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Central Limit Theorem
Based on a chapter by Chris Piech

Pre-recorded lecture: Sections 1 and 2
In-lecture: Section 3

1 Independent and Identically Distributed Random Variables
The variables 𝑋1, 𝑋2, . . . , 𝑋𝑛 are independent and identically distributed (often written i.i.d., iid,
or IID) if 𝑋1, 𝑋2, . . . , 𝑋𝑛 are independent and each have the same distribution—meaning they have
the same PMF (if 𝑋𝑖 is discrete) or PDF (if 𝑋𝑖 is continuous).

1.1 Examples of IID Random Variables
• For 𝑖 = 1, . . . , 𝑛, let 𝑋𝑖 ∼ Exp(𝜆), where the 𝑋𝑖 are independent. 𝑋1, 𝑋2, . . . , 𝑋𝑛 are IID.
• For 𝑖 = 1, . . . , 𝑛, let 𝑋𝑖 ∼ Exp(𝜆𝑖), where the 𝑋𝑖 are independent. 𝑋1, 𝑋2, . . . , 𝑋𝑛 are not IID

(unless 𝜆𝑖 = 𝜆 for some constant 𝜆 and 𝑖 = 1, . . . , 𝑛).
• For 𝑖 = 1, . . . , 𝑛, let 𝑋𝑖 ∼ Exp(𝜆), where 𝑋1 = 𝑋2 = 𝑋𝑛. 𝑋1, 𝑋2 . . . , 𝑋𝑛 are not IID because

the 𝑋𝑖 are dependent.
• For 𝑖 = 1, . . . , 𝑛, let 𝑋𝑖 ∼ Bin(𝑛𝑖, 𝑝), where the 𝑋𝑖 are independent. 𝑋1, 𝑋2, . . . , 𝑋𝑛 are not

IID (unless 𝑛𝑖 = 𝑛 for some constant 𝑛 and 𝑖 = 1, . . . , 𝑛).

2 The Theory
The Central Limit Theorem (CLT) proves that the averages of samples from any distribution
themselves must be normally distributed. Consider IID random variables 𝑋1, 𝑋2 . . . such that
𝐸 [𝑋𝑖] = 𝜇 and Var(𝑋𝑖) = 𝜎2. Let

�̄� =
1
𝑛

𝑛∑
𝑖=1

𝑋𝑖

The Central Limit Theorem states:

�̄� ∼ 𝑁 (𝜇, 𝜎
2

𝑛
) as 𝑛 → ∞

It is sometimes expressed in terms of the standard normal, 𝑍:

𝑍 =

(∑𝑛
𝑖=1 𝑋𝑖

)
− 𝑛𝜇

𝜎
√
𝑛

as 𝑛 → ∞

At this point you probably think that the Central Limit Theorem is awesome. But it gets even better.
With some algebraic manipulation we can show that if the sample mean of IID random variables
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is normal, it follows that the sum of equally weighted IID random variables must also be normal.
Let’s call the sum of IID random variables 𝑌 :

𝑌 =
𝑛∑
𝑖=1

𝑋𝑖 = 𝑛 · �̄� If we define 𝑌 to be the sum of our variables

∼ 𝑁 (𝑛𝜇, 𝑛2𝜎
2

𝑛
) Since �̄� is a normal and 𝑛 is a constant.

∼ 𝑁 (𝑛𝜇, 𝑛𝜎2) By simplifying.

In summary, the Central Limit Theorem explains that both the sample mean of IID variables is
normal (regardless of what distribution the IID variables came from) and that the sum of equally
weighted IID random variables is normal (again, regardless of the underlying distribution).

Most textbooks will tell you that the CLT holds if 𝑛 ≥ 30 (where 𝑛 is the number of IID ran-
dom variables you are summing together), but the CLT can hold for smaller 𝑛 depending on the
distribution of your IID random variables.

There are several proofs of the Central Limit Theorem, one of which is in Section 8.3 of the Ross
textbook (10th edition). We encourage you to find one that resonates with you.

Normal approximation of the Binomial random variable
Back in Lecture 10, we discussed that the Binomial random variable could be approximated with
a Normal random variable (with continuity correction). The justification for this approximation
actually comes from the Central Limit Theorem.

Suppose we have a Binomial random variable, 𝑋 where 𝑋 ∼ Bin(𝑛, 𝑝). We can rewrite 𝑋 =
∑𝑛

𝑖=1 𝑋𝑖,
where 𝑋𝑖 ∼ Ber(𝑝) for 𝑖 = 1, . . . , 𝑛 and all 𝑋𝑖 are independent. By definition, 𝑋1, 𝑋2, . . . , 𝑋𝑛 are
IID and therefore 𝑋 is the sum of IID random variables. Note that each 𝑋𝑖 has mean 𝜇 = 𝑝 and
variance 𝑝(1 − 𝑝). Therefore as 𝑛 grows large, 𝑋 ∼ N(𝑛𝜇 = 𝑛𝑝, 𝑛𝜎2 = 𝑛𝑝(1 − 𝑝)).

Example: Sum of Uniform random variables
Let 𝑋 =

∑𝑛
𝑖=1 𝑋𝑖 be the sum of IID random variables, where 𝑋𝑖 ∼ Uni(0, 1). Note that 𝜇 = 𝐸 [𝑋𝑖] =

1/2 and 𝜎2 = Var(𝑋𝑖) = 1/12, for 𝑖 = 1, . . . , 𝑛.

Below, we plot the distribution of 𝑋 and its normal approximation 𝑌 ∼ N(𝑛𝜇, 𝑛𝜎2) for different
values of 𝑛. Note that even when 𝑛 = 10 < 30, the CLT is already a pretty good approximation to
the true sum.
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3 Exercises
Example: Dice
You will roll a 6 sided dice 10 times. Let 𝑋 be the total value of all 10 dice = 𝑋1 + 𝑋2 + · · · + 𝑋10.
You win the game if 𝑋 ≤ 25 or 𝑋 ≥ 45. Use the Central Limit Theorem to calculate the probability
that you win.

Recall that 𝐸 [𝑋𝑖] = 3.5 and Var(𝑋𝑖) = 35
12 .

𝑃(𝑋 ≤ 25 or 𝑋 ≥ 45) = 1 − 𝑃(25.5 ≤ 𝑋 ≤ 44.5)

= 1 − 𝑃

(
25.5 − 10(3.5)√

35/12
√

10
≤ 𝑋 − 10(3.5)√

35/12
√

10
≤ 44.5 − 10(3.5)√

35/12
√

10

)
≈ 1 − (2Φ(1.76) − 1) ≈ 2(1 − 0.9608) = 0.0784

Website crashes
Let 𝑋 be the number of visitors to a website, where 𝑋 ∼ Poi(100). The server crashes if there are
more than 120 requests in a minute. The probability that the server crashes in the next minute can
be computed exactly as 𝑃(𝑋 ≥ 120) = ∑∞

𝑘=120
100𝑘𝑒−100

𝑘! ≈ 0.0282.

We can also approximate this probability using the Central Limit Theorem. Recall that the sum of
independent Poisson random variables is also Poisson. We can therefore arbitrarily define 𝑋 to be
a sum of independent Poisson random variables 𝑋1, . . . , 𝑋𝑛, each of which covers exactly 1/𝑛 of
the minute, for some value of 𝑛. Then 𝑋𝑖 ∼ Poi(100/𝑛), and therefore 𝑋1, . . . , 𝑋𝑛 are IID.
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Define 𝜇 = 𝐸 [𝑋𝑖] = 100/𝑛 and 𝜎2 = Var(𝑋𝑖) = 100/𝑛. Then we can approximate
∑𝑛

𝑖=1 𝑋𝑖 ≈ 𝑌 ∼
N(𝑛𝜇 = 100, 𝑛𝜎2 = 100). With continuity correction, 𝑃(𝑋 ≥ 120) ≈ 𝑃(𝑌 ≥ 119.5) ≈ 0.0256.

Example: Clock running time
Say you have a new algorithm and you want to test its running time. You have an idea of the variance
of the algorithm’s run time: 𝜎2 = 4sec2 but you want to estimate the mean: 𝜇 = 𝑡 sec. You can run
the algorithm repeatedly (IID trials). How many trials do you have to run so that your estimated
runtime = 𝑡 ± 0.5 with 95% certainty? Let 𝑋𝑖 be the run time of the 𝑖-th run (for 1 ≤ 𝑖 ≤ 𝑛).

0.95 = 𝑃(−0.5 ≤
∑𝑛

𝑖=1 𝑋𝑖

𝑛
− 𝑡 ≤ 0.5)

By the central limit theorem, the standard normal 𝑍 must be equal to:

𝑍 =

(∑𝑛
𝑖=1 𝑋𝑖

)
− 𝑛𝜇

𝜎
√
𝑛

=

(∑𝑛
𝑖=1 𝑋𝑖

)
− 𝑛𝑡

2
√
𝑛

Now we rewrite our probability inequality so that the central term is 𝑍:

0.95 = 𝑃

(
−0.5 ≤

∑𝑛
𝑖=1 𝑋𝑖

𝑛
− 𝑡 ≤ 0.5

)
= 𝑃

(
−0.5

√
𝑛

2
≤

∑𝑛
𝑖=1 𝑋𝑖

𝑛
− 𝑡 ≤ 0.5

√
𝑛

2

)
= 𝑃

(
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√
𝑛

2
≤

√
𝑛

2

∑𝑛
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𝑛
−
√
𝑛

2
𝑡 ≤ 0.5

√
𝑛

2

)
= 𝑃

(
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√
𝑛

2
≤

∑𝑛
𝑖=1 𝑋𝑖

2
√
𝑛

−
√
𝑛

√
𝑛

√
𝑛𝑡

2
≤ 0.5

√
𝑛

2

)
= 𝑃

(
−0.5

√
𝑛

2
≤

∑𝑛
𝑖=1 𝑋𝑖 − 𝑛𝑡

2
√
𝑛

≤ 0.5
√
𝑛

2

)
= 𝑃

(
−0.5

√
𝑛

2
≤ 𝑍 ≤ 0.5

√
𝑛

2

)
And now we can find the value of 𝑛 that makes this equation hold.

0.95 = Φ

(√
𝑛

4

)
−Φ

(
−
√
𝑛

4

)
= Φ

(√
𝑛

4

)
−

(
1 −Φ

(√
𝑛

4

))
= 2Φ

(√
𝑛

4

)
− 1

0.975 = Φ(
√
𝑛

4
)

Φ−1(0.975) =
√
𝑛

4

1.96 =

√
𝑛

4
𝑛 = 61.4

Thus it takes 62 runs. If you are interested in how this extends to cases where the variance is
unknown, look into variations of the students’ t-test.
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