Calculation Reference

1 Useful identities related to summations

Since it may have been a while since some folks have worked with summations, I just wanted to provide a reference on them that you may find useful in your future work. Here are some useful identities and rules related to working with summations. In the rules below, f and g are arbitrary real-valued functions.

Pulling a constant out of a summation:
$\sum_{n=s}^{t} C \cdot f(n)=C \cdot \sum_{n=s}^{t} f(n)$, where C is a constant.

Eliminating the summation by summing over the elements:
$\sum_{i=1}^{n} x=n x$
$\sum_{i=m}^{n} x=(n-m+1) x$
$\sum_{i=s}^{n} f(C)=(n-s+1) f(C)$, where C is a constant.

Combining related summations:
$\sum_{n=s}^{j} f(n)+\sum_{n=j+1}^{t} f(n)=\sum_{n=s}^{t} f(n)$
$\sum_{n=s}^{t} f(n)+\sum_{n=s}^{t} g(n)=\sum_{n=s}^{t}[f(n)+g(n)]$

Changing the bounds on the summation:
$\sum_{n=s}^{t} f(n)=\sum_{n=s+p}^{t+p} f(n-p)$
"Reversing" the order of the summation:
$\sum_{n=a}^{b} f(n)=\sum_{n=b}^{a} f(n)$
Arithmetic series:
$\sum_{i=0}^{n} i=\sum_{i=1}^{n} i=\frac{n(n+1)}{2} \quad$ (with a moment of silence for C. F. Gauss.)
$\sum_{i=m}^{n} i=\frac{(n-m+1)(n+m)}{2}$
Arithmetic series involving higher order polynomials:
$\sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6}=\frac{n^{3}}{3}+\frac{n^{2}}{2}+\frac{n}{6}$
$\sum_{i=1}^{n} i^{3}=\left(\frac{n(n+1)}{2}\right)^{2}=\frac{n^{4}}{4}+\frac{n^{3}}{2}+\frac{n^{2}}{4}=\left[\sum_{i=1}^{n} i\right]^{2}$

Geometric series:
$\sum_{i=0}^{n} x^{i}=\frac{1-x^{n+1}}{1-x}$
$\sum_{i=m}^{n} x^{i}=\frac{x^{n+1}-x^{m}}{x-1}$
$\sum_{i=0}^{\infty} x^{i}=\frac{1}{1-x}$ if $|x|<1$

More exotic geometric series:
$\sum_{i=0}^{n} i 2^{i}=2+2^{n+1}(n-1)$
$\sum_{i=0}^{n} \frac{i}{2^{i}}=\frac{2^{n+1}-n-2}{2^{n}}$
Taylor expansion of exponential function:
$e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\cdots$
Binomial coefficient:
$\sum_{i=0}^{n}\binom{n}{i}=2^{n}$
Much more information on binomial coefficients is available in the Ross textbook.

2 Growth rates of summations

Besides solving a summation explicitly, it is also worthwhile to know some general growth rates on sums, so you can (tightly) bound a sum if you are trying to prove something in the big-Oh/Theta world. If you're not familiar with big-Theta (Θ) notation, you can think of it like big-Oh notation, but it actually provides a "tight" bound. Namely, big-Theta means that the function grows no more quickly and no more slowly than the function specified, up to constant factors, so it's actually more informative than big-Oh.

Here are some useful bounds:
$\sum_{i=1}^{n} i^{c}=\Theta\left(n^{c+1}\right)$, for $c \geq 0$.
$\sum_{i=1}^{n} \frac{1}{i}=\Theta(\log n)$
$\sum_{i=1}^{n} c^{i}=\Theta\left(c^{n}\right)$, for $c \geq 2$.

3 A few identities related to products

Recall that the mathematical symbol Π represents a product of terms (analogous to Σ representing a sum of terms). Below, we give some useful identities related to products.

Definition of factorial:
$\prod_{i=1}^{n} i=n!$
Note that $0!=1$ by definition.

Stirling's approximation for n ! is given below. This approximation is useful when computing n ! for large values of n (particularly when $n>30$).
$n!\approx \sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n}$, or equivalently $n!\approx \sqrt{2 \pi} n\left(n+\frac{1}{2}\right) e^{-n}$

Eliminating the product by multiplying over the elements:
$\prod_{i=1}^{n} C=C^{n}$, where C is a constant.

Combining products:
$\prod_{i=1}^{n} f(i) \prod_{i=1}^{n} g(i)=\prod_{i=1}^{n} f(i) \cdot g(i)$

Turning products into summations (by taking logarithms, assuming $f(i)>0$ for all i):
$\log \left(\prod_{i=1}^{n} f(i)\right)=\sum_{i=1}^{n} \log f(i)$

4 Suggestions for computing permutations and combinations

For your problem set solutions it is fine for your answers to include factorials, exponentials, or combinations; you don't need to calculate those all out to get a single numeric answer. However, if you'd like to work with those in Python, R, or Microsoft Excel, here are a few functions you may find useful.

In Python:

```
math.factorial(n) computes n!
scipy.special.binom(n, m) computes (\begin{array}{l}{n}\\{m}\end{array})\quad(as a float)
math.exp(n) computes en
n ** m computes }\mp@subsup{n}{}{m
```

Names to the left of the dots (.) are modules that need to be imported before being used: import math, scipy.special.

In R:

factorial (n)	computes $n!$
choose(n, m)	computes $\binom{n}{m}$
$\exp (\mathrm{n})$	computes e^{n}
$\mathrm{n}^{\wedge} \mathrm{m}$	computes n^{m}

In Microsoft Excel:

$\operatorname{FACT}(\mathrm{n})$	computes $n!$
$\operatorname{COMBIN}(\mathrm{n}, \mathrm{m})$	$\binom{n}{m}$
$\operatorname{EXP}(\mathrm{n})$	computes e^{n}
$\operatorname{POWER}(\mathrm{n}, \mathrm{m})$	computes computes n^{m}

To use functions in Excel, you need to set a cell to equal a function value. For example, to compute $3!\cdot\binom{5}{2}$, you would put the following in a cell:
$=\operatorname{FACT}(3) * \operatorname{COMBIN}(5,2)$
Note the equals sign (=) at the beginning of the expression.

5 A little review of calculus

Since it may have been a while since you did calculus, here are a few rules that you might find useful.

Product Rule for derivatives:
$d(u \cdot v)=d u \cdot v+u \cdot d v$

Derivative of exponential function:
$\frac{d}{d x} e^{u}=e^{u} \frac{d u}{d x}$

Integral of exponential function:
$\int e^{u} d u=e^{u}$
Derivative of natural logarithm:
$\frac{d}{d x} \ln (x)=\frac{1}{x}$

Integral of $1 / \mathrm{x}$:
$\int \frac{1}{x} d x=\ln (x)$
Integration by parts (everyone's favorite!):

Choose a suitable u and $d v$ to decompose the integral of interest:

$$
\int u \cdot d v=u \cdot v-\int v \cdot d u
$$

Here's the underlying rule that integration by parts is derived from:

$$
\int d(u \cdot v)=u \cdot v=\int d u \cdot v+\int u \cdot d v
$$

6 Bibliography

Additional information on sums and products can generally be found in a good calculus or discrete mathematics book. The discussion of summations above is based on Wikipedia (http://en. wikipedia.org/wiki/Summation).

