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Notation
This section maps between math notation used in CS109 and English. Note: “or" is not notation.

0.1 Events

E or F Capital letters can denote events
A or B Sometimes they denote sets
|E | or |A| Size of an event or set
EC or AC Complement of an event or set
EF or AB Intersection of events or sets
E ∪ F or A ∪ B Union of events or sets
P(E) The probability of an event E
P(E |F) The conditional probability of an event E given F(
n
k

)
Binomial coefficient(

n
r1, r2, r3

)
Multinomial coefficient

0.2 Random Variables

x or y or i Lower case letters often denote regular variables
X or Y Capital letters are used to denote random variables
E[X] Expectation of X
Var(X) Variance of X
pX(x) Probability mass function (PMF) of X
pX,Y (x, y) Joint probability mass function (PMF) of X and Y
pX |Y (x |y) Conditional probability mass function (PMF) of X given Y
fX(x) Probability density function (PDF) of X
fX,Y (x, y) Joint probability density function (PDF) of X and Y
fX |Y (x |y) Conditional probability density function (PDF) of X given Y
FX(x) Cumulative distribution function (CDF) of X
FX,Y (x, y) Joint cumulative distribution function (CDF) of X and Y
FX |Y (x |y) Conditional cumulative distribution function (CDF) of X given Y
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X ∼ Ber(p) X is a Bernoulli random variable with parameter p
X ∼ Bin(n, p) X is a Binomial random variable with parameters n, p
X ∼ Poi(λ) X is a Poisson random variable with parameter λ
X ∼ Geo(p) X is a Geometric random variable with parameter p
X ∼ NegBin(r, p) X is a Negative Binomial random variable with parameters r, p
X ∼ HypGeo(n, N,m) X is a Hyper Geometric random variable with parameters n, N,m

X ∼ N(µ, σ2) X is a Gaussian random variable with mean µ and variance σ2

X ∼ Uni(a, b) X is a Uniform random variable with parameters a, b
X ∼ Exp(λ) X is a Exponential random variable with parameter λ
X ∼ Beta(a, b) X is a Beta random variable with parameters a, b
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1 Combinatorics
Refer to Lecture Notes 1 and 2 for a more complete summary of combinatorics. We’ve highlighted
the main rules here.

Inclusion-Exclusion Principle: If the outcome of an experiment can either be drawn
from set A or set B, and sets A and B may potentially overlap (i.e., it is not guaranteed that
A ∩ B = ∅), then the number of outcomes of the experiment is |A ∪ B | = |A| + |B | − |A ∩ B|.

General Principle of Counting: If an experiment has r parts such that part i has
ni outcomes for all i = 1, . . . , r , then the total number of outcomes for the experiment is∏r

i=1 ni = n1 × n2 × · · · × nr

Basic Pigeonhole Principle: For positive integers m and n, if m objects are placed in n buckets,
where m > n, then at least one bucket must contain at least two objects.

Permutations Consider the number of ways to order n objects.

n objects are distinct n(n − 1)(n − 2) · · · 1 = n! ways
(distinguishable)
n1 are indistinct (indistin-
guishable), n2 are indis-
tinct, . . . , and nr are indis-
tinct

n!
n1!n2! . . . nr!

ways

Combinations Consider the number of ways to select groups of objects from a
set of n distinguishable objects.

Select r objects
n!

r!(n − r)! =
(
n

r

)
ways

Select r groups of objects,
such that group i has size
ni, and

∑r
i=1 ni = n

n!
n1!n2! · · · nr!

=

(
n

n1, n2, . . . , nr

)
ways

Bucketing Consider the number of ways to place n objects into r containers.

r distinguishable objects nr ways
r indistinguishable objects (n + r − 1)!

n!(r − 1)! =
(
n + r − 1

n

)
=

(
n + r − 1

r − 1

)
ways
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2 Probability
2.1 Definitions, Axioms, and Corollaries
Frequentist definition of probability:

P(E) = lim
n→∞

n(E)
n

Axiom 1: 0 ≤ P(E) ≤ 1
Axiom 2: P(S) = 1
Axiom 3: If E and F are mutually exclusive (E ∩ F = ∅), then P(E)+ P(F) = P(E ∪ F)

Corollary 1: P(EC) = 1 − P(E) ( = P(S) − P(E))
Corollary 2: E ⊆ F, then P(E) ≤ P(F)
Corollary 3: P(E ∪ F) = P(E) + P(F) − P(EF) (Inclusion-Exclusion Principle)

General Inclusion-Exclusion Principle:

P

(
n∪

i=1
Ei

)
=

n∑
r=1

(−1)r+1
∑

i1<···<ir

P(Ei1 Ei2 ...Eir )

Define S as a sample space with equally likely outcomes. Then P(E) = |E |
|S | .

DeMorgan’s Laws applied to probability:

P((E ∪ F)C) = P(EC ∩ FC)
P((E ∩ F)C) = P(EC ∪ FC)

2.2 Conditional Probability

Def. conditional probability P(E | F) = P(EF)
P(F) =

P(E ∩ F)
P(F)

Chain rule P(EF) = P(E | F)P(F)
P(E1E2 . . . En) = P(E1)P(E2 | E1) . . . P(En | E1E2 . . . En−1)

Law of Total Probability P(F) = P(F | E)P(E) + P(F | EC)P(EC)
P(F) = ∑n

i=1 P(F | Ei)P(Ei)

Bayes’ Theorem P(E | F) = P(F | E)P(E)
P(F)

=
P(F | E)P(E)

P(F | E)P(E) + P(F | EC)P(EC)
=

P(F | E)P(E)∑
i P(F | Ei)P(Ei)
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Conditional paradigm: If we consistent conditionally on an event G, all of the laws of probability
still hold.

2.3 Independence
Independence: Two events E and F are independent if and only if P(EF) = P(E)P(F). It can be
shown that independence of E and F implies:

• P(E |F) = P(E) and P(F |E) = P(F)
• P(E |FC) = P(E) and P(F |EC) = P(F)

In general, n events E1, E2, . . . , En are independent if for every subset with r elements (where r ≤ n)
it holds that:

P(Ei1, Ei2, . . . , Eir ) = P(Ei1)P(Ei2) . . . P(Eir )

Two events E and F are conditionally independent given a third event G holds if P(EF |G) =
P(E |G)P(F |G).

3 Random Variables

Discrete Random Variables

Probability Mass Function (PMF) pX(x)
PMF must sum to 1

∑
x pX(x) = 1

Probability with the PMF P(X = x) = pX(x)
Cumulative Distribution Function (CDF) FX(a) =

∑
x≤a pX(x)

Continuous Random Variables

Probability Density Function (PDF) fX(x)
PDF must integrate to 1

∫ ∞
−∞ fX(x)dx = 1

Probability with the PDF P(a ≤ X ≤ b) =
∫ b

a fX(x)dx

Cumulative Distribution Function (CDF) FX(a) =
∫ a
−∞ fX(x)dx

We can compute the probability that the random variable X lies in an interval using the CDF, FX :
P(a < X ≤ b) = FX(b) − FX(a).
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3.1 Expectation and Variance
Other names for expectation: mean, average, first moment, expected value.

Definition: E[X] = ∑
x xpX(x) X discrete, PMF pX

E[X] =
∫ ∞
−∞ x fX(x)dx X continuous, PDF fX

Linearity of Expectation: E[aX + bY + c] = aE[X] + bE[Y ] + c
Law of the Unconscious Statistician (LOTUS):

E[g(X)] = ∑
x g(x)pX(x) X discrete, PMF pX

E[g(X)] =
∫ ∞
−∞ g(x) fX(x)dx X continuous, PDF fX

Linearity of expectation is often stated as: The expectation of a sum is equal to the sum of
expectations.

E

[
n∑

i=1
Xi

]
=

n∑
i=1

E[Xi]

Definition of variance: Var(X) = E[(X − E[X])2].

• Most often computed as Var(X) = E[X2] − (E[X])2.
• Note: Var(X) ≥ 0.
• Standard deviation is defined as SD(X) =

√
Var(X). Note: SD(X) ≥ 0.

3.2 Common Discrete Distributions
If a random variable follows a particular distribution we use the ∼ symbol to represent that the type
of the random variable and pass in the appropriate parameters. For example if X follows a Normal
distribution with mean 5 and variance 4 we write X ∼ N(5, 4).

All probability mass functions (PMFs) are 0 outside the support.

Bernoulli Random Variable. X ∼ Ber(p)
An indicator variable that takes on the value 1 (“success”) or 0. Often the variable is defined to
be 1 if an underlying event has occured, 0 otherwise.

PMF: pX(k) =
{

p if k = 1
1 − p if k = 0

Support: {0, 1}

E[X]: p Var(X): p(1 − p)
Parameter: p: The probability that X is 1

Note: Sometimes in Machine learning algorithms, a differentiable version of the PMF is used:
pk(1 − p)1−k . We will talk about this later.
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Binomial Random Variable. X ∼ Bin(n, p)
A variable that represents the number of successes in a fixed number of independent trials. The
probability of success must be the same for each trial.

PMF: pX(k) =
(n
k

)
pk(1 − p)n−k Support: {0, 1, 2, . . . , n}

E[X]: np Var(X): np(1 − p)
Parameters: n: the number of trials

p: the probability of success of each trial

Note: Bin(1, p) = Ber(p).

Poisson Random Variable. X ∼ Poi(λ)
The number of events occurring in a fixed interval of time or space if these events occur
independently with a constant average rate.

PMF: pX(k) =
λk e−λ

k!
, k ≥ 0 Support: {0, 1, 2, . . . }

E[X]: λ Var(X): λ

Parameter: λ: the average number of events per fixed interval.

Note: The Poisson RV is the number of events in an interval of time. The Exponential RV is a
continuous RV that models the time until the next event occurs. They have the same parameter,
λ.

Note 2: The Poisson can approximate the Binomial when λ is “moderate” (in this class, defined
as n > 20 and p < 0.05 or n > 100 and p < 0.1) when the trials are mildly dependent, or even
when the probability of success varies slightly between trials.

Geometric Random Variable. X ∼ Geo(p)
The number of independent Bernoulli trials until the first success. The probability of success
must be the same for each trial.

PMF: pX(k) = (1 − p)k−1p Support: {1, 2, . . . }

E[X]: 1
p

Var(X): 1 − p
p2

Parameter: p: the probability of success of each trial



– 8 –

Negative Binomial Random Variable. X ∼ NegBin(r, p)
The number of independent Bernoulli trials until the r-th success. The probability of success
must be the same for each trial.

PMF: pX(k) =
(k−1
r−1

)
(1 − p)k−r pr Support: {r, r + 1, . . . }

E[X]: r
p

Var(X): r(1 − p)
p2

Parameters: r: the total number of successes to obtain
p: the probability of success of each trial

Note: NegBin(1, p) = Geo(p).

3.3 Common Continuous Distributions
All probability density functions (PDFs) are 0 outside the support.

Uniform Random Variable. X ∼ Uni(a, b)

PDF: fX(x) =
1

b − a
Support: a ≤ x ≤ b

E[X]: a + b
2

Var(X): (b − a)2
12

Exponential Random Variable. X ∼ Exp(λ)
The waiting time until an event occurs when events occur independently with a constant average
rate.

PDF: fX(x) = λe−λx Support: x ≥ 0

E[X]: 1
λ

Var(X): 1
λ2

CDF: FX(x) = 1 − e−λx

Note: The Exponential RV models the time until the next event occurs. The Poisson RV is
a discrete RV that models the number of events in an interval of time. They have the same
parameter, λ.

Note: The Exponential RV is memoryless, in that the time you wait until the first success is
distributed as an Exponential RV, independent of the amount of time you have waited so far.



– 9 –

Normal (Gaussian) Random Variable. X ∼ N(µ, σ2)

PDF: fX(x) =
1
σ
√

2π
e
−
(x − µ)2

2σ2 Support: −∞ < x < ∞

E[X]: µ Var(X): σ2

Note: When µ = 0 and σ2 = 1 (“zero mean, unit variance”), X is called a Standard Normal
with CDF Φ.

Note 2: The Normal can approximate a Binomial with larger variance (in this class, defined as
np(1 − p) > 10. All trials must be independent. This approximation comes from the Central
Limit Theorem.

Let X ∼ N(µ, σ2) with CDF FX . The following properties hold:

Linearity: aX + b ∼ N(aµ + b, a2σ2)
Standard Normal: Z = X−µ

σ is the Standard Normal with CDF Φ.
Therefore FX(x) = Φ

( x−µ
σ

)
.

4 Joint Distributions

Jointly Discrete X,Y Jointly Continuous X,Y

Joint PMF pX,Y (x, y) = P(X = x,Y = y) −
Joint PDF − fX,Y (x, y)
Joint CDF FX,Y (x, y) = P(X ≤ x,Y ≤ y)
Marginal distributions pX(a) =

∑
y pX,Y (a, y) fX(a) =

∫ ∞
−∞ fX,Y (a, y)dy

pY (b) =
∑

x pX,Y (x, b) fY (b) =
∫ ∞
−∞ fX,Y (x, b)dx

Conditional distributions pX |Y (x |y) =
pX,Y (x, y)

pY (y)
fX |Y (x |y) =

fX,Y (x, y)
fY (y)

Independence pX,Y (x, y) = pX(x)pY (y) fX,Y (x, y) = fX(x) fY (y)
pX |Y (x |y) = pX(x) fX |Y (x |y) = fX(x)

Bayes’ Theorem pX |Y (x |y) =
pY |X(y |x)pX(x)

pY (y)
fX |Y (x |y) =

fY |X(y |x) fX(x)
fY (y)

We can compute the probability involving two jointly distributed random variables X and Y using
their joint CDF, FX,Y : P(a1 < X ≤ a2, b1 < Y ≤ b2) = FX,Y (a2, b2) − FX,Y (a1, b2) − FX,Y (a2, b1) +
FX,Y (a1, b1).
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In general, n random variables X1, X2, . . . , Xn are independent if for all x1, x2, . . . , xn:

P(X1 = x1, X2 = x2, . . . , Xn = xn) =
n∏

i=1
P(Xi = xi) (jointly discrete)

P(X1 ≤ x1, X2 = x2, . . . , Xn ≤n) =
n∏

i=1
P(Xi ≤ xi) (jointly continuous)

n variables X1, X2, . . . , Xn are independent and identically distributed (i.i.d.) random variables if
they are independent and have the same PMF (if discrete) or PDF (if continuous).

4.1 Independent Sums of Random Variables
If X and Y are independent, then

P(X + Y = n) =
∑

k

P(X = k)P(Y = n − k) (X,Y jointly discrete)

fX+Y (α) =
∫ ∞

−∞
fX(x) fY (α − x)dx (X,Y jointly continuous)

Common Sums of Independent Random Variables

Independent X , Y Distribution of X + Y

X ∼ Bin(n1, p), Y ∼ Bin(n2, p) Bin(n1 + n2, p)
X ∼ Poi(λ1), Y ∼ Poi(λ2) Poi(λ1 + λ2)

X ∼ Uni(0, 1), Y ∼ Uni(0, 1) fX+Y (α) =

α 0 ≤ α ≤ 1
2 − α 1 < α ≤ 2
0 otherwise

X ∼ N(µ1σ
2
1 ), Y ∼ N(µ2, σ

2
2 ) N(µ1 + µ2, σ

2
1 + σ

2
2 )

Independent X1, X2, . . . , Xn Distribution of
∑n

i=1 Xi

Xi ∼ Bin(ni, p) for i = 1, . . . , n Bin(∑n
i=1 ni, p)

Xi ∼ Poi(λi) for i = 1, . . . , n Poi(∑n
i=1 λi)

Xi ∼ N(µi, σ
2
i ) for i = 1, . . . , n N(∑n

i=1 µi,
∑n

i=1 σ
2
i )

4.2 Statistics of multiple RVs
Law of The Unconscious Statistician, extended to g(X,Y ), a function of two jointly distributed
random variables:

E[g(X,Y )] =
∑

x

∑
y

g(x, y)pX,Y (x, y) (X,Y jointly discrete)

E[g(X,Y )] =
∫ ∞

−∞

∫ ∞

−∞
g(x, y) fX,Y (x, y)dydx (X,Y jointly continuous)
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Conditional expectation of X given Y = y:

E[X |Y = y] =
∑

x

xP(X = x |Y = y) =
∑

x

xpX |Y (x |y) (X,Y jointly discrete)

E[X |Y = y] =
∫ ∞

−∞
x fX |Y (x |y)dx (X,Y jointly continuous)

Law of Total Expectation:

E[X] = E[E[X |Y ]]
=

∑
y

E[X |Y = y]P(Y = y) (Y discrete)

=

∫ ∞

−∞
E[X |Y = y] fY (y)dy (Y continuous, density fY (y))

Definition of covariance: Cov(X,Y ) = E[(X − E[X])(Y − E[Y ])].

• Most often computed as Cov(X) = E[XY ] − E[X]E[Y ].

• Correlation of X and Y : ρ(X,Y ) = Cov(X,Y )
SD(X)SD(Y )

• Relation to variance: Var(X) = Cov(X, X)
• Symmetry: Cov(X,Y ) = Cov(Y, X)
• Non-linear: Cov(aX + b,Y ) = aCov(X,Y )
• Covariance of sums: Cov(∑i Xi,

∑
j Yj) =

∑
i
∑

j Cov(Xi,Yj)

Variance of sums:
Var(X + Y ) = Var(X) + 2 · Cov(X,Y ) + Var(Y )

Independence of two random variables X and Y implies

• E[XY ] = E[X]E[Y ] (the converse is not necessarily true), and therefore
• Cov(X,Y ) = 0 and ρ(X,Y ) = 0, and furthermore
• Var(X + Y ) = Var(X) + Var(Y ).

4.3 Common joint distributions
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Multinomial Distribution

A distribution that models the counts of outcomes i = 1, 2, . . . ,m, respectively, in a fixed
number of independent trials, where each trial results in one of m outcomes.

Joint PMF: P(X1 = c1, X2 = c2, . . . , Xm = cm) =
( n
c1,c2,...,cm

)
pc1

1 pc2
2 · · · pcm

m

Support:
∑m

i=1 ci = n, where ci is a non-negative integer for i = 1, . . . ,m
Parameters: n: the total number of trials

p1, p2, . . . , pm: the probabilities of m outcomes, where pi is the probability
of outcome i and

∑m
i=1 pi = 1.

Bivariate Normal (Gaussian) Distribution. X = (X1, X2) ∼ N(µ,Σ)

Joint PDF:

fX1,X2(x1, x2) = 1
2πσ1σ2

√
1−ρ2

e
−

1
2(1 − ρ2)

©«
(x1 − µ1)2

σ2
1

−
2ρ(x1 − µ1)(x2 − µ2)

σ1σ2
+
(x2 − µ2)2

σ2
2

ª®¬
Support: −∞ < x < ∞
Parameters: µ = (µ1, µ2): mean vector

Σ =

[
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

]
: covariance matrix

Marginal distributions: X1 ∼ N(µ1, σ
2
1 ) X2 ∼ N(µ2, σ

2
2 )

Note: ρσ1σ2 = Cov(X1, X2) = Cov(X2, X1). When ρ = 0, X1 and X2 are independent.


