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1 Lecture 22, 5-27-20: Maximum A Posteriori
1. Intuitively, what is MAP? What problem is it trying to solve? How does it differ from MLE?

2. Given a 6-sided die (possibly unfair), you roll the die 𝑁 times and observe the counts for each of the
6 outcomes as 𝑛1, ..., 𝑛6. What is the maximum a posteriori estimate of this distribution, using Laplace
smoothing? Recall that the die rolls themselves follow a multinomial distribution.

1. From the course notes: The paradigm of MAP is that we should choose the value for our parameters that
is the most likely given the data. At first blush this might seem the same as MLE; however, remember
that MLE chooses the value of parameters that makes the data most likely. One of the disadvantages
of MLE is that it best explains data we have seen and makes no attempt to generalize to unseen data. In
MAP, we incorporate prior belief about our parameters, and then we update our posterior belief of the
parameters based on the data we have seen.

2. Using a prior which represents one imagined observation of each outcome is called Laplace smoothing
and it guarantees that none of your probabilities are 0 or 1. The Laplace estimate for a Multinomial RV
is 𝑝𝑖 =

𝑛𝑖+1
𝑁+6 for 𝑖 = 1, ..., 6.

2 Lecture 23, 5-29-20: Naive Bayes
Recall the classification setting: we have data vectors of the form 𝑋 = (𝑋1, . . . , 𝑋𝑑) and we want to predict a label
𝑌 ∈ {0, 1}.

1. Recall in Naive Bayes, given a data point 𝑥, we compute 𝑃(𝑌 = 1|𝑋 = 𝑥) and predict 𝑌 = 1 provided this
quantity is ≥ 0.5, and otherwise we predict 𝑌 = 0. Decompose 𝑃(𝑌 = 1|𝑋 = 𝑥) into smaller terms, and state
where the Naive Bayes assumption is used.

2. Suppose we are given example vectors with labels provided. Give a formula to estimate (using maximum
likelihood) each quantity 𝑃(𝑋𝑖 = 𝑥𝑖 |𝑌 = 𝑦) above, for 𝑖 ∈ {1, . . . , 𝑑} and 𝑦 ∈ {0, 1}. You can assume there
is a function count which takes in any number of boolean conditions and returns a count over the data of
the number of examples in which they are true. For example, count(𝑋3 = 2, 𝑋5 = 7) returns the number of
examples where 𝑋3 = 2 and 𝑋5 = 7.

1.

𝑃(𝑌 = 1|𝑋 = 𝑥) = 𝑃(𝑌 = 1)𝑃(𝑋 = 𝑥 |𝑌 = 1)
𝑃(𝑌 = 1)𝑃(𝑋 = 𝑥 |𝑌 = 1) + 𝑃(𝑌 = 0)𝑃(𝑋 = 𝑥 |𝑌 = 0) (Bayes+LTP)

=
𝑃(𝑌 = 1)∏𝑑

𝑖=1 𝑃(𝑋𝑖 = 𝑥𝑖 |𝑌 = 1)
𝑃(𝑌 = 1)∏𝑑

𝑖=1 𝑃(𝑋𝑖 = 𝑥𝑖 |𝑌 = 1) + 𝑃(𝑌 = 0)∏𝑑
𝑖=1 𝑃(𝑋𝑖 = 𝑥𝑖 |𝑌 = 0)

(NB Assumption)

2. 𝑃(𝑋𝑖 = 𝑥𝑖 |𝑌 = 𝑦) = count(𝑋𝑖 = 𝑥𝑖, 𝑌 = 𝑦)
count(𝑌 = 𝑦)



3 Lecture 24, 6-1-20: Gradient Ascent and Linear Regression
Let 𝑓 : R𝑛 → R be a function which maps vectors 𝑥 ∈ R𝑛 to scalars 𝑓 (𝑥) ∈ R.

1. What is the gradient ascent update step, with learning rate 𝜂?

2. Intuitively, what problem is gradient ascent trying to solve numerically?

3. What are some tradeoffs between a high and low learning rate (𝜂)?

1. 𝑥 ← 𝑥 + 𝜂∇ 𝑓 (𝑥)

2. We are attempting to numerically find the value of 𝑥 that maximizes 𝑓 (𝑥) by incrementally taking small
steps in the direction of steepest ascent (according the the derivative).

3. A small learning rate might require more steps until convergence, while a large learning rate might
overshoot and miss the absolute maximum.

4 Lecture 25, 6-3-20: Logistic Regression
1. In general, how would we estimate the parameters for a model? For example, how would we estimate

𝜃0, 𝜃1, . . . , 𝜃𝑛 for logistic regression?

2. Given parameters 𝜃 and a new sample 𝑥, how do we predict 𝑦̂, i.e. the label for 𝑥? For now, assume that
we are using binary labels, though you will soon see that we can extend logistic regression to a multiclass
setting.

1. First, we would need to choose an objective function, like MLE, which is what we saw last week. Second,
we would need to calculate the gradient for each parameter. For logistic regression, this means that we
have to calculate the gradient with respect to 𝜃0, . . . , 𝜃𝑛. Generally speaking, as we saw last week, we
often calculate the log of our objective function. Finally, we optimize, either using the “traditional" way
(setting each gradient equal to zero, and finding a closed-form solution) or using gradient ascent.

2. For logistic regression, we let 𝑃(𝑌 = 1|𝑋 = 𝑥) = 𝜎(𝜃𝑇𝑥), where 𝜎 is the sigmoid function. If
𝑃(𝑌 = 1|𝑋 = 𝑥) > 𝑃(𝑌 = 0|𝑋 = 𝑥), then 𝑦̂ = 1. This is equivalent to checking if 𝑃(𝑌 = 1|𝑋 = 𝑥) > 0.5.
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