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Lisa Yan and Jerry Cain
CS109

Lecture Notes #8
September 30, 2020

The Poisson Distribution and other Discrete Distributions
Based on a chapter by Chris Piech

Pre-recorded lecture: Section 1 through Section 4.
In-lecture: Review, focusing on Poisson approximation of Binomial.
Not covered: Section 5

1 Binomial in the Limit
Recall the example of sending a bit string over a network. In our last class we used a binomial
random variable to represent the number of bits corrupted out of 4 with a high corruption probability
(each bit had independent probability of corruption 𝑝 = 0.1). That example was relevant to sending
data to spacecraft, but for earthly applications like HTML data, voice or video, bit streams are much
longer (length ≈ 104) and the probability of corruption of a particular bit is very small (𝑝 ≈ 10−6).
Extreme 𝑛 and 𝑝 values arise in many cases: # visitors to a website, #server crashes in a giant data
center.

Unfortunately, 𝑋 ∼ Bin(104, 10−6) is unwieldy to compute. However, when values get that extreme,
we can make approximations that are accurate and make computation feasible. Recall that the
parameters of the binomial distribution are 𝑛 = 104 and 𝑝 = 10−6. First, define 𝜆 = 𝑛𝑝. We can
rewrite the binomial PMF as follows:

𝑃(𝑋 = 𝑖) = 𝑛!
𝑖!(𝑛 − 𝑖)!

(
𝜆

𝑛

) 𝑖 (
1 − 𝜆

𝑛

)𝑛−𝑖
=
𝑛(𝑛 − 1) . . . (𝑛 − 𝑖 − 1)

𝑛𝑖
𝜆𝑖

𝑖!
(1 − 𝜆/𝑛)𝑛
(1 − 𝜆/𝑛)𝑖

This equation can be made simpler using some approximations that hold when 𝑛 is sufficiently
large and 𝑝 is sufficiently small:

𝑛(𝑛 − 1) . . . (𝑛 − 𝑖 − 1)
𝑛𝑖

≈ 1

(1 − 𝜆/𝑛)𝑛 ≈ 𝑒−𝜆

(1 − 𝜆/𝑛)𝑖 ≈ 1

Using these reduces our original equation to:

𝑃(𝑋 = 𝑖) = 𝜆𝑖

𝑖!
𝑒−𝜆

This simplification, derived by assuming extreme values of 𝑛 and 𝑝, turns out to be so useful that
it gets its own random variable type: the Poisson random variable.
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2 Poisson Random Variable
A Poisson random variable approximates Binomial where 𝑛 is large, 𝑝 is small, and 𝜆 = 𝑛𝑝 is
“moderate”. Interestingly, to calculate the things we care about (PMF, expectation, variance), we
no longer need to know 𝑛 and 𝑝. We only need to provide 𝜆, which we call the rate.

There are different interpretations of “moderate”. Commonly accepted ranges are 𝑛 > 20 and
𝑝 < 0.05 or 𝑛 > 100 and 𝑝 < 0.1.

Here are the key formulas you need to know for Poisson. If𝑌 is a Poisson random variable, denoted
𝑌 ∼ Poi(𝜆), then:

𝑃(𝑌 = 𝑖) = 𝜆𝑖

𝑖!
𝑒−𝜆

𝐸 [𝑌 ] = 𝜆

Var(𝑌 ) = 𝜆

Example 1
Let’s say you want to send a bit string of length 𝑛 = 104 where each bit is independently corrupted
with 𝑝 = 10−6. What is the probability that the message will arrive uncorrupted? You can solve
this using a Poisson with 𝜆 = 𝑛𝑝 = 10410−6 = 0.01. Let 𝑋 ∼ Poi(0.01) be the number of corrupted
bits. Using the PMF for Poisson:

𝑃(𝑋 = 0) = 𝜆𝑖

𝑖!
𝑒−𝜆

=
0.010

0!
𝑒−0.01

≈ 0.9900498

We could have also modeled 𝑋 as a binomial such that 𝑋 ∼ Bin(104, 10−6). That would have been
harder to compute but would have resulted in the same number (to 8 decimal places).

Example 2
The Poisson distribution is often used to model the number of events that occur independently
at any time in an interval of time or space, with a constant average rate. Earthquakes are a good
example of this. Suppose there are an average of 2.8 major earthquakes in the world each year.
What is the probability of getting more than one major earthquake next year?

Let 𝑋 ∼ Poi(2.8) be the number of major earthquakes next year. We want to know 𝑃(𝑋 > 1).
We can use the complement rule to rewrite this as 1 − 𝑃(𝑋 = 0) − 𝑃(𝑋 = 1). Using the PMF for
Poisson:

𝑃(𝑋 > 1) = 1 − 𝑃(𝑋 = 0) − 𝑃(𝑋 = 1)

= 1 − 𝑒−2.8 2.80

0!
− 𝑒−2.8 2.81

1!
= 1 − 𝑒−2.8 − 2.8𝑒−2.8

≈ 1 − 0.06 − 0.17
= 0.77
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3 Geometric Distribution
𝑋 is a geometric random variable (𝑋 ∼ Geo(𝑝)) if 𝑋 is number of the independent trials until
the first success and 𝑝 is probability of success on each trial. If 𝑋 ∼ Geo(𝑝):

𝑃(𝑋 = 𝑛) = (1 − 𝑝)𝑛−1𝑝

𝐸 [𝑋] = 1/𝑝
Var(𝑋) = (1 − 𝑝)/𝑝2

The PMF, 𝑃(𝑋 = 𝑛), can be derived using the independence assumption. Let 𝐸𝑖 represent the event
that the 𝑖-th trial succeeds. Then the probability that 𝑋 is exactly 𝑛 is the probability that the first
𝑛 − 1 trials fail, and the 𝑛-th succeeds:

𝑃(𝑋 = 𝑛) = 𝑃(𝐸1
𝐶𝐸2

𝐶 . . . 𝐸𝑛−1
𝐶𝐸𝑛)

= 𝑃(𝐸1
𝐶)𝑃(𝐸2

𝐶) . . . 𝑃(𝐸𝑛−1
𝐶)𝑃(𝐸𝑛)

= (1 − 𝑝)𝑛−1𝑝

A similar argument can be used to derive the CDF, the probability that 𝑋 ≤ 𝑛. This is equal to
1 − 𝑃(𝑋 > 𝑛), and 𝑃(𝑋 > 𝑛) is the probability that at least the first 𝑛 trials fail:

𝑃(𝑋 ≤ 𝑛) = 1 − 𝑃(𝑋 > 𝑛)
= 1 − 𝑃(𝐸1

𝐶𝐸2
𝐶 . . . 𝐸𝑛

𝐶)
= 1 − 𝑃(𝐸1

𝐶)𝑃(𝐸2
𝐶) . . . 𝑃(𝐸𝑛

𝐶)
= 1 − (1 − 𝑝)𝑛

Example 1
In the Pokémon games, one captures Pokémon by throwing Poké Balls at them. Suppose each ball
independently has probability 𝑝 = 0.1 of catching the Pokémon.
Problem: What is the average number of balls required for a successful capture?
Solution: Let 𝑋 be the number of balls used until (and including) the capture. 𝑋 ∼ Geo(𝑝), so the
average number needed is 𝐸 [𝑋] = 1/𝑝 = 10.
Problem: Suppose we want to ensure that the probability of a capture before we run out of Poké
Balls is at least 0.99. How many balls do we need to carry?
Solution: We want to know 𝑛 such that 𝑃(𝑋 ≤ 𝑛) ≥ 0.99.

𝑃(𝑋 ≤ 𝑛) = 1 − (1 − 𝑝)𝑛 ≥ 0.99
(1 − 𝑝)𝑛 ≤ 0.01

log[(1 − 𝑝)𝑛] ≤ log 0.01
𝑛 log(1 − 𝑝) ≤ log 0.01

𝑛 ≥ log 0.01
log(1 − 𝑝) =

log 0.01
log 0.9

≈ 43.7

So we need 44 Poké Balls. (Note that we flipped the inequality on the last line because we divided
both sides by log(1− 𝑝). Since 1− 𝑝 < 1, we know log(1− 𝑝) < 0, so we’re dividing by a negative
number!)
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4 Negative Binomial Distribution
𝑋 is a negative binomial random variable (𝑋 ∼ NegBin(𝑟, 𝑝)) if 𝑋 is the number of independent
trials until 𝑟 successes and 𝑝 is probability of success on each trial. If 𝑋 ∼ NegBin(𝑟, 𝑝):

𝑃(𝑋 = 𝑛) =
(
𝑛 − 1
𝑟 − 1

)
𝑝𝑟 (1 − 𝑝)𝑛−𝑟 where 𝑟 ≤ 𝑛

𝐸 [𝑋] = 𝑟/𝑝
Var(𝑋) = 𝑟 (1 − 𝑝)/𝑝2

Example 2
Problem: A grad student needs 3 published papers to graduate. (Not how it works in real life!) On
average, how many papers will the student need to submit to a conference, if the conference accepts
each paper randomly and independently with probability 𝑝 = 0.25? (Also not how it works in real
life...though the NIPS Experiment1 suggests there is a grain of truth in this model!)

Solution: Let 𝑋 be the number of submissions required to get 3 acceptances. 𝑋 ∼ NegBin(𝑟 =
3, 𝑝 = 0.25). So 𝐸 [𝑋] = 𝑟

𝑝 = 3
0.25 = 12.

5 Other distributions
Hypergeometric Distribution
The remaining three distributions appear occasionally; you don’t have to master them for this course,
but it can be useful to know they exist.

𝑋 is a hypergeometric random variable (𝑋 ∼ HypG(𝑛, 𝑁, 𝑚)) if 𝑋 is the number of red balls
drawn when 𝑛 balls are drawn at random, without replacement, from an urn with 𝑁 balls total, 𝑚
of which are red. If 𝑋 ∼ HypG(𝑝):

𝑃(𝑋 = 𝑘) =
(𝑚
𝑘

) (𝑁−𝑚
𝑛−𝑘

)(𝑁
𝑛

) where 0 ≤ 𝑘 ≤ min(𝑛, 𝑚)

𝐸 [𝑋] = 𝑛
𝑚

𝑁

Var(𝑋) = 𝑛𝑚(𝑁 − 𝑛)(𝑁 − 𝑚)
𝑁2(𝑁 − 1)

1http://blog.mrtz.org/2014/12/15/the-nips-experiment.html

http://blog.mrtz.org/2014/12/15/the-nips-experiment.html
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Benford Distribution
Benford’s law says that "naturally occurring" numbers have an uneven distribution of their first
digits. This is because, roughly speaking, many collections of numbers are not evenly distributed,
but rather their logs are evenly distributed. The law says that the fraction of numbers with a first
digit of 1 is usually close to log10

(
1 + 1

1

)
≈ 0.301, the fraction with a first digit of 2 is close to

log10

(
1 + 1

2

)
≈ 0.176, and so on. This forms a probability distribution over the numbers 1 through

9.

More generally, in number base 𝑏 (for example, in hexadecimal 𝑏 = 16), 𝑋 is distributed according
to Benford’s law if:

𝑃(𝑋 = 𝑑) = log𝑏

(
1 + 1

𝑑

)
where 1 ≤ 𝑑 < 𝑏

𝐸 [𝑋] = (𝑏 − 1) − log𝑏 [(𝑏 − 1)!]

Zipf Distribution
𝑋 is a Zipf random variable (𝑋 ∼ Zipf (𝑠, 𝑁)) if the probability of 𝑋 obeys an inverse power law:

𝑃(𝑋 = 𝑘) = 𝐶 · 1
𝑘 𝑠

where 1 ≤ 𝑘 ≤ 𝑁

where 𝐶 is a normalizing constant (which turns out to be equal to reciprocal of the 𝑁th harmonic
number).

In human languages, a Zipf distribution is a good model of the frequency rank index of a randomly
chosen word, where 𝑁 is the number of words in the language, and 𝑠 also depends on various prop-
erties of the language (but is often close to 1). Other processes involving rank-ordering quantities
also frequently result in a Zipf distribution, such as the rank of populations of large cities.
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