Based on the work of Gili Rusak and Alex Tsun

1 Lecture 11, 4-29-20: Joint Distributions

- 1. Given a Normal RV $X \sim N(\mu, \sigma^2)$, how can we compute $P(X \le x)$ from the standard Normal distribution Z with CDF ϕ ?
- 2. What is a continuity correction and when should we use it?
- 3. If we have a joint PMF for discrete random variables $p_{X,Y}(x, y)$, how can we compute the marginal PMF $p_X(x)$?
 - 1. First, we write $\phi((x \mu)/\sigma)$. We then look up the value we've computed in the Standard Normal Table.
 - 2. Continuity correction is used when a Normal distribution is used to approximate a Binomial. Since a Normal is continuous and Binomial is discrete, we have to use a continuity correction to discretize the Normal. The continuity correction makes it so that the normal variable is evaluated from + or 0.5 increments from the desired k value.
 - 3. The marginal distribution is $p_X(x) = \sum_y p_{X,Y}(x, y)$

2 Lecture 12, 5-1-20: Independent Random Variables

- 1. What distribution does the sum of two independent binomial RVs X + Y have, where $X \sim Bin(n_1, p)$ and $Y \sim Bin(n_2, p)$? Include the parameter(s) in your answer. Why is this the case?
- 2. What distribution does the is of two independent Poisson RVs X + Y have, where $X \sim Poi(\lambda_1)$ and $Y \sim Poi(\lambda_2)$? Include the parameter(s) in your answer.
- 3. If Cov(X, Y) = 0, are X and Y independent? Why or why not?
 - 1. Binomial; $X + Y \sim Bin(n_1 + n_2, p)$
 - 2. Poisson; $X + Y \sim \text{Poi}(\lambda_1 + \lambda_2)$
 - 3. Not necessarily. Suppose there are three outcomes for X: let X take on values in $\{-1, 0, 1\}$ with equal probability 1/3. Let $Y = X^2$. Then, $E[XY] = E[X^3] = E[X] = 0$ (since $X^3 = X$) and E[X] = 0, so Cov(X, Y) = E[XY] E[X]E[Y] = 0 0 = 0 but X and Y are dependent since $P(Y = 1) = 2/3 \neq 1 = P(Y = 1|X = 1)$.

3 Lecture 13, 5-13-20: Joint Random Variables Statistics

1. True or False? The symbol Cov is covariance, and the symbol ρ is Pearson correlation.

$X \perp Y \implies Cov(X,Y) = 0$	Var(X + X) = 2Var(X)
$Cov(X,Y) = 0 \implies X \perp Y$	$X \sim \mathcal{N}(0,1) \wedge Y \sim \mathcal{N}(0,1) \implies \rho(X,Y) = 1$
$Y = X^2 \implies \rho(X, Y) = 1$	$Y = 3X \implies \rho(X, Y) = 3$

1. True or False?

True	False $(= 4Var(X))$
False (antecedent necessary, not sufficient)	False (don't know how independent X & Y are)
False $(Y = X \implies)$	False (= 1)