Outline

- Review
- Practice Problems!

Review Time!

- Random Variables
- Joint Distributions
- Joint RV Statistics
- Conditional Distribution
- General Inference
- Practice Problems!

Probability Distributions

Discrete CDF:

Binomial Distribution
$n=10, p=0.5$

Continuous

CDF:

Expectation \& Variance

Discrete definition

$$
E[X]=\sum_{x ; p(x)>0} p(x) \cdot x
$$

Continuous definition
Wait for it...

Expectation \& Variance

Discrete definition Continuous definition

$$
E[X]=\sum_{x: p(x)>0} p(x) \cdot x
$$

Properties of Expectation
$E[X+Y]=E[X]+E[Y]$
$E[a X+b]=a E[X]+b$
$E[g(X)]=\sum_{x} g(x) p(x)$

Wait for it. .
Properties of
Variance
$\operatorname{Var}(X)=E\left[(X-\mu)^{2}\right]$
$\operatorname{Var}(X)=E\left[X^{2}\right]-E[X]^{2}$
$\operatorname{Var}(a X+b)=a^{2} \operatorname{Var}(X)$

All our (discrete) friends

$\operatorname{Ber}(\mathrm{p})$	$\operatorname{Bin}(\mathrm{n}, \mathrm{p})$	Poi(()	Geo(p)	$\begin{gathered} \text { NegBin } \\ (r, p) \end{gathered}$
$\mathrm{P}(\mathrm{X})=\mathrm{p}$	(9) $)^{2(1-p)^{-x}}$	$\frac{\chi^{2} e^{2}-2}{k l}$	$(1-p)^{k-1} p$	
$E[X]=p$	$\mathrm{E}[\mathrm{X}]=\mathrm{np}$	$\mathrm{E}[\mathrm{X}]=\lambda$	$\mathrm{E}[\mathrm{X}]=$]
$\begin{aligned} & \operatorname{Var}(X)= \\ & p(1-p) \end{aligned}$	$\begin{aligned} & \operatorname{Var}(X)= \\ & n p(1-p) \end{aligned}$	$\operatorname{Var}(\mathrm{X})=\lambda$	$\frac{1-p}{p^{2}}$	$\frac{r(1-p)}{p^{2}}$
	$\begin{aligned} & \mathrm{n} \text { independent } \\ & \text { trials with prob p of } \end{aligned}$			

Probability Distributions

Discrete CDF:

Binomial Distribution
$n=10, p=0.5$

Continuous

CDF:

All our (continuous) friends

For continuous RVs, we need to calculate the PDF, instead of the PMF

PDF for RV X
$f(x) \geq 0$ such that $-\infty<x<\infty$

$$
P(a \leq x \leq b)=\int_{a}^{b} f(x) d x
$$

Expectation \& Variance

Discrete definition

$E[X]=\sum_{x: p(x)>0} p(x) \cdot x$

Continuous definition

$$
E[X]=\int_{a}^{b} x \cdot f(x) d x
$$

Expectation \& Variance

Discrete definition

$$
E[X]=\sum_{x ; p(x)>0} p(x) \cdot x
$$

Properties of Expectation
$E[X+Y]=E[X]+E[Y]$
$E[a X+b]=a E[X]+b$
$E[g(X)]=\sum_{x} g(x) p(x)$

Continuous definition

$$
E[X]=\int_{a}^{b} x \cdot f(x) d x
$$

Properties of
Variance
$\operatorname{Var}(X)=E\left[(X-\mu)^{2}\right]$
$\operatorname{Var}(X)=E\left[X^{2}\right]-E[X]^{2}$
$\operatorname{Var}(a X+b)=a^{2} \operatorname{Var}(X)$

All our (continuous) friends

Uni(α, β)	$\operatorname{Exp}(\lambda)$	$N\left(\mu, \sigma^{2}\right)$
$f(x)=\frac{1}{\beta-\alpha}$	$f(x)=\lambda e^{-\lambda x}$	$f(x)=\frac{1}{\sigma \sqrt{ } 2 \pi} e^{\frac{-(x-\mu)^{2}}{2 \sigma^{2}}}$
$P(a \leq X \leq b)=\frac{b-a}{\beta-\alpha}$	$F(x)=1-e^{-\lambda x}$	$F(x)=\phi\left(\frac{x-\mu}{\sigma}\right)$
$\mathrm{E}[X]=\frac{\alpha+\beta}{2}$	$E[X]=1 / \lambda$	$E[X]=\mu$
$\operatorname{Var}(x)=\frac{(\beta-\alpha)^{2}}{12}$	$\operatorname{Var}(x)=\frac{1}{\lambda^{2}}$	$\operatorname{Var}(x)=\sigma^{2}$
	Duration of time until success success	

Approximations

When can we approximate a binomial?

- Poisson
- $\mathrm{n}>\mathbf{2 0}$
- p is small
- $\lambda=n p$ is moderate
- $n>20$ and $p<0.05$
- $n>100$ and $p<0.1$
- Slight dependence ok
- Normal
- $\mathrm{n}>20$
- p is moderate
- $n p(1-p)>10$
- Independent trials

Continuity correction

Discrete

PMF:

Binomial Distribution
$n=10, p=0.5$

Continuous

PDF:

Joint Distributions - Discrete

$$
\begin{aligned}
& p_{x, y}(a, b)=P(X=a, Y=b) \\
& P_{x}(a)=\sum_{y} P_{x, y}(a, y)
\end{aligned}
$$

$$
F_{X, Y}(a, b)=\sum_{x \leq a} \sum_{y \leq b} p_{X, Y}(x, y)
$$

Multinomial RVs

Joint PMF

$$
P\left(X_{1}=c_{1}, X_{2}=c_{2}, \ldots, X_{m}=c_{m}\right)=\binom{n}{c_{1}, c_{2} \ldots, c_{m}} p_{1}^{c_{1}}, p_{2}^{c_{2}} \ldots p_{m}^{c_{m}}
$$

Where $\sum_{i=0}^{m} c_{i}=n$
Generalize to Binomial RVs

Independent Discrete RVs

Two discrete random variables X and Y are independent if for all x, y :

$$
P(X=x, Y=y)=P(X=x) P(Y=y)
$$

Sum of independent Binomials

$$
X+Y \sim \operatorname{Bin}\left(n_{1}+n_{2}, p\right)
$$

Sum of independent Poisson RVs

$$
X+Y \sim \operatorname{Poi}\left(\lambda_{1}+\lambda_{2}\right)
$$

Covariance

$$
\begin{aligned}
\operatorname{Cov}(X, Y) & =E[(X-E[X])(Y-E[Y])] \\
& =E[X Y]-E[X] E[Y]
\end{aligned}
$$

Covariance

$$
\begin{aligned}
\operatorname{Cov}(X, Y) & =E[(X-E[X])(Y-E[Y])] \\
& =E[X Y]-E[X] E[Y]
\end{aligned}
$$

How do you calculate variance of two RVs?

$$
\operatorname{Var}(X+Y)=\operatorname{Var}(X)+2 \cdot \operatorname{Cov}(X, Y)+\operatorname{Var}(Y)
$$

Covariance

$$
\operatorname{Var}(X+Y)=\operatorname{Var}(X)+2 \cdot \operatorname{Cov}(X, Y)+\operatorname{Var}(Y)
$$

When X and Y are independent

$$
\operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)
$$

Note when we only know $\operatorname{Cov}(\mathrm{X}, \mathrm{Y})=0$ we can't assume X and Y are independent

Correlation

Correlation of X and Y

$$
\rho(X, Y)=\frac{\operatorname{Cov}(X, Y)}{\sigma_{X} \sigma_{Y}}
$$

$$
\begin{aligned}
\sigma_{X}^{2} & =\operatorname{Var}(X), \\
\sigma_{Y}^{2} & =\operatorname{Var}(Y)
\end{aligned}
$$

Note: $-1 \leq \rho(X, Y) \leq 1$
Measures the linear relationship between X and Y

```
\rho(X,Y)=1 }\quad=>Y=aX+b,\mathrm{ where }a=\mp@subsup{\sigma}{Y}{}/\mp@subsup{\sigma}{X}{
\rho(X,Y)=-1 }\quad=>Y=aX+b,\mathrm{ where }a=-\mp@subsup{\sigma}{Y}{}/\mp@subsup{\sigma}{X}{
\rho(X,Y)=0 C "uncorrelated" (absence of linear relationship)
```


Conditional Distribution

Conditional PMF for discrete X given Y

$$
P(X=x \mid Y=y)=\frac{P(X=x, Y=y)}{P(Y=y)}
$$

Conditional Expectation

$$
E[X \mid Y=y]=\sum_{x} x P(X=x \mid Y=y)
$$

Conditional Distribution

Law of Total Expectation

$$
E[E[X \mid Y]]=\sum_{y} P(Y=y) E[X \mid Y=y]=E[X]
$$

If we only have a conditional PMF of X on some discrete variable Y, we can compute $E[X]$ as follows:

1. Compute expectation of X given some value of $Y=y$
2. Repeat step 1 for all values of Y
3. Compute a weighted sum (where weights are $P(Y=y)$)
```
def recurse():
    if (random.random() < 0.5):
            return 3
    else: return (2 + recurse())
```


Stay tuned!

General Inference

General Inference

General Inference

General Inference

General Inference

Bayesian Networks

Practice Time

- Quiz Logistics and Coverage
- Random Variables
- Joint Distributions
- Joint RV Statistics
- Conditional Distribution
- General Inference
- Practice Problems!

Practice Problems

- 500 year flood planes ("a previous exam" on website)
- The Huffmeister floodplane in Houston has historically been estimated to flood at an average rate of 1 flood for every 500 years.
- What is the probability of observing at least 3 floods in 500 years?
- What is the probability that a flood will occur within the next 100 years?
- What is the expected number of years until the next flood?

Practice Problems

- What is the probability of observing at least 3 floods in 500 years?
- Poisson with lambda $=1$ (flood per 500 years)
- $P(X>=3)=1-P(X<3)=1$ - (sum of $P(X=i)$ from 0 to 2)
- $1-5 / 2 \mathrm{e}$
- What is the probability that a flood will occur within the next 100 years?
- Exponential with lambda = 1/500
- $F(100)=1-e^{\wedge}(-0.2)$
- What is the expected number of years until the next flood?
- Expectation for an exponential RV is 1/lambda $=500$

Practice Problems

- Recursive Code Problem

Consider the following recursive function

```
int Near() {
    int b = randomInteger(1, 4); // equally likely to be 1, 2, 3 or 4
    if (b == 1) return 2;
    else if (b == 2) return 4;
    else if (b == 3) return (6 + Near());
    else return (8 + Near());
}
int Far() {
    int a = randomInteger(1, 3); // equally likely to be 1, 2 or 3
    if (a == 1) return 2;
    else if (a == 2) return (2 + Near());
    else return (4 + Far());
}
```

Let $\mathrm{Y}=$ the value returned by $\operatorname{Far}()$.
Let $X=$ value returned by Near ().

Practice Problems

What is $\mathrm{E}[\mathrm{Y}]$?

```
int Near() {
    int b = randomInteger(1, 4); // equally likely to be 1, 2, 3 or 4
    if (b == 1) return 2;
    else if (b == 2) return 4;
    else if (b == 3) return (6 + Near());
    else return (8 + Near());
}
int Far() {
    int a = randomInteger(1, 3); // equally likely to be 1, 2 or 3
    if (a == 1) return 2;
    else if (a == 2) return (2 + Near());
    else return (4 + Far());
}
```

Let $\mathrm{Y}=$ the value returned by $\operatorname{Far}()$.
Let $X=$ value returned by Near ().

Practice Problems

What is E[Y]? First notice Far() calculated based on Near()

```
int Near() {
    int b = randomInteger (1, 4); // equally likely to be 1, 2, 3 or 4
    if (b == 1) return 2;
    else if (b == 2) return 4;
    else if (b == 3) return (6 + Near());
    else return (8 + Near());
}
int Far() {
    int a = randomInteger(1, 3); // equally likely to be 1, 2 or 3
    if (a == 1) return 2;
    else if (a == 2) return (2 + Near());
    else return (4 + Far());
}
```

Let $\mathrm{Y}=$ the value returned by $\operatorname{Far}()$.
Let $X=$ value returned by Near ().

Practice Problems

Probability for Far() is based on Near(), so calculate E[X]

```
int Near() {
    int b = randomInteger (1, 4); // equally likely to be 1, 2, 3 or 4
    if (b == 1) return 2;
    else if (b == 2) return 4;
    else if (b == 3) return (6 + Near());
    else return (8 + Near());
}
```

$$
\begin{aligned}
\mathrm{E}[\mathrm{X}] & =1 / 4(2+4+\mathrm{E}[6+\mathrm{X}]+\mathrm{E}[8+\mathrm{X}]) \\
& =1 / 4(2+4+6+\mathrm{E}[\mathrm{X}]+8+\mathrm{E}[\mathrm{X}]) \\
& =1 / 4(20+2 \mathrm{E}[\mathrm{X}]) \\
& =5+1 / 2 \mathrm{E}[\mathrm{X}]
\end{aligned}
$$

So, $E[X]=10$

Practice Problems

Now we are ready to calculate E[Y]

```
int Far() {
    int a = randomInteger(1, 3); // equally likely to be 1, 2 or 3
    if (a == 1) return 2;
    else if (a == 2) return (2 + Near());
    else return (4 + Far());
```

$$
\begin{aligned}
& \mathrm{E}[\mathrm{Y}]=1 / 3(2+\mathrm{E}[2+\mathrm{X}]+\mathrm{E}[4+\mathrm{Y}]) \\
&=1 / 3(2+2+\mathrm{E}[\mathrm{X}]+4+\mathrm{E}[\mathrm{Y}]) \\
&=1 / 3(8+\mathrm{E}[\mathrm{X}]+\mathrm{E}[\mathrm{Y}]) \\
&=1 / 3(8+10+\mathrm{E}[\mathrm{l}) \\
&=18 / 3+1 / 3 \mathrm{E}[\mathrm{Y}] \\
& \text { So, } \mathrm{E}[\mathrm{Y}]=9
\end{aligned}
$$

Practice Problems

What is $\operatorname{Var}[\mathrm{Y}]$?

```
int Near() {
    int b = randomInteger(1, 4); // equally likely to be 1, 2, 3 or 4
    if (b == 1) return 2;
    else if (b == 2) return 4;
    else if (b == 3) return (6 + Near());
    else return (8 + Near());
}
int Far() {
    int a = randomInteger(1, 3); // equally likely to be 1, 2 or 3
    if (a == 1) return 2;
    else if (a == 2) return (2 + Near());
    else return (4 + Far());
}
```

Let $\mathrm{Y}=$ the value returned by $\operatorname{Far}()$.
Let $X=$ value returned by Near ().

Practice Problems

Calculate E[X^2]

```
int Near() {
    int b = randomInteger(1, 4); // equally likely to be 1, 2, 3 or 4
    if (b == 1) return 2;
    else if (b == 2) return 4;
    else if (b == 3) return (6 + Near());
    else return (8 + Near());
E[\mp@subsup{X}{}{\wedge}2]=1/4(2^2+4^2+E[(6 +X)^2 ] + E[(8+X)^2 ]
    =1/4(4+16 + 36 + 12E[X] + E[X^2 ] + 64 + 16E[X] + E[X^2 ])
    = 1/4(120 + 28E[X] + 2E[X^2 ])
    = 1/4(120 + 28(10) + 2E[X^2 ])
    =1/4(400 + 2E[X^2 ])
    = 100 + 1/2E[X^2 ]
```

So, $E\left[X^{\wedge} 2\right]=2(100)=200$

Practice Problems

Calculate E[Y^2]

```
int Far() {
    int a = randomInteger(1, 3); // equally likely to be 1, 2 or 3
    if (a == 1) return 2;
    else if (a == 2) return (2 + Near());
    else return (4 + Far());
```

$E\left[Y^{\wedge} 2\right]=1 / 3\left(2^{\wedge} 2+E\left[(2+X)^{\wedge} 2\right]+E\left[(4+Y)^{\wedge} 2\right]\right.$
$=1 / 3\left(4+4+4 E[X]+E\left[X^{\wedge} 2\right]+16+8 E[Y]+E\left[Y^{\wedge} 2\right]\right)$
$=1 / 3\left(24+40+E\left[X^{\wedge} 2\right]+8(9)+E\left[Y^{\wedge} 2\right]\right)$
$=1 / 3\left(136+200+E\left[Y^{\wedge} 2\right]\right)$
$=1 / 3\left(336+E\left[Y^{\wedge} 2\right]\right)$

So, $E\left[Y^{\wedge} 2\right]=336 / 2=168$

Practice Problems

Now that we have $E\left[X^{\wedge} 2\right]$ and $E\left[Y^{\wedge} 2\right]$, we are ready to calculate $\operatorname{Var}(\mathrm{Y})$
$\operatorname{Var}(\mathrm{Y})=\mathrm{E}\left[\mathrm{Y}^{\wedge} 2\right]-\mathrm{E}[\mathrm{Y}]^{\wedge} 2=168-(9)^{\wedge} 2=168-81=87$

Good Luck!!!

