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Lisa Yan and Jerry Cain
CS109

Lecture Notes #9
October 2, 2020

Continuous Distributions
Based on a chapter by Chris Piech

Pre-recorded lecture: All sections (definitions only) except Section 2.
In-lecture: Section 2, Section 4’s Riding the Bus example, Section 5’s Earthquakes example.
Extra: Section 6 (Proofs), Section 5’s Website visits and Laptop life examples.

So far, all random variables we have seen have been discrete. In all the cases we have seen in CS
109, this meant that our RVs could only take on integer values. Now it’s time for continuous random
variables, which can take on values in the real number domain (R). Continuous random variables
can be used to represent measurements with arbitrary precision (e.g., height, weight, or time).

1 Probability Density Functions
In the world of discrete random variables, the most important property of a random variable was its
probability mass function (PMF), which told you the probability of the random variable taking on
a certain value. When we move to the world of continuous random variables, we are going to need
to rethink this basic concept. If I were to ask you what the probability is of a child being born with
a weight of exactly 3.523112342234 kilograms, you might recognize that question as ridiculous.
No child will have precisely that weight. Real values are defined with infinite precision; as a result,
the probability that a random variable takes on a specific value is not very meaningful when the
random variable is continuous. The PMF doesn’t apply. We need another idea.

In the continuous world, every random variable has a probability density function (PDF), which
says how likely it is that a random variable takes on a particular value, relative to other values that
it could take on. The PDF has the nice property that you can integrate over it to find the probability
that the random variable takes on values within a range (𝑎, 𝑏).

𝑋 is a continuous random variable if there is a function 𝑓 (𝑥) for −∞ ≤ 𝑥 ≤ ∞, called the
probability density function (PDF), such that:

𝑃(𝑎 ≤ 𝑋 ≤ 𝑏) =
∫ 𝑏

𝑎
𝑓 (𝑥)𝑑𝑥

To preserve the axioms that guarantee 𝑃(𝑎 ≤ 𝑋 ≤ 𝑏) is a probability, the following properties
must also hold:

0 ≤ 𝑃(𝑎 ≤ 𝑋 ≤ 𝑏) ≤ 1
𝑃(−∞ < 𝑋 < ∞) = 1
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A common misconception is to think of 𝑓 (𝑥) as a probability. It is instead what we call a probability
density. It represents probability divided by the units of 𝑋 . Generally this is only meaningful when
we either take an integral over the PDF or we compare probability densities. As we mentioned
when motivating probability densities, the probability that a continuous random variable takes on
a specific value (to infinite precision) is 0.

𝑃(𝑋 = 𝑎) =
∫ 𝑎

𝑎
𝑓 (𝑥)𝑑𝑥 = 0

This is very different from the discrete setting, in which we often talked about the probability of a
random variable taking on a particular value exactly.

2 Cumulative Distribution Function
Having a probability density is great, but it means we are going to have to solve an integral every
single time we want to calculate a probability. To save ourselves some effort, for most of these
variables we will also compute a cumulative distribution function (CDF). The CDF is a function
which takes in a number and returns the probability that a random variable takes on a value less
than (or equal to) that number. If we have a CDF for a random variable, we don’t need to integrate
to answer probability questions!

For a continuous random variable 𝑋 , the cumulative distribution function is:

𝐹𝑋 (𝑎) = 𝑃(𝑋 ≤ 𝑎) =
∫ 𝑎

−∞
𝑓 (𝑥)𝑑𝑥

This can be written 𝐹 (𝑎), without the subscript, when it is obvious which random variable we
are using.

Why is the CDF the probability that a random variable takes on a value less than (or equal to) the
input value as opposed to greater than? It is a matter of convention. But it is a useful convention.
Most probability questions can be solved simply by knowing the CDF (and taking advantage of the
fact that the integral over the range −∞ to ∞ is 1). Here are a few examples of how you can answer
probability questions by just using a CDF:

Probability Query Solution Explanation
𝑃(𝑋 ≤ 𝑎) 𝐹 (𝑎) This is the definition of the CDF
𝑃(𝑋 < 𝑎) 𝐹 (𝑎) Note that 𝑃(𝑋 = 𝑎) = 0
𝑃(𝑋 > 𝑎) 1 − 𝐹 (𝑎) 𝑃(𝑋 ≤ 𝑎) + 𝑃(𝑋 > 𝑎) = 1
𝑃(𝑎 < 𝑋 < 𝑏) 𝐹 (𝑏) − 𝐹 (𝑎) 𝐹 (𝑎) + 𝑃(𝑎 < 𝑋 < 𝑏) = 𝐹 (𝑏)
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As we mentioned briefly earlier, the cumulative distribution function can also be defined for discrete
random variables, but there is less utility to a CDF in the discrete world, because with the exception
of the geometric random variable, none of our discrete random variables had “closed form” (that
is, without any summations) functions for the CDF:

𝐹𝑋 (𝑎) =
𝑎∑
𝑖=0

𝑃(𝑋 = 𝑖)

Example: PDF
Let 𝑋 be a continuous random variable with PDF:

𝑓 (𝑥) =
{
𝐶 (4𝑥 − 2𝑥2) when 0 < 𝑥 < 2
0 otherwise

In this function, 𝐶 is a constant. What value is 𝐶? Since we know that the PDF must sum to 1:∫ 2

0
𝐶 (4𝑥 − 2𝑥2)𝑑𝑥 = 1

𝐶

(
2𝑥2 − 2𝑥3

3

) ����2
𝑥=0

= 1

𝐶

((
8 − 16

3

)
− 0

)
= 1

Solving this equation for 𝐶 gives 𝐶 = 3/8.

What is 𝑃(𝑋 > 1)?∫ ∞

1
𝑓 (𝑥)𝑑𝑥 =

∫ 2

1

3
8
(4𝑥 − 2𝑥2)𝑑𝑥 =

3
8

(
2𝑥2 − 2𝑥3

3

) ����2
𝑥=1

=
3
8

[(
8 − 16

3

)
−
(
2 − 2

3

)]
=

1
2

Example: Disk crashes
Let 𝑋 be a RV representing the number of days of use before your disk crashes, with PDF:

𝑓 (𝑥) =
{
𝜆𝑒−𝑥/100 when 𝑥 ≥ 0
0 otherwise

First, determine 𝜆. Recall that
∫
𝐴𝑒𝐴𝑢𝑑𝑢 = 𝑒𝐴𝑢:∫ ∞

0
𝜆𝑒−𝑥/100𝑑𝑥 = 1

−100𝜆
∫ ∞

0

−1
100

𝑒−𝑥/100𝑑𝑥 = 1

−100𝜆 · 𝑒−𝑥/100
����∞
𝑥=0

= 1

100𝜆 · 1 = 1 ⇒ 𝜆 = 1/100
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What is 𝑃(𝑋 < 10)?

𝐹 (10) =
∫ 10

0

1
100

𝑒−𝑥/100𝑑𝑥 = −𝑒−𝑥/100
����10

𝑥=0
= −𝑒−1/10 + 1 ≈ 0.095

3 Expectation and Variance
For continuous RV 𝑋:

𝐸 [𝑋] =
∫ ∞

−∞
𝑥 · 𝑓 (𝑥)𝑑𝑥

𝐸 [𝑔(𝑋)] =
∫ ∞

−∞
𝑔(𝑥) · 𝑓 (𝑥)𝑑𝑥

𝐸 [𝑋𝑛] =
∫ ∞

−∞
𝑥𝑛 · 𝑓 (𝑥)𝑑𝑥

For both continuous and discrete RVs:

𝐸 [𝑎𝑋 + 𝑏] = 𝑎𝐸 [𝑋] + 𝑏

Var(𝑋) = 𝐸 [(𝑋 − 𝜇)2] = 𝐸 [𝑋2] − (𝐸 [𝑋])2 (with 𝜇 = 𝐸 [𝑋])
Var(𝑎𝑋 + 𝑏) = 𝑎2 Var(𝑋)

4 Uniform Random Variable
The most basic of all the continuous random variables is the uniform random variable, which is
equally likely to take on any value in its range (𝛼, 𝛽).

𝑋 is a uniform random variable (𝑋 ∼ Uni(𝛼, 𝛽)) if it has PDF:

𝑓 (𝑥) =
{

1
𝛽−𝛼 when 𝛼 ≤ 𝑥 ≤ 𝛽

0 otherwise

Notice how the density 1/(𝛽 − 𝛼) is exactly the same regardless of the value for 𝑥. That makes the
density uniform. So why is the PDF 1/(𝛽 − 𝛼) and not 1? That is the constant that makes it such
that the integral over all possible inputs evaluates to 1.

The key properties of this RV are:

𝑃(𝑎 ≤ 𝑋 ≤ 𝑏) =
∫ 𝑏

𝑎
𝑓 (𝑥)𝑑𝑥 =

𝑏 − 𝑎

𝛽 − 𝛼
(for 𝛼 ≤ 𝑎 ≤ 𝑏 ≤ 𝛽)

𝐸 [𝑋] =
∫ ∞

−∞
𝑥 · 𝑓 (𝑥)𝑑𝑥 =

∫ 𝛽

𝛼

𝑥

𝛽 − 𝛼
𝑑𝑥 =

𝑥2

2(𝛽 − 𝛼)

����𝛽
𝑥=𝛼

=
𝛼 + 𝛽

2

Var(𝑋) = (𝛽 − 𝛼)2

12
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Example: Riding the Bus
You want to get on the bus. The bus stops in front of your building at 15-minute intervals (2:00,
2:15, etc.). Suppose you arrive at the stop uniformly between 2:00pm and 2:30pm. What is the
probability that you wait less than 5 minutes for the bus?

Solution : Let 𝑋 be the minutes (continuous time) after 2:00pm that we arrive at the bus. 𝑋 ∼
Uni(0, 30). There are two events to consider: Either our arrival time is in the interval 10 < 𝑋 ≤ 15,
where we take the 2:15pm bus, or our arrival time is in the interval 25 < 𝑋 ≤ 30, where we take
the 2:30pm bus. Integrating the PDF of the Uniform RV, we get:

𝑃(10 < 𝑋 ≤ 15) + 𝑃(25 < 𝑋 ≤ 30) =
∫ 15

10

1
30

𝑑𝑥 +
∫ 30

25

1
30

𝑑𝑥 =
5
30

+ 5
30

=
1
3

5 Exponential Random Variable
An exponential random variable (𝑋 ∼ Exp(𝜆)) represents the time until an event occurs. It is
parametrized by 𝜆 > 0, the (constant) rate at which the event occurs. This is the same 𝜆 as in the
Poisson distribution; a Poisson variable counts the number of events that occur in a fixed interval,
while an exponential variable measures the amount of time until the next event occurs.

(Example 2 sneakily introduced you to the exponential distribution already; now we get to use
formulas we’ve already computed to work with it without integrating anything.)

Properties
The probability density function (PDF) for an exponential random variable is:

𝑓 (𝑥) =
{
𝜆𝑒−𝜆𝑥 if 𝑥 ≥ 0
0 else

The expectation is 𝐸 [𝑋] = 1
𝜆 and the variance is Var(𝑋) = 1

𝜆2 .

There is a closed form for the cumulative distribution function (CDF):

𝐹 (𝑥) = 1 − 𝑒−𝜆𝑥 where 𝑥 ≥ 0

Example: Earthquakes
Major earthquakes (magnitude 8.0+) independently occur on average once every 500 years.

1. What is the probability of a major earthquake happening in the next 30 years?
Solution: Define 𝑋 to be the amount of time until the next earthquake happens. 𝑋 ∼ Exp(𝜆 =

1/500 = 0.002), since 𝐸 [𝑋] = 1/500. We can compute 𝑃(𝑋 < 30) =
∫ 30
0 0.002𝑒−0.002𝑥𝑑𝑥 =

0.002
[ 1

0.002𝑒
−0.002𝑥]30

0 = −(𝑒−0.06 − 𝑒0) ≈ 0.058.

2. What is the standard deviation of years until the next earthquake?
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Solution: Using the same definition of 𝑋 as before, Var(𝑋) = 1
𝜆2 = 1

0.0022 = 250, 000 years2,
and therefore SD(𝑋) =

√
Var(𝑋) = 500 years.

3. What is the probability of zero major earthquakes next year?
Solution 1: Using the same definition of 𝑋 as before, we would like to compute 𝑃(𝑋 > 1) =
1 − 𝐹 (1), where 𝐹 (𝑥) is the CDF of 𝑋 at 𝑥. 𝑃(𝑋 > 1) = 1 − (1 − 𝑒−𝜆·1) = 𝑒−𝜆 ≈ 0.998.
Solution 2: Given that earthquake occurrences are independent, we could also define a
random variable 𝑁 to be the number of earthquakes next year, where 𝑁 ∼ Poi(𝜆 = 0.002)
and 𝐸 [𝑁] = 𝜆 = 1/500. We then compute 𝑃(𝑁 = 0) = 𝜆0𝑒−𝜆

0! = 𝑒−𝜆 ≈ 0.998.

Example: Website visits
Let 𝑋 be a random variable that represents the number of minutes until a visitor leaves your website.
You have calculated that on average a visitor leaves your site after 5 minutes, and you decide that
an exponential distribution is appropriate to model how long a person stays before leaving the site.
What is the 𝑃(𝑋 > 10)?

We can compute 𝜆 = 1
5 either using the definition of 𝐸 [𝑋] or by thinking of how many people leave

every minute (answer: “one-fifth of a person”). Thus 𝑋 ∼ Exp(1/5).

𝑃(𝑋 > 10) = 1 − 𝐹 (10)
= 1 − (1 − 𝑒−𝜆·10)
= 𝑒−2 ≈ 0.1353

Example: Laptop life
Let 𝑋 be the number of hours of use until your laptop dies. On average laptops die after 5000 hours
of use. If you use your laptop for 7300 hours during your undergraduate career (assuming usage = 5
hours/day and four years of university), what is the probability that your laptop lasts all four years?

As above, we can find 𝜆 either using 𝐸 [𝑋] or thinking about laptop deaths per hour: 𝑋 ∼ Exp( 1
5000 ).

𝑃(𝑋 > 7300) = 1 − 𝐹 (7300)
= 1 − (1 − 𝑒−7300/5000)
= 𝑒−1.46 ≈ 0.2322

6 Proofs
6.1 Expectation of the Exponential RV
Let 𝑋 ∼ Exp(𝜆). Then 𝐸 [𝑋] = 1/𝜆.
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Proof: We would like to evaluate 𝐸 [𝑋] =
∫ ∞
−∞ 𝑥 𝑓 (𝑥)𝑑𝑥 =

∫ ∞
0 𝑥𝜆𝑒−𝜆𝑥𝑑𝑥.

Let 𝑢 = 𝑥 and 𝑑𝑣 = 𝜆𝑒−𝜆𝑥𝑑𝑥. Then 𝑑𝑢 = 𝑑𝑥 and 𝑣 = −𝑒−𝜆𝑥 . Recall that integration by parts states
that

∫
𝑢 · 𝑑𝑣 = 𝑢 · 𝑣 −

∫
𝑣 · 𝑑𝑢, and therefore

∫
𝑥𝜆𝑒−𝜆𝑥𝑑𝑥 = −𝑥𝑒−𝜆𝑥 −

∫
(−𝑒−𝜆𝑥)𝑑𝑥.

𝐸 [𝑋] =
∫ ∞

0
𝑥𝜆𝑒−𝜆𝑥𝑑𝑥 = −𝑥𝑒−𝜆𝑥

����∞
0
+
∫ ∞

0
𝑒−𝜆𝑥𝑑𝑥

= −𝑥𝑒−𝜆𝑥
����∞
0
−1
𝜆
𝑒−𝜆𝑥

����∞
0
= [0 − 0] +

[
0 −

(
−1
𝜆

)]
=

1
𝜆

6.2 CDF of the Exponential RV
Let 𝑋 ∼ Exp(𝜆). The CDF of 𝑋 is 𝐹 (𝑥) = 1 − 𝑒−𝜆𝑥 , for 𝑥 ≥ 0.

Proof:

𝐹 (𝑥) = 𝑃(𝑋 ≤ 𝑥) =
∫ 𝑥

𝑦=−∞
𝑓 (𝑦)𝑑𝑦 =

∫ 𝑥

𝑦=0
𝜆𝑒−𝜆𝑦𝑑𝑦

= 𝜆
1
−𝜆𝑒

−𝜆𝑦
����𝑥
0
= −1(𝑒−𝜆𝑥 − 𝑒−𝜆0) = 1 − 𝑒−𝜆𝑥 .
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