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Independent Random Variables
Based on a chapter by Chris Piech

Pre-recorded lecture: Sections 1 and 3.
In-lecture: Section 2 and exercises.

1 Independence with Multiple RVs (Discrete Case)
Two discrete random variables 𝑋 and 𝑌 are called independent if:

𝑃(𝑋 = 𝑥,𝑌 = 𝑦) = 𝑃(𝑋 = 𝑥)𝑃(𝑌 = 𝑦) for all 𝑥, 𝑦

Intuitively: knowing the value of 𝑋 tells us nothing about the distribution of 𝑌 . If two variables are
not independent, they are called dependent. This is a similar conceptually to independent events,
but we are dealing with multiple variables. Make sure to keep your events and variables distinct.

2 Symmetry of Independence
Independence is symmetric. That means that if random variables 𝑋 and 𝑌 are independent, 𝑋 is
independent of 𝑌 and 𝑌 is independent of 𝑋 . This claim may seem meaningless but it can be very
useful. Imagine a sequence of events 𝑋1, 𝑋2, . . . . Let 𝐴𝑖 be the event that 𝑋𝑖 is a “record value" (eg
it is larger than all previous values). Is 𝐴𝑛+1 independent of 𝐴𝑛? It is easier to answer that 𝐴𝑛 is
independent of 𝐴𝑛+1. By symmetry of independence both claims must be true.

3 Sums of Independent Random Variables
Independent Binomials with equal 𝑝
For any two Binomial random variables with the same “success" probability: 𝑋 ∼ Bin(𝑛1, 𝑝) and
𝑌 ∼ Bin(𝑛2, 𝑝) the sum of those two random variables is another binomial: 𝑋+𝑌 ∼ Bin(𝑛1+𝑛2, 𝑝).
This does not hold when the two distributions have different parameters 𝑝.

Independent Poissons
For any two Poisson random variables: 𝑋 ∼ Poi(𝜆1) and𝑌 ∼ Poi(𝜆2) the sum of those two random
variables is another Poisson: 𝑋 + 𝑌 ∼ Poi(𝜆1 + 𝜆2). This holds even if 𝜆1 is not the same as 𝜆2.
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3.1 Example: Web requests
Let’s say we have two independent random Poisson variables for requests received at a web server
in a day: 𝑋 = # requests from humans/day, 𝑋 ∼ 𝑃𝑜𝑖(𝜆1) and 𝑌 = # requests from bots/day,
𝑌 ∼ 𝑃𝑜𝑖(𝜆2). Since the convolution of Poisson random variables is also a Poisson we know that the
total number of requests (𝑋 +𝑌 ) is also a Poisson (𝑋 +𝑌 ) ∼ 𝑃𝑜𝑖(𝜆1 + 𝜆2). What is the probability
of having 𝑘 human requests on a particular day given that there were 𝑛 total requests?

𝑃(𝑋 = 𝑘 |𝑋 + 𝑌 = 𝑛) = 𝑃(𝑋 = 𝑘,𝑌 = 𝑛 − 𝑘)
𝑃(𝑋 + 𝑌 = 𝑛) =

𝑃(𝑋 = 𝑘)𝑃(𝑌 = 𝑛 − 𝑘)
𝑃(𝑋 + 𝑌 = 𝑛)

=
𝑒−𝜆1𝜆𝑘

1
𝑘!

·
𝑒−𝜆2𝜆𝑛−𝑘2
(𝑛 − 𝑘)! · 𝑛!

𝑒1(𝜆1+𝜆2) (𝜆1 + 𝜆2)𝑛

=

(
𝑛

𝑘

) (
𝜆1

𝜆1 + 𝜆2

) 𝑘 (
𝜆2

𝜆1 + 𝜆2

)𝑛−𝑘
∼ 𝐵𝑖𝑛

(
𝑛,

𝜆2
𝜆1 + 𝜆2

)
3.2 Example: Web requests, redux
Let 𝑁 be the number of requests to a web server/day and that 𝑁 ∼ Poi(𝜆). Each request comes from
a human (probability = 𝑝) or from a “bot” (probability = (1 − 𝑝)), independently. Define 𝑋 to be
the number of requests from humans/day and 𝑌 to be the number of requests from bots/day.

Since requests come in independently, the probability of 𝑋 conditioned on knowing the number of
requests is a Binomial. Specifically, conditioned:

(𝑋 |𝑁) ∼ Bin(𝑁, 𝑝)
(𝑌 |𝑁) ∼ Bin(𝑁, 1 − 𝑝)

Calculate the probability of getting exactly 𝑖 human requests and 𝑗 bot requests. Start by expanding
using the chain rule:

𝑃(𝑋 = 𝑖, 𝑌 = 𝑗) = 𝑃(𝑋 = 𝑖, 𝑌 = 𝑗 |𝑋 + 𝑌 = 𝑖 + 𝑗)𝑃(𝑋 + 𝑌 = 𝑖 + 𝑗)

We can calculate each term in this expression:

𝑃(𝑋 = 𝑖, 𝑌 = 𝑗 |𝑋 + 𝑌 = 𝑖 + 𝑗) =
(
𝑖 + 𝑗

𝑖

)
𝑝𝑖 (1 − 𝑝) 𝑗

𝑃(𝑋 + 𝑌 = 𝑖 + 𝑗) = 𝑒−𝜆
𝜆𝑖+ 𝑗

(𝑖 + 𝑗)!

Now we can put those together and simplify:

𝑃(𝑋 = 𝑖, 𝑌 = 𝑗) =
(
𝑖 + 𝑗

𝑖

)
𝑝𝑖 (1 − 𝑝) 𝑗𝑒−𝜆 𝜆𝑖+ 𝑗

(𝑖 + 𝑗)!

As an exercise you can simplify this expression into two independent Poisson distributions.
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Convolution: Sum of independent random variables
So far, we have had it easy: If our two independent random variables are both Poisson, or both
Binomial with the same probability of success, then their sum has a nice, closed form. In the
general case, however, the distribution of two independent random variables can be calculated as a
convolution of probability distributions.

For two independent random variables, you can calculate the CDF or the PDF of the sum of two
random variables using the following formulas:

𝐹𝑋+𝑌 (𝑛) = 𝑃(𝑋 + 𝑌 ≤ 𝑛) =
∞∑

𝑘=−∞
𝐹𝑋 (𝑘)𝐹𝑌 (𝑛 − 𝑘)

𝑝𝑋+𝑌 (𝑛) =
∞∑

𝑘=−∞
𝑝𝑋 (𝑘)𝑝𝑌 (𝑛 − 𝑘)

Most importantly, convolution is the process of finding the sum of the random variables themselves,
and not the process of adding together probabilities.

Example: Proof of sum of Poissons
Let’s go about proving that the sum of two independent Poisson random variables is also Poisson.
Let 𝑋 ∼ Poi(𝜆1) and 𝑌 ∼ Poi(𝜆2) be two independent random variables, and 𝑍 = 𝑋 + 𝑌 . What is
𝑃(𝑍 = 𝑛)?

𝑃(𝑍 = 𝑛) = 𝑃(𝑋 + 𝑌 = 𝑛) =
∞∑

𝑘=−∞
𝑃(𝑋 = 𝑘)𝑃(𝑌 = 𝑛 − 𝑘) (Convolution)

=
𝑛∑

𝑘=0
𝑃(𝑋 = 𝑘)𝑃(𝑌 = 𝑛 − 𝑘) (Range of 𝑋 and 𝑌 )

=
𝑛∑

𝑘=0
𝑒−𝜆1

𝜆𝑘
1
𝑘!

𝑒−𝜆2
𝜆𝑛−𝑘2

(𝑛 − 𝑘)! (Poisson PMF)

= 𝑒−(𝜆1+𝜆2)
𝑛∑

𝑘=0

𝜆𝑘
1𝜆

𝑛−𝑘
2

𝑘!(𝑛 − 𝑘)!

=
𝑒−(𝜆1+𝜆2)

𝑛!

𝑛∑
𝑘=0

𝑛!
𝑘!(𝑛 − 𝑘)!𝜆

𝑘
1𝜆

𝑛−𝑘
2

=
𝑒−(𝜆1+𝜆2)

𝑛!
(𝜆1 + 𝜆2)𝑛 (Binomial theorem)

Note that the Binomial Theorem (which we did not cover in this class, but is often used in
contexts like expanding polynomials) says that for two numbers 𝑎 and 𝑏 and positive integer 𝑛,
(𝑎 + 𝑏)𝑛 = ∑𝑛

𝑘=0
(𝑛
𝑘

)
𝑎𝑘𝑏𝑛−𝑘 .
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