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Lisa Yan and Jerry Cain
CS109

Lecture Notes #6
September 25, 2020

Random Variables
Based on a chapter by Chris Piech and Lisa Yan

Pre-recorded lecture: Section 1 and Section 2 (definitions only).
In-lecture: Section 2: examples.
Covered later: Section 3 (as part of pre-lecture Lecture 7)
Other material: Section 4: Proofs.

A random variable (RV) is a variable that probabilistically takes on different values. You can think
of an RV as being like a variable in a programming language. They take on values, have types
and have domains over which they are applicable. We can define events that occur if the random
variable takes on values that satisfy a numerical test (e.g., does the variable equal 5? is the variable
less than 8?). We often need to know the probabilities of such events.

As an example, let’s say we flip three fair coins. We can define a random variable Y to be the total
number of “heads” on the three coins. We can ask about the probability of Y taking on different
values using the following notation:

• P(Y = 0) = 1/8 (T, T, T)

• P(Y = 1) = 3/8 (H, T, T), (T, H, T), (T, T, H)

• P(Y = 2) = 3/8 (H, H, T), (H, T, H), (T, H, H)

• P(Y = 3) = 1/8 (H, H, H)

• P(Y ≥ 4) = 0

Even though we use the same notation for random variables and for events (both use capital letters),
they are distinct concepts. An event is a situation, a random variable is an object. The situation in
which a random variable takes on a particular value (or range of values) is an event. When possible,
I will try to use letters E, F,G for events and X,Y, Z for random variables.

Using random variables is a convenient notation that assists in decomposing problems. There are
many different types of random variables (indicator, binary, choice, Bernoulli, etc). The two main
families of random variable types are discrete and continuous. For now we are going to develop
intuition around discrete random variables.
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1 Probability Mass Function
For a discrete random variable, the most important thing to know is the probability that the random
variable will take on each of its possible values. The probability mass function (PMF) of a random
variable is a function that maps possible outcomes of a random variable to the corresponding
probabilities. Because it is a function, we can plot PMF graphs where the x-axis contains the values
that the random variable can take on and the y-axis contains the probability of the random variable
taking on said value:
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Figure 1: On the left, the PMF of a single 6 sided die roll. On the right, the PMF of the sum of two
dice rolls.

There are many ways that probability mass functions can be specified. We can draw a graph. We
can build a table (or for you CS folks, a map/HashMap/dict) that lists out all the probabilities for
all possible events. Or we could write out a mathematical expression.

For example, consider the random variable Y which is the sum of two dice rolls. The probability
mass function can be defined by the graph on the right of Figure 1. It can also be defined using the
equation:

pY (y) =

y−1
36 if y ∈ Z , 2 ≤ y ≤ 7

13−y
36 if y ∈ Z , 8 ≤ y ≤ 12

0 else

The probability mass function, pY (y), defines the probability of Y taking on the value y. The new
notation pY (y) is simply different notation for writing P(Y = y). Using this new notation makes it
more apparent that we are specifying a function. Try a few values of y, and compare the value of
pY (y) to the graph in Figure 1. They should be the same.

Cumulative Distribution Function
The cumulative distribution function (CDF) of a random variable X is a function F specified as
F(a) = P(X ≤ a), the probability that X takes on a value less than or equal to some value a. For
discrete random variable X with PMF p(x):
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F(x) = P(X ≤ a) =
∑

allx≤a

p(x)

The CDF’s range is 0 to 1: For example, let X be the outcome of a 6-sided die roll. F(−2) = 0 (it
is impossible to roll less than or equal to -2), F(6) = 1 (it will always be the case that you will roll
less than or equal to 6), and F(100) = 1 (it will always be the case that you roll something less
than or equal to 100).The usefulness of cumulative distribution functions will come when we talk
about continuous random variables later this week. For now, just note that both CDFs and PMFs
represent probabilities!

2 Expectation
A useful piece of information about a random variable is the average value of the random variable
over many repetitions of the experiment it represents. This average is called the expectation.

The expectation of a discrete random variable X is defined as:

E[X] =
∑

x:P(x)>0
xP(x)

It goes by many other names: mean, expected value, weighted average, center of mass, 1st moment.

Example: Dice expectation
The random variable X represents the outcome of one roll of a six-sided die. What is the E[X]?
This is the same as asking for the average value of a die roll.

E[X] = 1(1/6) + 2(1/6) + 3(1/6) + 4(1/6) + 5(1/6) + 6(1/6) = 7/2

Example: Expected class size
A school has 3 classes with 5, 10, and 150 students. Each student is only in one of the three classes.
If we randomly choose a class with equal probability and let X = the size of the chosen class:

E[X] = 5(1/3) + 10(1/3) + 150(1/3)
= 165/3 = 55

However, if instead we randomly choose a student with equal probability and let Y = the size of the
class the student is in:

E[Y ] = 5(5/165) + 10(10/165) + 150(150/165)
= 22635/165 ≈ 137
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2.1 Properties of Expectation
Expectations preserve linearity. Mathematically, this means that

E[aX + bY + c] = aE[X] + bE[Y ] + c

There are two parts to this: First, linearly scaling a random variable will linearly scale expectation.
Second, expectation of a sum is the sum of expectations. So if you have an expectation of a sum
of quantities, this is equal to the sum of the expectations of those quantities. We will return to the
implications of this very useful fact later in the course.

One can also calculate the expected value of a function g(X) of a random variable X when one
knows the probability distribution of X but one does not explicitly know the distribution of g(X):

E[g(X)] =
∑

x

g(x) · pX(x)

This identity has the humorous name of “the Law of the Unconscious Statistician” (LOTUS), for
the fact that even statisticians are known—perhaps unfairly—to ignore the difference between this
identity and the basic definition of expectation (the basic definition doesn’t have a function g).

We can use this to compute, for example, the expectation of the square of a random variable (called
the second moment):

E[X2] = E[g(X)] where g(X) = X2

=
∑

x

g(x) · pX(x) by LOTUS

=
∑

x

x2 · pX(x) definition of g

Proofs of these properties are provided in the last section.

Example: Absolute Value
Let X be a discrete random variable where P(X = x) = 1

3 for x ∈ {−1, 0, 1}. Suppose we define
random variable Y = |X |. What is E[Y ]?

Solution 1: We compute E[Y ] by definition, which requires us to first determine the PMF of Y .
P(Y = 0) = 1

3 and P(Y = 1) = 2
3 , and thus E[Y ] = ∑

y yP(Y = y) = 1
3 · 0 + 2

3 · 1 = 2
3 .

Solution 2: We compute E[Y ] using LOTUS, by treating Y as a function of X and therefore
E[Y ] = ∑

x |x |P(X = x) = 1
3 · | − 1| + 1

3 · |0| + 1
3 · |1| = 2

3 .

Note that by using LOTUS, we do not have to explicitly compute a distribution (i.e., a PMF) on Y ;
we can simply use the known distribution of X . This property of expectation is especially useful
when we must compute the expectation of a complex function of X . See the St. Petersburg Paradox
example.
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Example: St. Petersburg Paradox
Consider a game played with a fair coin which comes up heads with p = 0.5. Let N = the number
of coin flips before the first “tails”. In this game you win $2N . How many dollars do you expect to
win? Let W be a random variable which represents your winnings.

Note that W = 2N and P(N = n) =
(

1
2

)n+1
. We do not explicitly compute the PMF of W .

Instead, using LOTUS,

E[W] = E[2N ] =
(
1
2

)1
20 +

(
1
2

)2
21 +

(
1
2

)3
22 +

(
1
2

)4
23 + · · · =

∞∑
i=0

(
1
2

) i+1
2i =

∞∑
i=0

1
2
= ∞

This example is nicknamed a paradox because consider the more realistic scenario, where the game
dealer has a maximum amount of money (say, $65,536), and you cannot win more than this amount.
If you are projected to win more, then the dealer goes home, you get kicked out of the hall, and
you win nothing. In this case, when N = 16, you win W = 216 = 65, 536, and if N ≥ 17 you win
nothing (W = 0). Using LOTUS, where k = log2(65, 536) = 16:

E[W] =
(
1
2

)1
20 +

(
1
2

)2
21 +

(
1
2

)3
22 + · · · +

(
1
2

) k

2i + 0 =
k∑

i=0

(
1
2

) i+1
2i =

16∑
i=0

1
2
= 8.5

That’s much less than infinite winnings!

3 Variance
Expectation is a useful statistic, but it does not give a detailed view of the probability mass function.
Consider the following 3 distributions (PMFs)

All three have the same expected value, E[X] = 3, but the “spread” in the distributions is quite
different. Variance is a formal quantification of “spread”. There is more than one way to quantify
spread; variance uses the average square distance from the mean.

The variance of a discrete random variable X with expected value µ is:

Var(X) = E[(X − µ)2]

Standard deviation is the square root of variance: SD(X) =
√

Var(X). Intuitively, standard devia-
tion is a kind of average distance of a sample to the mean. (Specifically, it is a root-mean-square
[RMS] average.) Variance is the square of this average distance.
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Properties of Variance

When computing the variance, we often use a different form of the same equation:

Var(X) = E[X2] − E[X]2

Another useful identity for variance is that Var(aX + b) = a2 Var(X). Note that this implies that
variance is nonlinear: Adding a constant doesn’t change the “spread”. Multiplying by a constant
(negative or positive) changes the “spread” quadratically.

Proofs of these two properties are provided in the last section.

Example: Dice Variance
Let X = the value on one roll of a 6 sided die. Recall that E[X] = 7/2. What is Var(X)?

Answer: First, we can calculate E[X2]:

E[X2] = (12)1
6
+ (22)1

6
+ (32)1

6
+ (42)1

6
+ (52)1

6
+ (62)1

6
=

91
6

We can then use the expectation formula for variance:

Var(X) = E[X2] − (E[X])2

=
91
6

−
(
7
2

)2
=

35
12

4 Proofs
4.1 Linearity of Expectation
For a single random variable X , E[aX + b] = aE[X] + b.

Proof: Let X be a random variable with PMF p(x) = P(X = x).

E[aX + b] =
∑

x

(ax + b)p(x) =
∑

x

(axp(x) + bp(x)) (LOTUS:g(X) = aX + b)

= a
∑

x

xp(x) + b
∑

x

p(x) (linearity of summation)

= aE[X] + b
∑

x

p(x) (definition of expectation)

= aE[X] + b · 1 (definition of PMF)

Proving the general case, where for two random variables X and Y , E[aX + bY + c] = aE[X] +
bE[Y ] + c (Expectation of sum = sum of expectation): At this point in the course, we have yet
to learn how to describe how two (or more) random variables interact. Once we learn about joint
distributions of multiple random variables next week, we will revisit this proof!
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4.2 Law of The Unconscious Statistician
E[g(X)] =

∑
x

g(x) · pX(x)

Proof: Let X be a random variable with PMF p(x) = P(X = x), and let Y = g(X), where g is a
real-valued function.

E[g(X)] = E[Y ] =
∑

j

y j P(Y = y j) =
∑

j

y j
©«

∑
i:g(xi)=yj

p(xi)
ª®¬

=
∑

j

∑
i:g(xi)=yj

y j p(xi) =
∑

j

∑
i:g(xi)=yj

g(xi)p(xi) =
∑

i

g(xi)p(xi)

4.3 Variance identity
Var(X) = E[X2] − E[X]2

Proof: Let X be a random variable with PMF p(x) = P(X = x).

Var(X) = E[(X − E[X])2] = E[(X − µ)2] Let E[X] = µ
=
∑

x

(x − µ)2p(x) =
∑

x

(x2 − 2µx + µ2)p(x) (def. expectation, distributive property)

=

2∑
x

p(x) − 2µ
∑

x

xp(x) + µ2
∑

x

p(x) (linearity of summation)

= E[X2] − 2µE[X] + µ2 · 1 (LOTUS, def. expectation, def. PMF)
= E[X2] − 2µ2 + µ2 = E[X2] − µ2 (rearrange terms)
= E[X2] − (E[X])2

4.4 Non-linearity of Variance
Var(aX + b) = a2 Var(X)

Proof: Let X be a random variable with PMF p(x) = P(X = x), and let a, b be real-valued scalars.

Var(aX + b) = E[(aX + b)2] − (E[aX + b])2 (variance identity)
= E[a2X2 + 2abX + b2] − (aE[X] + b)2 (linearity, factoring)
= a2E[X2] + 2abE[X] + b2 − (a2(E[X])2 + 2abE[X] + b2) (linearity, factoring)
= a2E[X2] − a2(E[X])2 = a2(E[X2] − (E[X])2)
= a2 Var(X) (variance identity)
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