9.

a. Using Maximum Likelihood Estimators, we obtain the following parameters for the conditional distributions of X_{1}, X_{2}, and X_{3} :
$\mathrm{P}\left(\mathrm{X}_{1} \mid \mathrm{Y}=0\right) \sim \operatorname{Uni}(0.1,0.7)$
$\mathrm{P}\left(\mathrm{X}_{2} \mid \mathrm{Y}=0\right) \sim \operatorname{Uni}(0.4 .0 .8)$
$\mathrm{P}\left(\mathrm{X}_{3} \mid \mathrm{Y}=0\right) \sim \operatorname{Uni}(0.1,0.6)$
$\mathrm{P}\left(\mathrm{X}_{1} \mid \mathrm{Y}=1\right) \sim \operatorname{Uni}(0.5,0.9)$
$\mathrm{P}\left(\mathrm{X}_{2} \mid \mathrm{Y}=1\right) \sim \operatorname{Uni}(0.2,0.7)$
$\mathrm{P}\left(\mathrm{X}_{3} \mid \mathrm{Y}=1\right) \sim \operatorname{Uni}(0.4,0.8)$
b. We want to compute $\mathrm{P}(\mathrm{Y}=0 \mid$ test instance $i) / \mathrm{P}(\mathrm{Y}=1 \mid$ test instance $i)$, and if this is greater than 1, we predict $\mathrm{Y}=0$ and otherwise we predict $\mathrm{Y}=1$.

Note that: $\quad \mathrm{P}(\mathrm{Y}=0 \mid$ test instance $i) / \mathrm{P}(\mathrm{Y}=1 \mid$ test instance $i)$

$$
\begin{aligned}
& =\frac{P(Y=0, \mathbf{X})}{P(\mathbf{X})} / \frac{P(Y=1, \mathbf{X})}{P(\mathbf{X})}=\frac{P(Y=0, \mathbf{X})}{P(Y=1, \mathbf{X})} \\
& =\mathrm{P}(\mathbf{X} \mid \mathrm{Y}=0) \mathrm{P}(\mathrm{Y}=0) / \mathrm{P}(\mathbf{X} \mid \mathrm{Y}=1) \mathrm{P}(\mathrm{Y}=1)
\end{aligned}
$$

Using the Naive Bayes assumption, we have:
$\mathrm{P}(\mathbf{X} \mid \mathrm{Y}=0) \mathrm{P}(\mathrm{Y}=0) / \mathrm{P}(\mathbf{X} \mid \mathrm{Y}=1) \mathrm{P}(\mathrm{Y}=1)$
$=\mathrm{P}\left(\mathrm{X}_{1} \mid \mathrm{Y}=0\right) \mathrm{P}\left(\mathrm{X}_{2} \mid \mathrm{Y}=0\right) \mathrm{P}\left(\mathrm{X}_{3} \mid \mathrm{Y}=0\right) \mathrm{P}(\mathrm{Y}=0) / \mathrm{P}\left(\mathrm{X}_{1} \mid \mathrm{Y}=1\right) \mathrm{P}\left(\mathrm{X}_{2} \mid \mathrm{Y}=1\right) \mathrm{P}\left(\mathrm{X}_{3} \mid \mathrm{Y}=1\right) \mathrm{P}(\mathrm{Y}=1)$
Here are the predictions for Y we make for each of the test instances:
$\mathrm{P}(\mathrm{Y}=0 \mid$ test instance 1$) / \mathrm{P}(\mathrm{Y}=1 \mid$ test instance 1$)$
$=(1 / 0.6)(1 / 0.4)(1 / 0.5)(4 / 8) /(1 / 0.4)(1 / 0.5)(1 / 0.4)(4 / 8)=(5 / 3)(5 / 2)(2) /(5 / 2)(2)(5 / 2)=2 / 3$
Since this is <1, we classify test instance 1 as class $Y=1$
$\mathrm{P}(\mathrm{Y}=0 \mid$ test instance 2$) / \mathrm{P}(\mathrm{Y}=1 \mid$ test instance 2)

$$
=(1 / 0.6)(1 / 0.4)(0)(4 / 8) /(1 / 0.4)(1 / 0.5)(1 / 0.4)(4 / 8)=(0) /(5 / 2)(2)(5 / 2)=0
$$

Since this is <1, we classify test instance 2 as class $\mathbf{Y}=1$

$$
\begin{aligned}
\mathrm{P}(\mathrm{Y}= & 0 \mid \text { test instance } 3) / \mathrm{P}(\mathrm{Y}=1 \mid \text { test instance } 3) \\
& =(1 / 0.6)(1 / 0.4)(1 / 0.5)(4 / 8) /(1 / 0.4)(1 / 0.5)(0)(4 / 8)=(5 / 3)(5 / 2)(2) /(0)=\infty
\end{aligned}
$$

Since this is >1, we classify test instance $\mathbf{3}$ as class $\mathbf{Y}=\mathbf{0}$

