 𝑓 𝑋*| 𝜃#
*+!

ℎ 𝑋!, 𝑋", … , 𝑋# (independence)

= arg max
'

𝑔 𝜃 2 𝑓 𝑋*| 𝜃
#

*+!

(1/ℎ 𝑋$, 𝑋%, … , 𝑋" is a positive constant w.r.t. 𝜃)

= arg max
'

log 𝑔 𝜃 + 6 log 𝑓 𝑋*| 𝜃
#

*+!

𝑓 𝑋$, 𝑋%, … , 𝑋"|𝜃 = " 𝑓 𝑋!| 𝜃
"

!#$

The mode of the
posterior distribution of 𝜃

𝜃$() maximizes 
log prior + log-likelihood
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Mode: A statistic of a random variable
The mode of a random variable 𝑋 is defined as:

• Intuitively: The value of 𝑋 that is “most likely.”
• Note that some distributions may not have a unique mode

(e.g., Uniform distribution, or Bernoulli(0.5))

10

arg max
4

𝑝 𝑥 arg max
4

𝑓 𝑥(𝑋 discrete, 
PMF 𝑝 𝑥 )

(𝑋 continuous, 
PDF 𝑓 𝑥 )

𝜃$() is the most likely 𝜃
given the data 𝑋!, 𝑋", … , 𝑋#.

𝜃*+, = arg max
-

𝑓 𝜃|𝑋', 𝑋(, … , 𝑋)



Bernoulli MAP: 
Choosing a 
prior

11

22b_bernoulli_any_prior
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How does MAP work? (for Bernoulli)

12

Choose model Bernoulli 𝑝
Observe data

Choose prior on 𝜃

Find  𝜃$() =
arg max

'
 𝑓 𝜃|𝑋!, 𝑋", … , 𝑋#

𝑛 heads, 𝑚 tails

(some 𝑔 𝜃 )

A lot of our effort in 
MAP depends on the 
𝑔 𝜃 we choose.

maximize
log prior + log-likelihood

log 𝑔 𝜃 + 6 log 𝑓 𝑋*|𝜃
#

*+!
• Differentiate, set to 0
• Solve
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MAP for Bernoulli
• Flip a coin 8 times. Observe 𝑛 = 7 heads and 𝑚 = 1 tail.
• Choose a prior on 𝜃. What is 𝜃$()?

Suppose we pick a prior 𝜃~𝒩 0.5, 1( . 𝑔 𝜃 = !
", 𝑒- .-/.1 !/" 

13

1. Determine log 
prior + log 
likelihood

2. Differentiate
w.r.t. (each) 𝜃, 
set to 0

3. Solve resulting
equations

We should choose an ”easier” 
prior. This one is hard!

log 𝑔 𝜃 + log 𝑓 𝑋!, 𝑋", … , 𝑋#|𝜃

= log
1
2𝜋

𝑒- .-/.1 !/" + log 𝑛 + 𝑚
𝑛 𝑝# 1 − 𝑝 3

= − log 2𝜋 − 𝑝 − 0.5 %/2 + log 𝑛 + 𝑚
𝑛 + 𝑛 log 𝑝 + 𝑚 log 1 − 𝑝

− 𝑝 − 0.5 +
𝑛
𝑝 −

𝑚
1 − 𝑝 = 0

cubic equations why



Lisa Yan, CS109, 2020

A better approach: Use conjugate distributions

14

Choose model Bernoulli 𝑝
Observe data

Choose prior on 𝜃

Find  𝜃$() =
arg max

'
 𝑓 𝜃|𝑋!, 𝑋", … , 𝑋#

𝑛 heads, 𝑚 tails

(some 𝑔 𝜃 ) (choose conjugate
distribution)

⭐
maximize

log prior + log-likelihood
Up next: Conjugate 

priors are great
for MAP!

log 𝑔 𝜃 + 6 log 𝑓 𝑋*|𝜃
#

*+!
• Differentiate, set to 0
• Solve



Bernoulli MAP: 
Conjugate prior

15

22c_bernoulli_conjugate
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Beta is a conjugate distribution for Bernoulli
Beta is a conjugate distribution for Bernoulli, meaning:
• Prior and posterior parametric forms are the same
• Practically, conjugate means easy update:

Add numbers of “successes” and “failures” seen to Beta parameters.
• You can set the prior to reflect how fair/biased you think the experiment is apriori.

Mode of Beta(𝑎, 𝑏): 

16

Prior

Posterior

Experiment Observe 𝑛 successes and 𝑚 failures

Beta(𝑎 = 𝑛*345 + 1, 𝑏 = 𝑚*345 + 1)

Beta 𝑎 = 𝑛*345 + 𝑛 + 1, 𝑏 = 𝑚*345 + 𝑚 + 1  

𝑎 − 1
𝑎 + 𝑏 − 2

(we’ll prove this in a few minutes)

Review

Beta parameters 𝑎, 𝑏 are called hyperparameters. 
Interpret Beta(𝑎, 𝑏):  𝑎 + 𝑏 − 2 trials,

of which 𝑎 − 1 are successes
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How does MAP work? (for Bernoulli)

17

Choose model Bernoulli 𝑝
Observe data

Choose prior on 𝜃

Find  𝜃$() =
arg max

'
 𝑓 𝜃|𝑋!, 𝑋", … , 𝑋#

𝑛 heads, 𝑚 tails

(some 𝑔 𝜃 ) (choose conjugate
distribution)

⭐

maximize
log prior + log-likelihood

log 𝑔 𝜃 + 6 log 𝑓 𝑋*|𝜃
#

*+!
• Differentiate, set to 0
• Solve

Mode of posterior 
distribution of 𝜃

(posterior is also
conjugate)
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Conjugate strategy: MAP for Bernoulli
• Flip a coin 8 times. Observe 𝑛 = 7 heads and 𝑚 = 1 tail.
• Choose a prior on 𝜃. What is 𝜃$()?

18

1. Choose a prior

2. Determine posterior

3. Compute MAP

Suppose we pick a prior 𝜃~Beta 𝑎, 𝑏 .

Because Beta is a conjugate distribution for Bernoulli,
the posterior distribution is 𝜃|𝐷~Beta 𝑎 + 𝑛, 𝑏 + 𝑚

Define as data, 𝐷

𝜃$() =
𝑎 + 𝑛 − 1

𝑎 + 𝑛 + 𝑏 + 𝑚 − 2
(mode of Beta 𝑎 + 𝑛, 𝑏 + 𝑚 )
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MAP in practice
• Flip a coin 8 times. Observe 𝑛 = 7 heads and 𝑚 = 1 tail.
• What is the MAP estimator of the Bernoulli parameter 𝑝,

if we assume a prior on 𝑝 of Beta 2, 2 ?

19

🤔
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MAP in practice
• Flip a coin 8 times. Observe 𝑛 = 7 heads and 𝑚 = 1 tail.
• What is the MAP estimator of the Bernoulli parameter 𝑝,

if we assume a prior on 𝑝 of Beta 2, 2 ?

20

1. Choose a prior

2. Determine posterior

3. Compute MAP

𝜃~Beta 2,2 .

Posterior distribution of 𝜃 given observed data is Beta 9, 3

𝜃$() =
8

10

Before flipping the coin, 
we imagined 2 trials:
1 imaginary head, 1 
imaginary tail. 

After the coin, we saw 10 trials: 
8 heads (imaginary and real),
2 tails (imaginary and real).
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Proving the mode of Beta

21

Choose model Bernoulli 𝑝
Observe data

Choose prior on 𝜃

Find  𝜃$() =
arg max

'
 𝑓 𝜃|𝑋!, 𝑋", … , 𝑋#

𝑛 heads, 𝑚 tails

(some 𝑔 𝜃 ) (choose conjugate)
Beta 𝑎, 𝑏

These are equivalent 
interpretations of 𝜃$().

We’ll use this equivalence 
to prove the mode of Beta.

Mode of posterior 
distribution of 𝜃

maximize
log prior + log-likelihood

log 𝑔 𝜃 + 6 log 𝑓 𝑋*|𝜃
#

*+!
• Differentiate, set to 0
• Solve

(posterior is also
conjugate)
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From first principles: MAP for Bernoulli, conjugate prior
• Flip a coin 8 times. Observe 𝑛 = 7 heads and 𝑚 = 1 tail.
• Choose a prior on 𝜃. What is 𝜃$()?

Suppose we pick a prior 𝜃~Beta 𝑎, 𝑏 . 𝑔 𝜃 = 𝑝 = !
6 𝑝4-! 1 − 𝑝 7-!

22

1. Determine log prior + log likelihood

2. Differentiate
w.r.t. (each) 𝜃, 
set to 0

3. Solve

log 𝑔 𝜃 + log 𝑓 𝑋!, 𝑋", … , 𝑋#|𝜃 = log
1
𝛽 𝑝4-! 1 − 𝑝 7-! + log 𝑛 + 𝑚

𝑛 𝑝# 1 − 𝑝 3

= log
1
𝛽 + 𝑎 − 1 log 𝑝 + 𝑏 − 1 log 1 − 𝑝 + log 𝑛 + 𝑚

𝑛 + 𝑛 log 𝑝 + 𝑚 log 1 − 𝑝

𝑎 − 1
𝑝 +

𝑛
𝑝 −

𝑏 − 1
1 − 𝑝 −

𝑚
1 − 𝑝 = 0

(next slide)

normalizing 
constant, 𝛽
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From first principles: MAP for Bernoulli, conjugate prior
• Flip a coin 8 times. Observe 𝑛 = 7 heads and 𝑚 = 1 tail.
• Choose a prior 𝜃. What is 𝜃$()?

Suppose we pick a prior 𝜃~Beta 𝑎, 𝑏 . 𝑔 𝜃 = !
6 𝑝4-! 1 − 𝑝 7-!

23

3. Solve for 𝑝

normalizing 
constant, 𝛽

𝑎 − 1
𝑝 +

𝑛
𝑝 −

𝑏 − 1
1 − 𝑝 −

𝑚
1 − 𝑝 = 0

𝜃$() =
𝑎 + 𝑛 − 1

𝑎 + 𝑛 + 𝑏 + 𝑚 − 2
The mode of the posterior,
Beta 𝑎 + 𝑛, 𝑏 + 𝑚 !

If we choose a conjugate prior, we avoid calculus 
with MAP: just report mode of posterior.

✅

(from previous slide)

𝑎 + 𝑛 − 1
𝑝 −

𝑏 + 𝑚 − 1
1 − 𝑝 = 0⟹
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How does MAP work?

25

Choose model with parameter 𝜃
Observe data

Choose prior on 𝜃

Find  𝜃$() = arg max
'

 𝑓 𝜃|𝑋!, 𝑋", … , 𝑋#
Mode of posterior 
distribution of 𝜃

maximize
log prior + log-likelihood

Review

or

If we choose a conjugate prior, we avoid calculus 
with MAP: just report mode of posterior.

= arg max
'

log 𝑔 𝜃 + 6 log 𝑓 𝑋*| 𝜃
#

*+!

Two valid interpretations of 𝜃$()



Conjugate 
distributions

26

LIVE
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Quick MAP for Bernoulli and Binomial
Beta 𝑎, 𝑏 is a conjugate prior for the
probability of success in the
Bernoulli and Binomial distributions.

Prior Beta 𝑎, 𝑏
Saw 𝑎 + 𝑏 − 2 imaginary trials: 𝑎 − 1 successes, 𝑏 − 1 failures

Experiment Observe 𝑛 + 𝑚 new trials: 𝑛 successes, 𝑚 failures

Posterior Beta 𝑎 + 𝑛, 𝑏 + 𝑚

27

MAP: 𝑝 =
𝑎 + 𝑛 − 1

𝑎 + 𝑏 + 𝑛 + 𝑚 − 2

𝑓 𝑎 =
1

𝐵 𝑎, 𝑏 𝑥4-! 1 − 𝑥 7-!

Review
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Conjugate distributions
MAP
estimator:

28

𝜃*+, = arg max
-

𝑓 𝜃|𝑋', 𝑋(, … , 𝑋)
The mode of the
posterior distribution of 𝜃

Distribution parameter Conjugate distribution
Bernoulli 𝑝 Beta
Binomial 𝑝 Beta
Multinomial 𝑝! Dirichlet
Poisson 𝜆 Gamma
Exponential 𝜆 Gamma
Normal 𝜇 Normal
Normal 𝜎% Inverse Gamma

CS109: We’ll only focus on MAP for 
Bernoulli/Binomial 𝑝, Multinomial 𝑝*, and Poisson 𝜆.
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Multinomial is Multiple times the fun
Dirichlet 𝑎', 𝑎(, … , 𝑎J is a conjugate for Multinomial.
• Generalizes Beta in the

same way Multinomial
generalizes Bernoulli/Binomial:

Prior Dirichlet 𝑎', 𝑎(, … , 𝑎J
Saw ∑ 𝑎K

J
KL' − 𝑚 imaginary trials, with 𝑎K − 1 of outcome 𝑖

Experiment Observe 𝑛' + 𝑛( + ⋯ + 𝑛J new trials, with 𝑛K of outcome 𝑖

Posterior Dirichlet 𝑎' + 𝑛', 𝑎( + 𝑛(, … , 𝑎J + 𝑛J

29

MAP: 𝑝* =
𝑎* + 𝑛* − 1

∑ 𝑎*3
*+! + ∑ 𝑛*3

*+! − 𝑚

𝑓 𝑥!, 𝑥", … , 𝑥3 =
1

𝐵 𝑎!, 𝑎", … , 𝑎3
2 𝑥*

4"-!
3

*+!
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Good times with Gamma
Gamma 𝛼, 𝛽 is a conjugate for Poisson.
• Also conjugate for Exponential,

but we won’t delve into that
• Mode of gamma: 𝛼 − 1 /𝛽

Prior 𝜃~Gamma 𝛼, 𝛽
Saw 𝛼 − 1 total imaginary events during 𝛽 prior time periods

Experiment Observe 𝑛 events during next 𝑘 time periods

Posterior 𝜃|𝑛 events in 𝑘 periods ~Gamma 𝛼 + 𝑛, 𝛽 + 𝑘

30

𝜃$() =
𝑎 + 𝑛 − 1

𝛽 + 𝑘
MAP:
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MAP for Poisson
Let 𝜆 be the average # of successes in a time period.

1. What does it mean to have
a prior of 𝜃~Gamma 11,5 ?

Now perform the experiment and see 11 events in next 2 time periods.
2. Given your prior, what is the

posterior distribution?

3. What is 𝜃*+,?

31

Gamma 𝛼, 𝛽
is conjugate for Poisson

Observe 10 imaginary events
in 5 time periods,
i.e., observe at Poisson rate = 2

🤔

Mode: &'$(
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MAP for Poisson
Let 𝜆 be the average # of successes in a time period.

1. What does it mean to have
a prior of 𝜃~Gamma 11,5 ?

Now perform the experiment and see 11 events in next 2 time periods.
2. Given your prior, what is the

posterior distribution?

3. What is 𝜃*+,?

32

Gamma 𝛼, 𝛽
is conjugate for Poisson

Mode: &'$(

Observe 10 imaginary events
in 5 time periods,
i.e., observe at Poisson rate = 2

𝜃|𝑛 events in 𝑘 periods ~Gamma 22, 7  

𝜃$() = 3, the updated Poisson rate



Interlude for 
jokes/announcements

33



34

https://xkcd.com/1725/
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Announcements

35

Problem Set 6 Extension!

New deadline: Thur, 8/13, 1pm

Note: You don’t have to wait for the final live lecture to finish p-set 6. All relevant 
material is covered by prior lectures and the recorded videos. 
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Interesting probability news

36

What Role Should 
Employers Play in 
Testing Workers?

https://www.nytimes.com/2020/05/22/business/employers-
coronavirus-testing.html

One nascent strategy circulating 
among public health experts is running 
“pooled” coronavirus tests, in which a 
workplace could combine multiple 
saliva or nasal swabs into one larger 
sample representing dozens of 
employees.



Choosing 
hyperparameters 
for conjugate 
prior

37

LIVE
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Where’d you get them priors?
• Let 𝜃 be the probability a coin turns up heads.
• Model 𝜃 with 2 different priors:
◦ Prior 1: Beta(3,8): 2 imaginary heads,

7 imaginary tails
◦ Prior 2: Beta(7,4): 6 imaginary heads,

3 imaginary tails

 Now flip 100 coins and get 58 heads and 42 tails.
1. What are the two posterior distributions?
2. What are the modes of the two posterior distributions?

38

mode: "9

mode: :9

prior

🤔
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Where’d you get them priors?
• Let 𝜃 be the probability a coin turns up heads.
• Model 𝜃 with 2 different priors:
◦ Prior 1: Beta(3,8): 2 imaginary heads,

7 imaginary tails
◦ Prior 2: Beta(7,4): 6 imaginary heads,

3 imaginary tails

 Now flip 100 coins and get 58 heads and 42 tails.

39

mode: "9

mode: :9

prior

posterior

Posterior 1: Beta(61,50) mode: :/!/9

mode: :;!/9Posterior 2: Beta(65,46)

As long as we collect enough data,
posteriors will converge to the true value.
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MAP with Laplace smoothing: a prior which represents 𝑘 imagined 
observations of each outcome.

• Categorical data (i.e., Multinomial, Bernoulli/Binomial)
• Also known as additive smoothing

Laplace estimate Imagine 𝑘 = 1 of each outcome
(follows from Laplace’s “law of succession”)

Example: Laplace estimate for coin probabilities from aforementioned
experiment (100 coins: 58 heads, 42 tails)

Laplace smoothing

40

59
102

43
102

heads tails
Laplace smoothing:
• Easy to implement/remember
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Consider our previous 6-sided die.
• Roll the dice 𝑛 = 12 times.
• Observe: 3 ones, 2 twos, 0 threes, 3 fours, 1 fives, 3 sixes

Recall 𝜃*OP :

What are your Laplace estimates for each roll outcome?

Back to our happy Laplace

41

𝑝! = 3/12, 𝑝" = 2/12, 𝑝< = 0/12, 
𝑝; = 3/12, 𝑝1 = 1/12, 𝑝: = 3/12

⚠

🤔
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Consider our previous 6-sided die.
• Roll the dice 𝑛 = 12 times.
• Observe: 3 ones, 2 twos, 0 threes, 3 fours, 1 fives, 3 sixes

Recall 𝜃*OP :

What are your Laplace estimates for each roll outcome?

Back to our happy Laplace

42

𝑝! = 3/12, 𝑝" = 2/12, 𝑝< = 0/12,
𝑝; = 3/12, 𝑝1 = 1/12, 𝑝: = 3/12

𝑝* =
𝑋* + 1
𝑛 + 𝑚

𝑝! = 4/18, 𝑝" = 3/18, 𝑝< = 1/18, 
𝑝; = 4/18, 𝑝1 = 2/18, 𝑝: = 4/18

⚠

✅ Laplace smoothing:
• Easy to implement/remember
• Avoids estimating a parameter of 𝟎



Bayesian 
Envelope Demo
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Two envelopes
Two envelopes: One contains $𝑋, the other contains $2𝑋.
• Select an envelope and open it.
• Before opening the envelope, think either equally good.
• Then you can choose to stay with your envelope or switch to the other one.

Is the following reasoning valid?
• Let 𝑌 = $ in envelope you selected.
• Let 𝑍 = $ in other envelope.

What really happened by
opening the envelope?

44

𝐸 𝑍|𝑌 =
1
2

⋅
𝑌
2

+
1
2

⋅ 2𝑌 =
5
4

𝑌
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Two envelopes
 Two envelopes: One contains $𝑋, the other contains $2𝑋.
• Select an envelope and open it.
• Before opening the envelope, think either equally good.

 Is the following reasoning valid?
• Let 𝑌 = $ in envelope you selected.
• Let 𝑍 = $ in other envelope.

 
 
 Follow-up: What happened by
opening the envelope?
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𝐸 𝑍|𝑌 =
1
2

⋅
𝑌
2

+
1
2

⋅ 2𝑌 =
5
4

𝑌

• Assumes all values of 𝑋 (where 0 < 𝑋 < ∞) 
equally likely

• Infinitely many values of 𝑋
• So not a true probability distribution over 𝑋

(does not integrate to 1)
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Are all values equally likely?

46
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Infinite 
powers of 
two…
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Two envelopes
Two envelopes: One contains $𝑋, the other contains $2𝑋.
• Select an envelope and open it.
• Before opening the envelope, think either equally good.

Is the following reasoning valid?
• Let 𝑌 = $ in envelope you selected.
• Let 𝑍 = $ in other envelope.

What really happened by
opening the envelope?
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𝐸 𝑍|𝑌 =
1
2

⋅
𝑌
2

+
1
2

⋅ 2𝑌 =
5
4

𝑌

• Assumes all values of 𝑋 (where 0 < 𝑋 < ∞) 
equally likely

• Infinitely many values of 𝑋
• So not a true probability distribution over 𝑋

(does not integrate to 1)
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Two envelopes: The subjectivity of probability
 Your belief about the content of envelopes:
• Since implied distribution over 𝑋 is not a true probability distribution, 

what is our distribution over 𝑋?

48

Frequentist

Play game infinitely many times, 
see how often different values 
come up 
Problem: you can only play game 
once

 Bayesian

 Have prior belief of distribution of 𝑋
• Prior belief is a subjective 

probability (as are all probabilities)
• Can answer questions when 

no/limited data
• As we get more data, prior belief 

“swamped” by data
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Two envelopes: The subjectivity of probability

49

0 10 20 10060 8040

𝑃
𝑋

𝑋



Lisa Yan, CS109, 2020

The envelope, please
Bayesian: Have a prior distribution over 𝑋, 𝑃 𝑋
• Let 𝑌 = $ in envelope you selected. Open envelope to determine 𝑌.
• Let 𝑍 = $ in other envelope.

If 𝑌 > 𝐸 𝑍|𝑌 , keep your envelope, otherwise switch. No inconsistency!!
• Opening envelope provides data to compute 𝑃 𝑋|𝑌
• …which allows you to compute 𝐸 𝑍|𝑌

Of course, need to think about your
prior distribution over 𝑋…

Imagine if envelope you opened contained $20.01. Should you switch?

50

Bayesian probability: It doesn’t matter 
how you determine your prior, but you 
must have one (whatever it is)
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How much is a half cent?
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Have a wonderful Wednesday!
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