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Independent Random Variables

Based on a chapter by Chris Piech

Pre-recorded lecture: Sections 1 and 3.
In-lecture: Section 2 and exercises.

1 Independence with Multiple RVs (Discrete Case)

Two discrete random variables X and Y are called independent if:
P(X=x,Y=y)=P(X=x)P(Y =y) forall x,y

Intuitively: knowing the value of X tells us nothing about the distribution of Y. If two variables are
not independent, they are called dependent. This is a similar conceptually to independent events,
but we are dealing with multiple variables. Make sure to keep your events and variables distinct.

2 Symmetry of Independence

Independence is symmetric. That means that if random variables X and Y are independent, X is
independent of Y and Y is independent of X. This claim may seem meaningless but it can be very
useful. Imagine a sequence of events Xy, X», . ... Let A; be the event that X; is a “record value" (eg
it is larger than all previous values). Is A,;; independent of A,? It is easier to answer that A, is
independent of A,+;. By symmetry of independence both claims must be true.

3 Sums of Independent Random Variables
Independent Binomials with equal p

For any two Binomial random variables with the same “success" probability: X ~ Bin(n, p) and
Y ~ Bin(n,, p) the sum of those two random variables is another binomial: X+Y ~ Bin(n;+n», p).
This does not hold when the two distributions have different parameters p.

Independent Poissons

For any two Poisson random variables: X ~ Poi(4;) andY ~ Poi(A;) the sum of those two random
variables is another Poisson: X +Y ~ Poi(1; + A»). This holds even if A; is not the same as A,.



3.1 Example: Web requests

Let’s say we have two independent random Poisson variables for requests received at a web server
in a day: X = # requests from humans/day, X ~ Poi(d;) and Y = # requests from bots/day,
Y ~ Poi(A;). Since the convolution of Poisson random variables is also a Poisson we know that the
total number of requests (X +Y) is also a Poisson (X +Y) ~ Poi(A; + A3). What is the probability
of having k human requests on a particular day given that there were n total requests?
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3.2 Example: Web requests, redux

Let N be the number of requests to a web server/day and that N ~ Poi(A). Each request comes from
a human (probability = p) or from a “bot” (probability = (1 — p)), independently. Define X to be
the number of requests from humans/day and Y to be the number of requests from bots/day.

Since requests come in independently, the probability of X conditioned on knowing the number of
requests is a Binomial. Specifically, conditioned:

(X|N) ~ Bin(N, p)
(YIN) ~ Bin(N,1 - p)

Calculate the probability of getting exactly i human requests and j bot requests. Start by expanding
using the chain rule:
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We can calculate each term in this expression:
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Now we can put those together and simplify:
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As an exercise you can simplify this expression into two independent Poisson distributions.



Convolution: Sum of independent random variables

So far, we have had it easy: If our two independent random variables are both Poisson, or both
Binomial with the same probability of success, then their sum has a nice, closed form. In the
general case, however, the distribution of two independent random variables can be calculated as a
convolution of probability distributions.

For two independent random variables, you can calculate the CDF or the PDF of the sum of two
random variables using the following formulas:
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Most importantly, convolution is the process of finding the sum of the random variables themselves,
and not the process of adding together probabilities.

Example: Proof of sum of Poissons

Let’s go about proving that the sum of two independent Poisson random variables is also Poisson.
Let X ~ Poi(4;) and Y ~ Poi(4;) be two independent random variables, and Z = X + Y. What is
P(Z =n)?
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Note that the Binomial Theorem (which we did not cover in this class, but is often used in
contexts like expanding polynomials) says that for two numbers a and » and positive integer n,

(a+b)" =37 (1)a* bk,
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