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Section #7 Solutions
Based on the work of many CS109 staffs

The Honor Code
We have decided that automated tools should be used to identify if two submissions are suspiciously
similar. (N.B. these tools are never used as a basis for community standards cases — those always
require professional human opinion.) However, automated tools are never perfect. As active CS109
students we would like to explore the chance of a false positive in automated tools. For this task,
we will consider Breakout, a CS106A assignment where students implement Breakout.

1. Beta Sum
What is the distribution of the sum of 100 IID Betas? Let 𝑋 be the sum

𝑋 =
100∑
𝑖=1

𝑋𝑖 where each 𝑋𝑖 ∼ Beta(𝑎 = 3, 𝑏 = 4)

Note the variance of a Beta:

Var(𝑋𝑖) =
𝑎𝑏

(𝑎 + 𝑏)2(𝑎 + 𝑏 + 1)
where 𝑋𝑖 ∼ Beta(𝑎, 𝑏)

By the Central Limit Theorem, the sum of equally weighted IID random variables will
be Normally distributed. We calculate the expectation and variance of 𝑋𝑖 using the beta
formulas:

𝐸 (𝑋𝑖) =
𝑎

𝑎 + 𝑏
Expectation of a Beta

=
3
7
≈ 0.43

Var(𝑋𝑖) =
𝑎𝑏

(𝑎 + 𝑏)2(𝑎 + 𝑏 + 1)
Variance of a Beta

=
3 · 4

(3 + 4)2(3 + 4 + 1)

=
12

49 · 8
≈ 0.03

𝑋 ∼ 𝑁 (𝜇 = 𝑛 · 𝐸 [𝑋𝑖], 𝜎2 = 𝑛 · Var(𝑋𝑖))
∼ 𝑁 (𝜇 = 43, 𝜎2 = 3)
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2. Single Match
Say there are 1000 decision points when writing Breakout. Assume: Each decision point is
binary. Each student makes all 1000 decisions. For each decision there is a probability 𝑝 that
a student takes the more popular choice. What is the probability distribution for the number
of matching decisions (we are going to refer to this as the “score”)? If possible, could you
approximate this probability?

Let 𝐴𝑖 be the event that decision point 𝑖 is matched. We note that a match occurs when
both students make the more popular choice or when both students make the less popular
choice. 𝑃(𝐴𝑖) = 𝑃(Both more popular) + 𝑃(Both less popular) = 𝑝2 + (1 − 𝑝)2.

Let 𝑀 be a random variable for the number of matches. It is easy to see that each of
the 1000 decisions is an independent Bernoulli experiment with probability of success
𝑝′ = 𝑝2 + (1 − 𝑝)2. Therefore 𝑀 ∼ 𝐵𝑖𝑛(1000, 𝑝′).

We can use a Normal distribution to approximate a binomial. We approximate 𝑀 ∼
𝐵𝑖𝑛(1000, 𝑝′) with Normal random variable 𝑌 ∼ 𝑁 (1000𝑝′, 1000𝑝′(1 − 𝑝′)).

3. Maximum Match
When we look at two assignments, the probability of a false match is exceedingly small. What
would the max similarity score look like when we compare one student to 5000 historical
breakout submissions? Let 𝑋𝑖 be the similarity score between a student who worked on
their own and student 𝑖. Let 𝑌 be the highest match score between the student and all other
submissions:

𝑌 = max
𝑖

𝑋𝑖

The Central Limit Theorem tells us about the distribution of the sum of IID random variables.
A more obscure theorem, the Fisher-Tippett-Gnedenko theorem, tells us about the max of
IID random variables. It says that the max of IID exponential or normal random variables
will be a “Gumbel” random variable.

𝑌 ∼ Gumbel(𝜇, 𝛽) The max of IID vars

𝑓 (𝑌 = 𝑘) = 1
𝛽
𝑒−(𝑧+𝑒

−𝑧) where 𝑧 =
𝑘 − 𝜇

𝛽
The Gumbel PDF

You are given data of 1300 students’ max scores from three quarters (we believe they all
worked independently): 𝑦 (1) . . . 𝑦 (1300) . Set up (but do not solve) simultaneous equations we
could solve to find the values of 𝜇 and 𝛽.
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For this problem, we use Maximum Likelihood Estimator (MLE) to estimate the param-
eters 𝜃 = (𝜇, 𝛽).

𝐿 (𝜃) =
𝑛∏
𝑖=1

𝑓 (𝑌 (𝑖) = 𝑦 (𝑖) | 𝜃)

𝐿𝐿 (𝜃) = log
𝑛∏
𝑖=1

𝑓 (𝑌 (𝑖) = 𝑦 (𝑖) | 𝜃)

=
𝑛∑
𝑖=1

log 𝑓 (𝑌 (𝑖) = 𝑦 (𝑖) | 𝜃)

=
𝑛∑
𝑖=1

log
1
𝛽
𝑒−(𝑧𝑖+𝑒

−𝑧𝑖 ) where 𝑧𝑖 =
𝑦 (𝑖) − 𝜇

𝛽

=
𝑛∑
𝑖=1

log
1
𝛽
+

𝑛∑
𝑖=1

−(𝑧𝑖 + 𝑒−𝑧𝑖 )

= −𝑛 log(𝛽) +
𝑛∑
𝑖=1

−(𝑧𝑖 + 𝑒−𝑧𝑖 )

Now we must choose the values of 𝜃 = (𝜇, 𝛽) that maximize our log-likelihood function.
First, we need to find the first derivative of the log-likelihood function with respect to our
parameters.

𝜕𝐿𝐿 (𝜃)
𝜕𝜇

=
𝜕

𝜕𝜇

[
− 𝑛 log(𝛽) +

𝑛∑
𝑖=1

−(𝑧𝑖 + 𝑒−𝑧𝑖 )
]

=
𝑛∑
𝑖=1

𝜕

𝜕𝜇

[
− (𝑧𝑖 + 𝑒−𝑧𝑖 )

]
=

𝑛∑
𝑖=1

𝜕

𝜕𝑧𝑖

[
− (𝑧𝑖 + 𝑒−𝑧𝑖 )

] 𝜕𝑧𝑖
𝜕𝜇

By the Chain Rule

=
𝑛∑
𝑖=1

[
− 1 + 𝑒−𝑧𝑖

] [
− 1

𝛽

]
=

1
𝛽

𝑛∑
𝑖=1

1 − 𝑒−𝑧𝑖
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𝜕𝐿𝐿 (𝜃)
𝜕𝛽

=
𝜕

𝜕𝛽

[
− 𝑛 log(𝛽) +

𝑛∑
𝑖=1

−(𝑧𝑖 + 𝑒−𝑧𝑖 )
]

= −𝑛

𝛽
+

𝑛∑
𝑖=1

𝜕

𝜕𝛽

[
− (𝑧𝑖 + 𝑒−𝑧𝑖 )

]
= −𝑛

𝛽
+

𝑛∑
𝑖=1

𝜕

𝜕𝑧𝑖

[
− (𝑧𝑖 + 𝑒−𝑧𝑖 )

] 𝜕𝑧𝑖
𝜕𝛽

By the Chain Rule

= −𝑛

𝛽
+

𝑛∑
𝑖=1

[
− 1 + 𝑒−𝑧𝑖

] [ 𝜇 − 𝑦 (𝑖)

𝛽2

]
Where the last term equals

𝜕𝑧𝑖
𝜕𝛽

We want to find a simultaneous solution for both, but this is algebraically not possible.
We will instead use an approximate method (gradient ascent) to solve for these, which
will be taught next week.


