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Lecture Notes #10
October 5, 2020

The Normal Distribution
Based on a chapter by Chris Piech

Pre-recorded lecture: Sections 1 and 2, definitions only.
In-lecture: Section 2’s examples.
Not in lecture notes: Sampling demo. To be added soon.
Lecture 11: Section 3.

1 Normal Random Variable
The single most important random variable type is the Normal (aka Gaussian) random variable,
parameterized by a mean (𝜇) and variance (𝜎2). If 𝑋 is a normal variable we write 𝑋 ∼ N(𝜇, 𝜎2).
The normal is important for many reasons: it is generated from the summation of independent
random variables and as a result it occurs often in nature. Many things in the world are not distributed
normally but data scientists and computer scientists model them as Normal distributions anyways.
Why? Because it is the most entropic (conservative) distribution that we can apply to data with a
measured mean and variance.

Properties
The Probability Density Function (PDF) for a Normal is:

𝑓 (𝑥) = 1
𝜎
√

2𝜋
𝑒

−(𝑥−𝜇)2
2𝜎2

By definition a Normal has 𝐸 [𝑋] = 𝜇 and Var(𝑋) = 𝜎2.

If 𝑋 is a Normal such that 𝑋 ∼ N(𝜇, 𝜎2) and 𝑌 is a linear transform of 𝑋 such that 𝑌 = 𝑎𝑋 + 𝑏
then 𝑌 is also a Normal where 𝑌 ∼ N(𝑎𝜇 + 𝑏, 𝑎2𝜎2).

There is no closed form for the integral of the Normal PDF, however since a linear transform of a
Normal produces another Normal we can always map our distribution to the “Standard Normal"
(mean 0 and variance 1) which has a precomputed Cumulative Distribution Function (CDF). The
CDF of an arbitrary normal is:

𝐹 (𝑥) = Φ
(𝑥 − 𝜇

𝜎

)
Where Φ is a precomputed function that represents that CDF of the Standard Normal.
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2 Projection to Standard Normal
For any Normal RV 𝑋 we can find a linear transform from 𝑋 to the Standard Normal 𝑁 (0, 1).
That is, if you subtract the mean (𝜇) of the normal and divide by the standard deviation (𝜎), the
result is distributed according to the standard normal (also called the unit Normal). We can prove
this mathematically. Let 𝑍 = 𝑋−𝜇

𝜎 :

𝑍 =
𝑋 − 𝜇

𝜎
Transform 𝑋: subtract 𝜇 and divide by 𝜎

=
1
𝜎
𝑋 − 𝜇

𝜎
Use algebra to rewrite the equation

= 𝑎𝑋 + 𝑏 define 𝑎 =
1
𝜎

, 𝑏 = − 𝜇

𝜎

∼ 𝑁 (𝑎𝜇 + 𝑏, 𝑎2𝜎2) The linear transform of a normal is another normal

∼ 𝑁 ( 𝜇
𝜎

− 𝜇

𝜎
,
𝜎2

𝜎2 ) Substitute values in for 𝑎 and 𝑏

∼ 𝑁 (0, 1) The Standard Normal

An extremely common use of this transform is to express 𝐹𝑋 (𝑥), the CDF of 𝑋 , in terms of the CDF
of 𝑍 , 𝐹𝑍 (𝑥). Since the CDF of the Standard Normal is so common, it gets its own Greek symbol,
Φ(𝑥).

𝐹𝑋 (𝑥) = 𝑃(𝑋 ≤ 𝑥)

= 𝑃

(
𝑋 − 𝜇

𝜎
≤ 𝑥 − 𝜇

𝜎

)
= 𝑃

(
𝑍 ≤ 𝑥 − 𝜇

𝜎

)
= Φ

(𝑥 − 𝜇

𝜎

)
Why is this useful? Well, in the days when we couldn’t call scipy.stats.norm.cdf (or on exams,
when one doesn’t have a calculator), people would look up values of the CDF in a table (see the
last page of these notes). Using the Standard Normal means you only need to build a table of one
distribution, rather than an indefinite number of tables for all the different values of 𝜇 and 𝜎!

We also have an online calculator on the CS 109 website. You should learn how to use the Standard
Normal table for the exams, however!

Example: Computing probabilities
Problem 1 : Let 𝑋 ∼ N(3, 16), what is 𝑃(𝑋 > 0)?

𝑃(𝑋 > 0) = 𝑃

(
𝑋 − 3

4
>

0 − 3
4

)
= 𝑃

(
𝑍 > −3

4

)
= 1 − 𝑃

(
𝑍 ≤ −3

4

)
= 1 −Φ

(
−3

4

)
= 1 −

(
1 −Φ

(
3
4

))
= Φ

(
3
4

)
≈ 0.7734
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An alternative approach uses the idea that if 𝐹 is the CDF of 𝑋 ∼ N(𝜇, 𝜎2), then 𝐹 (𝑥) =
𝑃

(
𝑍 < 𝑥−𝜇

𝜎

)
= Φ

( 𝑥−𝜇
𝜎

)
:

𝑃(𝑋 > 0) = 1 − 𝐹 (0) = 1 −Φ(−3/4)
= 1 − (1 −Φ(3/4)) = Φ(3/4) ≈ 0.7734.

Problem 2 : What is 𝑃(2 < 𝑋 < 5)?

𝑃(2 < 𝑋 < 5) = 𝑃

(
2 − 3

4
<

𝑋 − 3
4

<
5 − 3

4

)
= 𝑃

(
−1

4
< 𝑍 <

2
4

)
= Φ

(
2
4

)
−Φ

(
−1

4

)
= Φ

(
1
2

)
−

(
1 −Φ

(
1
4

))
≈ 0.2902

Alternative solution:

𝑃(2 < 𝑋 < 5) = 𝐹 (5) − 𝐹 (2) = Φ

(
5 − 3

4

)
−Φ

(
2 − 3

4

)
= Φ(1/2) − (1 −Φ(1/4)) ≈ 0.2902.

Problem 3 : What is 𝑃( |𝑋 − 3| < 6)?

𝑃(|𝑋 − 3| > 6) = 𝑃(𝑋 < −3) + 𝑃(𝑋 > 9) = 𝐹 (−3) + (1 − 𝐹 (9)) = Φ

(
−3 − 3

4

)
+

(
1 −Φ

(
9 − 3

4

))
= Φ(−3/2) + (1 −Φ(3/2)) = 2(1 −Φ(3/2)) ≈ 0.1337.

Example: Wires and noise
Problem : You send voltage of 2 or -2 on a wire to denote 1 or 0. Let 𝑋 = voltage sent and let 𝑅 =
voltage received. 𝑅 = 𝑋 + 𝑌 , where 𝑌 ∼ N(0, 1) is noise. When decoding, if 𝑅 ≥ 0.5 we interpret
the voltage as 1, else 0. What is 𝑃(error after decoding|original bit = 1)?

Solution : Given that we sent a 1, 𝑋 = 2 and therefore 𝑅 = 2 + 𝑌 . A decoding error occurs if we
incorrectly interpret the signal as 0; this occurs if 𝑅 < 0.5. Note that 𝑌 is the Standard Normal and
therefore has CDF Φ:

𝑃(𝑅 < 0.5|𝑋 = 2) = 𝑃(𝑋 + 𝑌 < 0.5|𝑋 = 2) = 𝑃(2 + 𝑌 < 0.5)
= 𝑃(𝑌 < −1.5) = Φ(−1.5) = 1 −Φ(1.5) ≈ 0.0668

Problem : What is 𝑃(error after decoding|original bit = 0)?

Solution : Given that we sent a 0, 𝑋 = −2 and therefore 𝑅 = −2 +𝑌 . A decoding error occurs if we
incorrectly interpret the signal as 1; this occurs if 𝑅 ≥ 0.5.

𝑃(𝑅 ≥ 0.5|𝑋 = −2) = 𝑃(𝑋 + 𝑌 ≥ 0.5|𝑋 = −2) = 𝑃(−2 + 𝑌 ≥ 0.5)
= 𝑃(𝑌 ≥ 2.5) = 1 −Φ(2.5) ≈ 0.0062.
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Discussion : This example demonstrates an asymmetric decoding boundary, where there is lower
probability of erroneously decoding a 0 as a 1 than vice versa. In many engineering circumstances,
we may suffer stronger consequences if we turn something “on” when it was supposed to stay
turned off. By setting the boundary of our decoding process asymmetrically, we can decrease the
probability of this undesirable error.

3 Binomial Approximation
You can use a Normal distribution to approximate a Binomial 𝑋 ∼ Bin(𝑛, 𝑝). To do so define
a normal 𝑌 ∼ N(𝐸 [𝑋],Var(𝑋)). Using the Binomial formulas for expectation and variance,
𝑌 ∼ N(𝑛𝑝, 𝑛𝑝(1 − 𝑝)). This approximation holds for large 𝑛. Since a Normal is continuous and
Binomial is discrete we have to use a continuity correction to discretize the Normal.

𝑃(𝑋 = 𝑘) ≈ 𝑃

(
𝑘 − 1

2
< 𝑌 < 𝑘 + 1

2

)
= Φ

(
𝑘 − 𝑛𝑝 + 0.5√
𝑛𝑝(1 − 𝑝)

)
−Φ

(
𝑘 − 𝑛𝑝 − 0.5√
𝑛𝑝(1 − 𝑝)

)

Example: Website visitors
100 visitors to your website are given a new design. Let 𝑋 = # of people who were given the new
design and spend more time on your website. Your CEO will endorse the new design if 𝑋 ≥ 65.
What is 𝑃(CEO endorses change|it has no effect)?

𝐸 [𝑋] = 𝑛𝑝 = 50. Var(𝑋) = 𝑛𝑝(1 − 𝑝) = 25. 𝜎 =
√

Var(𝑋) = 5. We can thus use a Normal
approximation: 𝑌 ∼ N(50, 25).

𝑃(𝑋 ≥ 65) ≈ 𝑃(𝑌 > 64.5) = 𝑃

(
𝑌 − 50

5
>

64.5 − 50
5

)
= 1 −Φ(2.9) = 0.0019

Example: Stanford acceptance rate
Stanford accepts 2480 students and each student has a 68% chance of attending. Let 𝑋 = # students
who will attend. 𝑋 ∼ Bin(2480, 0.68). What is 𝑃(𝑋 > 1745)?

𝐸 [𝑋] = 𝑛𝑝 = 1686.4. Var(𝑋) = 𝑛𝑝(1 − 𝑝) = 539.7. 𝜎 =
√

Var(𝑋) = 23.23. We can thus use a
Normal approximation: 𝑌 ∼ N(1686.4, 539.7).

𝑃(𝑋 > 1745) ≈ 𝑃(𝑌 > 1745.5) = 𝑃

(
𝑌 − 1686.4

23.23
>

1745.5 − 1686.4
23.23

)
= 1 −Φ(2.54) = 0.0055


