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Continuous Joint Distributions
Based on a chapter by Chris Piech and Lisa Yan

Pre-recorded lecture: Sections 1 to 3.
In-lecture: Section 5 (Exercises)
Not covered: Section 4 (Joint CDF)

1 Continuous Joint Distributions
Of course joint variables don’t have to be discrete only, they can also be continuous. As an example:
consider throwing darts at a dart board. Because a dart board is two dimensional, it is natural to
think about the 𝑋 location of the dart and the𝑌 location of the dart as two random variables that are
varying together (aka they are joint). However since x and y positions are continuous we are going
to need new language to think about the likelihood of different places a dart could land. Just like
in the non-joint case continuous is a little tricky because it isn’t easy to think about the probability
that a dart lands at a location defined to infinite precision. What is the probability that a dart lands
at exactly (𝑋=456.234231234122355, 𝑌 = 532.12344123456)?:

Lets build some intuition by first starting with discretized grids. On the left of the image above you
could imagine where your dart lands is one of 25 different cells in a grid. We could reason about the
probabilities now! But we have lost all nuance about how likelihood is changing within a given cell.
If we make our cells smaller and smaller we eventually will get a second derivative of probability:
once again a probability density function. If we integrate under this joint-density function in both
the x and y dimension we will get the probability that x takes on the values in the integrated range
and y takes on the values in the integrated range!

Random variables 𝑋 and 𝑌 are Jointly Continuous if there exists a Probability Density Function
(PDF) 𝑓𝑋,𝑌 such that:

𝑃(𝑎1 < 𝑋 ≤ 𝑎2, 𝑏1 < 𝑌 ≤ 𝑏2) =
∫ 𝑎2

𝑎1

∫ 𝑏2

𝑏1

𝑓𝑋,𝑌 (𝑥, 𝑦)𝑑𝑦 𝑑𝑥
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Using the PDF we can compute marginal probability densities:

𝑓𝑋 (𝑎) =
∫ ∞

−∞
𝑓𝑋,𝑌 (𝑎, 𝑦)𝑑𝑦

𝑓𝑌 (𝑏) =
∫ ∞

−∞
𝑓𝑋,𝑌 (𝑥, 𝑏)𝑑𝑥

2 Independence with Multiple RVs (Continuous Case)
Two continuous random variables 𝑋 and 𝑌 are called independent if:

𝑃(𝑋 ≤ 𝑎,𝑌 ≤ 𝑏) = 𝑃(𝑋 ≤ 𝑎)𝑃(𝑌 ≤ 𝑏) for all 𝑎, 𝑏

This can be stated equivalently as:

𝐹𝑋,𝑌 (𝑎, 𝑏) = 𝐹𝑋 (𝑎)𝐹𝑌 (𝑏) for all 𝑎, 𝑏
𝑓𝑋,𝑌 (𝑎, 𝑏) = 𝑓𝑋 (𝑎) 𝑓𝑌 (𝑏) for all 𝑎, 𝑏

More generally, if you can factor the joint density function, then your continuous random variables
are independent:

𝑓𝑋,𝑌 (𝑥, 𝑦) = ℎ(𝑥)𝑔(𝑦) where −∞ < 𝑥, 𝑦 < ∞

3 Bivariate Normal Distribution
Many times, we talk about multiple Normal (Gaussian) random variables, otherwise known as
Multivariate Normal (Gaussian) distributions. Here, we talk about the two-dimensional case, called
a Bivariate Normal Distribution. 𝑋1 and 𝑋2 follow a bivariate normal distribution if their joint PDF
is

𝑓𝑋1,𝑋2 (𝑥1, 𝑥2) =
1

2𝜋𝜎1𝜎2
√

1 − 𝜌2
𝑒

−
1

2(1 − 𝜌2)
©«
(𝑥1 − 𝜇1)2

𝜎2
1

−
2𝜌(𝑥1 − 𝜇1) (𝑥2 − 𝜇2)

𝜎1𝜎2
+
(𝑥2 − 𝜇2)2

𝜎2
2

ª®¬.
We often write the distribution of the vector X = (𝑋1, 𝑋2) as X ∼ N(𝝁,𝚺), where 𝝁 = (𝜇1, 𝜇2) is

a mean vector and 𝚺 =

[
𝜎2

1 𝜌𝜎1𝜎2
𝜌𝜎1𝜎2 𝜎2

2

]
is a covariance matrix.

Note that 𝜌 is the correlation between 𝑋1 and 𝑋2, and 𝜎1, 𝜎2 > 0. We defer to Ross Chapter 6,
Example 5d, for the full proof, but it can be shown that the marginal distributions of 𝑋1 and 𝑋2 are
𝑋1 ∼ N(𝜇1, 𝜎

2
1 ) and 𝑋2 ∼ N(𝜇2, 𝜎

2
2 ), respectively.
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3.1 Example: Independent Normal RVs

Let X = (𝑋1, 𝑋2) ∼ N (𝝁,𝚺), where 𝝁 = (𝜇1, 𝜇2) and 𝚺 =

[
𝜎2

1 0
0 𝜎2

2

]
, a diagonal covariance

matrix.

Noting that the correlation between 𝑋1 and 𝑋2 is 𝜌 = 0:

𝑓𝑋1,𝑋2 (𝑥1, 𝑥2) =
1

2𝜋𝜎1𝜎2
𝑒

−
1
2
©«
(𝑥1 − 𝜇1)2

𝜎2
1

+
(𝑥2 − 𝜇2)2

𝜎2
2

ª®¬ = 1
𝜎1

√
2𝜋

𝑒−(𝑥1−𝜇1)2/(2𝜎2
1 )

1
𝜎2

√
2𝜋

𝑒−(𝑥2−𝜇2)2/(2𝜎2
2 )

In other words, for Bivariate Normal RVs, if Cov(𝑋1, 𝑋2) = 0, then 𝑋1 and 𝑋2 are independent.
Wild!

4 Joint CDFs
For two random variables 𝑋 and 𝑌 that are jointly distributed, the joint cumulative distribution
function 𝐹𝑋,𝑌 can be defined as

𝐹𝑋,𝑌 (𝑎, 𝑏) = 𝑃(𝑋 ≤ 𝑎,𝑌 ≤ 𝑏)

𝐹𝑋,𝑌 (𝑎, 𝑏) =
∑
𝑥≤𝑎

∑
𝑦≤𝑏

𝑝𝑋,𝑌 (𝑥, 𝑦) 𝑋,𝑌 discrete

𝐹𝑋,𝑌 (𝑎, 𝑏) =
∫ 𝑎

−∞

∫ 𝑏

−∞
𝑓𝑋,𝑌 (𝑥, 𝑦)𝑑𝑦𝑑𝑥 𝑋,𝑌 continuous

𝑓𝑋,𝑌 (𝑎, 𝑏) =
𝜕2

𝜕𝑎𝜕𝑏
𝐹𝑋,𝑌 (𝑎, 𝑏) 𝑋,𝑌 continuous

It can be shown via geometry that to calculate probabilities of joint distributions, we can use the
CDF as follows, for both jointly discrete and jointly continuous RVs:

𝑃(𝑎1 < 𝑋 ≤ 𝑎2, 𝑏1 < 𝑌 ≤ 𝑏2) = 𝐹𝑋,𝑌 (𝑎2, 𝑏2) − 𝐹𝑋,𝑌 (𝑎1, 𝑏2) − 𝐹𝑋,𝑌 (𝑎2, 𝑏1) + 𝐹𝑋,𝑌 (𝑎1, 𝑏1)
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4.1 Example: Gaussian Blur
Lets make a weight matrix used for Gaussian blur. In the weight matrix, each location in the weight
matrix will be given a weight based on the probability density of the area covered by that grid
square in a Bivariate Normal of independent 𝑋 and 𝑌 , each zero mean with variance 𝜎2. For this
example lets blur using 𝜎 = 3.

Each pixel is given a weight equal to the probability that X and Y are both within the pixel bounds.
The center pixel covers the area where −0.5 ≤ 𝑥 ≤ 0.5 and −0.5 ≤ 𝑦 ≤ 0.5 What is the weight of
the center pixel?

𝑃(−0.5 < 𝑋 < 0.5,−0.5 < 𝑌 < 0.5)
=𝑃(𝑋 < 0.5, 𝑌 < 0.5) − 𝑃(𝑋 < 0.5, 𝑌 < −0.5)
− 𝑃(𝑋 < −0.5, 𝑌 < 0.5) + 𝑃(𝑋 < −0.5, 𝑌 < −0.5)

=𝜙

(
0.5
3

)
· 𝜙

(
0.5
3

)
− 2𝜙

(
0.5
3

)
· 𝜙

(
−0.5

3

)
+ 𝜙

(
−0.5

3

)
· 𝜙

(
−0.5

3

)
=0.56622 − 2 · 0.5662 · 0.4338 + 0.43382 = 0.206

5 Exercises
5.1 Example: Jointly continuous random variables
Suppose that 𝑋 and 𝑌 have the joint PDF 𝑓𝑋,𝑌 (𝑥, 𝑦) = 3𝑒−3𝑥 where 0 < 𝑥 < ∞ and 1 < 𝑦 < 2.
𝑓𝑋,𝑌 (𝑥, 𝑦) = 0 outside of this support. We graph the joint PDF below:
Independence: 𝑋 and𝑌 are independent because the joint PDF can be separated into 𝑔(𝑥) = 3𝐶𝑒−3𝑥

and ℎ(𝑦) = 1/𝐶, where 𝐶 is a constant and (𝑥, 𝑦) are in the support. We can also intuitively look at
the joint PDF and note that for all values of 𝑦, 𝑥 has the same type of exponential curve slope; vice
versa, for all values of 𝑥, 𝑦 looks to have even weight in the range 1 < 𝑦 < 2.



– 5 –

Marginal distributions: We can compute the marginal pdf of 𝑌 by observing that the only value
of 𝐶 for which ℎ(𝑦) is a valid PDF is 𝐶 = 1. Therefore 𝑌 ∼ Uni(𝑎 = 1, 𝑏 = 2), and similarly
𝑋 ∼ Exp(𝜆 = 3).

Expectation of sum: Suppose we wanted to compute 𝐸 [𝑋 + 𝑌 ]. We could compute this using
LOTUS as 𝐸 [𝑋 + 𝑌 ] =

∫ 2
1

∫ ∞
0 (𝑥 + 𝑦)3𝑒−3𝑥 . However, it’s probably easier to use the marginal

distributions of 𝑋 and 𝑌 (since we know them) and compute using linearity of expectation as
𝐸 [𝑋 + 𝑌 ] = 𝐸 [𝑋] + 𝐸 [𝑌 ] = 1/3 + 3/2.

5.2 Example: The joy of meetings
Two people set up a meeting time. Each person arrives independently at a time uniformly between
12pm and 12:30pm. What is the probability that the first person to arrive waits more than 10 minutes
for the other person?

Solution: Let 𝑋 and 𝑌 be the numbers of minutes past 12pm that person 1 and person 2 arrive,
respectively. 𝑋 ∼ Uni(0, 30) and 𝑌 ∼ Uni(0, 30).

We would like to compute the probability of two mutually exclusive events: either person 1 arrives
first and waits more than 10 minutes, in which case 𝑋 + 10 < 𝑌 , or person 4 arrives first and waits
more than 10 minutes, in which case 𝑌 + 10 < 𝑋 . By symmetry, 𝑃(𝑋 + 10 < 𝑌 ) = 𝑃(𝑌 + 10 < 𝑋)
(note that this phrase “by symmetry” means that the joint PDF 𝑓𝑋,𝑌 (𝑥, 𝑦) = 𝑓𝑌,𝑋 (𝑦, 𝑥)), and therefore
we would like to compute

2𝑃(𝑋 + 10 < 𝑌 ) = 2 ·
∬

𝑥+10<𝑦
𝑓𝑋,𝑌 (𝑥, 𝑦) 𝑑𝑥𝑑𝑦 = 2 ·

∬
𝑥+10<𝑦

0≤𝑥,𝑦,≤30

(
1
30

)2
𝑑𝑥𝑑𝑦

30

30 𝑥

𝑦

10

The figure on the right shows the region over which we integrate—
our outer integral bound is 𝑦 ∈ [10, 30] and our inner integral bound
is 𝑥 ∈ [0, 𝑦−10]. We can also determine this mathematically, but it’s
more complicated: The lower bound on 𝑦 arises because 𝑦 > 𝑥 + 10
for all 𝑥 in our target integral, and our minimum 𝑥 is 0. The bounds
on 𝑥 arise from treating the 𝑦 from the outer integral as a constant.
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Our bounds on 𝑥 must respect both the bounds 0 ≤ 𝑥 ≤ 30 and 𝑥 < 𝑦− 10, and therefore we choose
𝑥 ∈ [0, 𝑦 − 10] because 𝑦 − 10 ≤ 30 for all 𝑦 in the PDF’s support.

2𝑃(𝑋 + 10 < 𝑌 ) = 2
302

∫ 30

10

∫ 𝑦−10

0
𝑑𝑥𝑑𝑦 =

2
302 =

∫ 30

10
(𝑦 − 10)𝑑𝑦 =

4
9

5.3 Example: Visualizing the Bivariate Normal Distribution
Suppose that 𝑋 and 𝑌 are distributed as a bivariate normal where 𝐸 [𝑋] = 𝐸 [𝑌 ] = 0. The below
figure shows four possible joint PDFs of (𝑋,𝑌 ) with different covariance matrices Σ. We include
both the 3-D view and top-down view for each joint PDF.

𝑥

𝑦

𝑓
𝑥,
𝑦

𝑥

𝑦

(a) Σ =

[
1 0
0 1

] 𝑥

𝑦

𝑥

𝑦𝑓
𝑥,
𝑦

(b) Σ =

[
1 0.5

0.5 1

]

𝑥

𝑦

𝑓
𝑥,
𝑦

𝑥

𝑦

(c) Σ =

[
1 −0.5

−0.5 1

]

𝑥

𝑥

𝑦

𝑓
𝑥,
𝑦

𝑥

𝑦

(d) Σ =

[
1 0
0 2

]

5.4 Example: Integral practice
Let 𝑋 and 𝑌 be two continuous random variables with joint PDF:

𝑓 (𝑥, 𝑦) =
{

4𝑥𝑦 0 ≤ 𝑥, 𝑦, ≤ 1
0 otherwise

What is 𝑃(𝑋 ≤ 𝑌 )?
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Solution: The big challenge is to determine the bounds of the double integral. If we are looking
for the region of the support where 𝑋 ≤ 𝑌 , then we could for all values of 𝑦 ∈ [0, 1], we integrate
𝑥 from 0 to 𝑦 (thus guaranteeing that 𝑥 ≤ 𝑦. Alternatively, for all values of 𝑥 ∈ [0, 1], we integrate
𝑦 from 𝑥 to 1. We take the former approach below.

𝑃(𝑋 ≤ 𝑌 ) =
∬

𝑥≤𝑦,
0≤𝑥,𝑦,≤1

4𝑥𝑦 𝑑𝑥𝑑𝑦 =
∫ 1

𝑦=0

∫
𝑥≤𝑦

4𝑥𝑦 𝑑𝑥𝑑𝑦 =
∫ 1

𝑦=0

∫ 𝑦

𝑥=0
4𝑥𝑦 𝑑𝑥𝑑𝑦

=
∫ 1

𝑦=0
4𝑦

[
𝑥2

2

] 𝑦
0
𝑑𝑦 =

∫ 1

𝑦=0
2𝑦3𝑑𝑦 =

[
2
4
𝑦4
]1

0
=

1
2

We could also have noticed that 𝑃(𝑋 ≤ 𝑌 ) +𝑃(𝑋 > 𝑌 ) = 1 and because the joint PDF is symmetric,
𝑃(𝑋 ≤ 𝑌 ) = 𝑃(𝑌 ≤ 𝑋) = 𝑃(𝑌 < 𝑋). Therefore 2𝑃(𝑋 ≤ 𝑌 ) = 1, and thus 𝑃(𝑋 ≤ 𝑌 ) = 1/2.

5.5 Example: Imperfection on Disk
Suppose that you have a disk surface, modeled as a circle of radius 𝑅. Suppose that you know that
there is a single point imperfection uniformly distributed on the disk. Therefore the coordinates
(𝑋,𝑌 ) of this imperfection is distributed according to the following joint PDF:

𝑓 (𝑥, 𝑦) =
{

1
𝜋𝑅2 𝑥2 + 𝑦2 ≤ 𝑅2

0 otherwise

What are the marginal distributions of 𝑋 and 𝑌? Are 𝑋 and 𝑌 independent?

Solution: To compute 𝑓𝑋 (𝑥), the marginal PDF of 𝑋 , we note that we must integrate over 𝑦 in the
support, where 𝑥2 + 𝑦2 ≤ 𝑅2 and therefore 𝑦 ∈ [−

√
𝑅2 − 𝑥2,

√
𝑅2 − 𝑥2] for −𝑅 ≤ 𝑥 ≤ 𝑅.

𝑓𝑋 (𝑥) =
∫ ∞

−∞
𝑓𝑋,𝑌 (𝑥, 𝑦) 𝑑𝑦 =

1
𝜋𝑅2

∫
𝑥2+𝑦2≤𝑅2

𝑑𝑦 where − 𝑅 ≤ 𝑥 ≤ 𝑅

=
1

𝜋𝑅2

∫ √
𝑅2−𝑥2

𝑦=−
√
𝑅2−𝑥2

𝑑𝑦 =
2
√
𝑅2 − 𝑥2

𝜋𝑅2

By symmetry, we observe that we could switch 𝑥 and 𝑦 above and obtain the marginal PDF of 𝑦:

𝑓𝑌 (𝑦) =
2
√
𝑅2 − 𝑦2

𝜋𝑅2 where − 𝑅 ≤ 𝑦 ≤ 𝑅

𝑋 and 𝑌 are not independent; they are dependent because 𝑓𝑋,𝑌 (𝑥, 𝑦) ≠ 𝑓𝑋 (𝑥) 𝑓𝑌 (𝑦).
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