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Conditional Expectation
Based on a chapter by Chris Piech

Pre-recorded lecture: Sections 1 and 2 (up to 2.2).
In-lecture: Sections 2.3 and 2.4.
Not covered: Section 2.5.

1 Conditional Distributions
Before we looked at conditional probabilities for events. Here we formally go over conditional
probabilities for random variables. The equations for the discrete case is an intuitive extension of
our understanding of conditional probability:

1.1 Discrete
The conditional probability mass function (PMF) for the discrete case:

𝑝𝑋 |𝑌 (𝑥 |𝑦) = 𝑃(𝑋 = 𝑥 |𝑌 = 𝑦) = 𝑃(𝑋 = 𝑥,𝑌 = 𝑦)
𝑃(𝑌 = 𝑦) =

𝑝𝑋,𝑌 (𝑥, 𝑦)
𝑝𝑌 (𝑦)

The conditional cumulative density function (CDF) for the discrete case:

𝐹𝑋 |𝑌 (𝑎 |𝑦) = 𝑃(𝑋 ≤ 𝑎 |𝑌 = 𝑦) =
∑

𝑥≤𝑎 𝑝𝑋,𝑌 (𝑥, 𝑦)
𝑝𝑌 (𝑦)

=
∑
𝑥≤𝑎

𝑝𝑋 |𝑌 (𝑥 |𝑦)

1.2 Example: Web Server Requests, Redux
Let’s say we have two independent random Poisson variables for requests received at a web server in
a day: 𝑋 = # requests from humans/day, 𝑋 ∼ Poi(𝜆1) and𝑌 = # requests from bots/day,𝑌 ∼ Poi(𝜆2).
Since the convolution of Poisson random variables is also a Poisson we know that the total number
of requests (𝑋 + 𝑌 ) is also a Poisson (𝑋 + 𝑌 ) ∼ Poi(𝜆1 + 𝜆2). What is the probability of having 𝑘
human requests on a particular day given that there were 𝑛 total requests?

𝑃(𝑋 = 𝑘 |𝑋 + 𝑌 = 𝑛) = 𝑃(𝑋 = 𝑘,𝑌 = 𝑛 − 𝑘)
𝑃(𝑋 + 𝑌 = 𝑛) =

𝑃(𝑋 = 𝑘)𝑃(𝑌 = 𝑛 − 𝑘)
𝑃(𝑋 + 𝑌 = 𝑛)

=
𝑒−𝜆1𝜆𝑘

1
𝑘!

·
𝑒−𝜆2𝜆𝑛−𝑘2
(𝑛 − 𝑘)! · 𝑛!

𝑒1(𝜆1+𝜆2) (𝜆1 + 𝜆2)𝑛

=

(
𝑛

𝑘

) (
𝜆1

𝜆1 + 𝜆2

) 𝑘 (
𝜆2

𝜆1 + 𝜆2

)𝑛−𝑘
∼ Bin

(
𝑛,

𝜆2
𝜆1 + 𝜆2

)
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2 Conditional Expectation
We have gotten to know a kind and gentle soul, conditional probability. And we know another
funky fool, expectation. Let’s get those two crazy kids to play together.

Let 𝑋 and 𝑌 be jointly discrete random variables. We define the conditional expectation of 𝑋 given
𝑌 = 𝑦 to be:

𝐸 [𝑋 |𝑌 = 𝑦] =
∑
𝑥

𝑥𝑝𝑋 |𝑌 (𝑥 |𝑦)

2.1 Properties of Conditional Expectation
Here are some helpful, intuitive properties of conditional expectation:

𝐸 [𝑔(𝑋) |𝑌 = 𝑦] =
∑
𝑥

𝑔(𝑥)𝑝𝑋 |𝑌 (𝑥 |𝑦) if X and Y are discrete

𝐸 [
𝑛∑
𝑖=1

𝑋𝑖 |𝑌 = 𝑦] =
𝑛∑
𝑖=1

𝐸 [𝑋𝑖 |𝑌 = 𝑦]

2.2 Law of Total Expectation
The law of total expectation states that: 𝐸 [𝐸 [𝑋 |𝑌 ]] = 𝐸 [𝑋].

What?! How is that a thing? Check out this proof:

𝐸 [𝐸 [𝑋 |𝑌 ]] =
∑
𝑦

𝐸 [𝑋 |𝑌 = 𝑦]𝑃(𝑌 = 𝑦)

=
∑
𝑦

∑
𝑥

𝑥𝑃(𝑋 = 𝑥 |𝑌 = 𝑦)𝑃(𝑌 = 𝑦)

=
∑
𝑦

∑
𝑥

𝑥𝑃(𝑋 = 𝑥,𝑌 = 𝑦)

=
∑
𝑥

∑
𝑦

𝑥𝑃(𝑋 = 𝑥,𝑌 = 𝑦)

=
∑
𝑥

𝑥
∑
𝑦

𝑃(𝑋 = 𝑥,𝑌 = 𝑦)

=
∑
𝑥

𝑥𝑃(𝑋 = 𝑥)

= 𝐸 [𝑋]
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2.3 Example: Conditional Dice Sums
You roll two 6-sided dice 𝐷1 and 𝐷2. Let 𝑋 = 𝐷1 + 𝐷2 and let 𝑌 = the value of 𝐷2.

• What is 𝐸 [𝑋 |𝑌 = 6]?

𝐸 [𝑋 |𝑌 = 6] =
∑
𝑥

𝑥𝑃(𝑋 = 𝑥 |𝑌 = 6)

=

(
1
6

)
(7 + 8 + 9 + 10 + 11 + 12) = 57

6
= 9.5,

which makes intuitive sense since 6 + 𝐸 [value of 𝐷1] = 6 + 3.5.

• What is 𝐸 [𝑋 |𝑌 = 𝑦], where 𝑦 = 1, . . . , 6?
Let 𝑊 = the value of 𝐷1. Then 𝑋 = 𝑌 +𝑊 , and 𝑌 and 𝑊 are independent.

𝐸 [𝑋 |𝑌 = 𝑦] = 𝐸 [𝑊 + 𝑌 |𝑌 = 𝑦] = 𝐸 [𝑊 + 𝑦 |𝑌 = 𝑦]
= 𝑦 + 𝐸 [𝑊 |𝑌 = 𝑦] (𝑦 is a constant with respect to𝑊)
= 𝑦 +

∑
𝑤

𝑤𝑃(𝑊 = 𝑤 |𝑌 = 𝑦)

= 𝑦 +
∑
𝑤

𝑤𝑃(𝑊 = 𝑤) (𝑊,𝑌 are independent)

= 𝑦 + 3.5

Note that 𝐸 [𝑋 |𝑌 = 𝑦] depends on the value 𝑦. In other words, 𝐸 [𝑋 |𝑌 ] is a function of the
random variable 𝑌 .

2.4 Example: Recursive Code
Consider the following code with random numbers:

int Recurse() {
int x = randomInt(1, 3); // Equally likely values
if (x == 1) return 3;
else if (x == 2) return (5 + Recurse());
else return (7 + Recurse());

}

Let 𝑌 = value returned by “Recurse". What is 𝐸 [𝑌 ]. In other words, what is the expected return
value. Note that this is the exact same approach as calculating the expected run time.

𝐸 [𝑌 ] = 𝐸 [𝑌 |𝑋 = 1]𝑃(𝑋 = 1) + 𝐸 [𝑌 |𝑋 = 2]𝑃(𝑋 = 2) + 𝐸 [𝑌 |𝑋 = 3]𝑃(𝑋 = 3)
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First lets calculate each of the conditional expectations:

𝐸 [𝑌 |𝑋 = 1] = 3
𝐸 [𝑌 |𝑋 = 2] = 𝐸 [5 + 𝑌 ] = 5 + 𝐸 [𝑌 ]
𝐸 [𝑌 |𝑋 = 3] = 𝐸 [7 + 𝑌 ] = 7 + 𝐸 [𝑌 ]

Now we can plug those values into the equation. Note that the probability of X taking on 1, 2, or 3
is 1/3:

𝐸 [𝑌 ] = 𝐸 [𝑌 |𝑋 = 1]𝑃(𝑋 = 1) + 𝐸 [𝑌 |𝑋 = 2]𝑃(𝑋 = 2) + 𝐸 [𝑌 |𝑋 = 3]𝑃(𝑋 = 3)
= 3(1/3) + (5 + 𝐸 [𝑌 ]) (1/3) + (7 + 𝐸 [𝑌 ]) (1/3)
= 15

2.5 Example: Random Number of Random Variables
Each of 100 people are equally likely to visit (or not visit) the website BestJokesEver.com.
Each person who visits the website will spend a certain number of minutes on the website per day,
distributed as Poi(8). The number of people and the time that each person spends on the website
are independent. Let 𝑊 be the time spent by all visitors on a given day. What is 𝐸 [𝑊]?

Solution : Let 𝑋 be the number of people of 100 who visit the website. 𝑋 ∼ Bin(100, 0.5). Let 𝑌𝑖
be the number of minutes spent per day by visitor 𝑖, from 𝑖 = 1, . . . , 𝑋 , where 𝑌𝑖 ∼ Poi(8). Finally,
define 𝑊 =

∑𝑋
𝑖=1𝑌𝑖.

𝐸 [𝑊] = 𝐸

[
𝑋∑
𝑖=1

𝑌𝑖

]
= 𝐸

[
𝐸

[
𝑋∑
𝑖=1

𝑌𝑖 |𝑋
] ]

For a given 𝑋 = 𝑥, we know that for all 𝑖, 𝑃(𝑌𝑖 = 𝑦 |𝑋 = 𝑥) = 𝑃(𝑌𝑖 = 𝑦), because 𝑌𝑖 and 𝑋 are
independent. Therefore

𝐸

[
𝑋∑
𝑖=1

𝑌𝑖 |𝑋 = 𝑥

]
=

𝑥∑
𝑖=1

𝐸 [𝑌𝑖 |𝑋 = 𝑥] =
𝑥∑
𝑖=1

𝐸 [𝑌𝑖] = 𝑥𝐸 [𝑌1]

and thus 𝐸 [∑𝑋
𝑖=1𝑌𝑖 |𝑋] = 𝑋𝐸 [𝑌1], where we note that 𝐸 [𝑌𝑖] = 𝐸 [𝑌1] for all 𝑖. Again, since 𝑌1 and

𝑋 are independent,

𝐸 [𝑊] = 𝐸 [𝑋𝐸 [𝑌1]] = 𝐸 [𝑌1]𝐸 [𝑋] = 8 · 50 = 400.
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2.6 Example: Hiring Software Engineers
You are interviewing 𝑛 software engineer candidates and will hire only 1 candidate. All orderings
of candidates are equally likely. Right after each interview you must decide to hire or not hire.
You can not go back on a decision. At any point in time you can know the relative ranking of the
candidates you have already interviewed.

The strategy that we propose is that we interview the first 𝑘 candidates and reject them all. Then
you hire the next candidate that is better than all of the first 𝑘 candidates. What is the probability
that the best of all the 𝑛 candidates is hired for a particular choice of 𝑘? Let’s denote that result
𝑃𝑘 (𝐵𝑒𝑠𝑡). Let 𝑋 be the position in the ordering of the best candidate:

𝑃𝑘 (𝐵𝑒𝑠𝑡) =
𝑛∑
𝑖=1

𝑃𝑘 (𝐵𝑒𝑠𝑡 |𝑋 = 𝑖)𝑃(𝑋 = 𝑖)

=
1
𝑛

𝑛∑
𝑖=1

𝑃𝑘 (𝐵𝑒𝑠𝑡 |𝑋 = 𝑖) since each position is equally likely

What is 𝑃𝑘 (𝐵𝑒𝑠𝑡 |𝑋 = 𝑖)? if 𝑖 ≤ 𝑘 then the probability is 0 because the best candidate will be
rejected without consideration. Sad times. Otherwise we will chose the best candidate, who is in
position 𝑖, only if the best of the first 𝑖 − 1 candidates is among the first 𝑘 interviewed. If the best
among the first 𝑖 − 1 is not among the first 𝑘 , that candidate will be chosen over the true best. Since
all orderings are equally likely the probability that the best among the 𝑖 − 1 candidates is in the first
𝑘 is:

𝑘

𝑖 − 1
if 𝑖 > 𝑘

Now we can plug this back into our original equation:

𝑃𝑘 (𝐵𝑒𝑠𝑡) =
1
𝑛

𝑛∑
𝑖=1

𝑃𝑘 (𝐵𝑒𝑠𝑡 |𝑋 = 𝑖)

=
1
𝑛

𝑛∑
𝑖=𝑘+1

𝑘

𝑖 − 1
since we know 𝑃𝑘 (𝐵𝑒𝑠𝑡 |𝑋 = 𝑖)

≈ 1
𝑛

∫ 𝑛

𝑖=𝑘+1

𝑘

𝑖 − 1
𝑑𝑖 By Riemann Sum approximation

=
𝑘

𝑛
ln(𝑖 = 1)

����𝑛
𝑘+1

=
𝑘

𝑛
ln

𝑛 − 1
𝑘

≈ 𝑘

𝑛
ln

𝑛

𝑘

If we think of 𝑃𝑘 (𝐵𝑒𝑠𝑡) = 𝑘
𝑛 ln 𝑛

𝑘 as a function of 𝑘 we can take find the value of 𝑘 that optimizes it
by taking its derivative and setting it equal to 0. The optimal value of 𝑘 is 𝑛/𝑒. Where 𝑒 is Euler’s
number.
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