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Maximum Likelihood Estimation
Based on a chapter by Chris Piech

Pre-recorded lecture: Up to Section 3.1
In-lecture: Sections 3.2, 3.3.
Lecture 21: Section 3.5 Not covered: Section 3.4

We have learned many different distributions for random variables, and all of those distributions
had parameters: the numbers that you provide as input when you define a random variable. So
far when we were working with random variables, we either were explicitly told the values of the
parameters, or we could divine the values by understanding the process that was generating the
random variables.

What if we don’t know the values of the parameters and we can’t estimate them from our own expert
knowledge? What if instead of knowing the random variables, we have a lot of examples of data
generated with the same underlying distribution? In this chapter we are going to learn formal ways
of estimating parameters from data.

These ideas are critical for artificial intelligence. Almost all modern machine learning algorithms
work like this: (1) Specify a probabilistic model that has parameters. (2) Learn the value of those
parameters from data.

1 Parameters
Before we dive into parameter estimation, first let’s revisit the concept of parameters. Given a
model, the parameters are the numbers that yield the actual distribution. In the case of a Bernoulli
random variable, the single parameter was the value 𝑝. In the case of a Uniform random variable,
the parameters are the 𝑎 and 𝑏 values that define the min and max value. Here is a list of random
variables and the corresponding parameters. From now on, we are going to use the notation 𝜃 to be
a vector of all the parameters:

Distribution Parameters

Bernoulli(𝑝) 𝜃 = 𝑝

Poisson(𝜆) 𝜃 = 𝜆

Uniform(𝑎, 𝑏) 𝜃 = (𝑎, 𝑏)
Normal(𝜇, 𝜎2) 𝜃 = (𝜇, 𝜎2)
𝑌 = 𝑚𝑋 + 𝑏 𝜃 = (𝑚, 𝑏)

In the real world often you don’t know the “true” parameters, but you get to observe data. Next up,
we will explore how we can use data to estimate the model parameters.
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It turns out there isn’t just one way to estimate the value of parameters. There are two main
approaches: Maximum Likelihood Estimation (MLE) and Maximum A Posteriori (MAP). Both of
these approaches assume that your data are IID samples: 𝑋1, 𝑋2, . . . 𝑋𝑛 where all 𝑋𝑖 are independent
and have the same distribution.

2 Maximum Likelihood
Our first algorithm for estimating parameters is called maximum likelihood estimation (MLE).
The central idea behind MLE is to select that parameters (𝜃) that make the observed data the most
likely.

The data that we are going to use to estimate the parameters are going to be 𝑛 independent and
identically distributed (IID) samples: 𝑋1, 𝑋2, . . . 𝑋𝑛.

2.1 Likelihood
We made the assumption that our data are identically distributed. This means that they must have
either the same probability mass function (if the data are discrete) or the same probability density
function (if the data are continuous). To simplify our conversation about parameter estimation,
we are going to use the notation 𝑓 (𝑋 | 𝜃) to refer to this shared PMF or PDF. Our new notation
is interesting in two ways. First, we have now included a conditional on 𝜃 which is our way of
indicating that the likelihood of different values of 𝑋 depends on the values of our parameters.
Second, we are going to use the same symbol 𝑓 for both discrete and continuous distributions.

What does likelihood mean and how is “likelihood” different than “probability”? In the case of
discrete distributions, likelihood is a synonym for the joint probability of your data. In the case of
continuous distribution, likelihood refers to the joint probability density of your data.

Since we assumed each data point is independent, the likelihood of all our data is the product of
the likelihood of each data point. Mathematically, the likelihood of our data given parameters 𝜃 is:

𝐿 (𝜃) =
𝑛∏
𝑖=1

𝑓 (𝑋𝑖 |𝜃)

For different values of parameters, the likelihood of our data will be different. If we have correct
parameters, our data will be much more probable than if we have incorrect parameters. For that
reason we write likelihood as a function of our parameters (𝜃).

2.2 Maximization
In maximum likelihood estimation (MLE) our goal is to chose values of our parameters (𝜃) that
maximizes the likelihood function from the previous section. We are going to use the notation 𝜃 to
represent the best choice of values for our parameters. Formally, MLE assumes that:

𝜃 = arg max
𝜃

𝐿 (𝜃)

“Arg max” is short for argument of the maximum. The arg max of a function is the value of the
domain at which the function is maximized. It applies for domains of any dimension.
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A cool property of arg max is that since log is a monotonic function, the arg max of a function is
the same as the arg max of the log of the function! That’s nice because logs make the math simpler.
If we find the arg max of the log of likelihood, it will be equal to the arg max of the likelihood.
Therefore, for MLE, we first write the log likelihood function (𝐿𝐿)

𝐿𝐿 (𝜃) = log 𝐿 (𝜃) = log
𝑛∏
𝑖=1

𝑓 (𝑋𝑖 |𝜃) =
𝑛∑
𝑖=1

log 𝑓 (𝑋𝑖 |𝜃)

To use a maximum likelihood estimator, first write the log likelihood of the data given your
parameters. Then chose the value of parameters that maximize the log likelihood function. Argmax
can be computed in many ways. All of the methods that we cover in this class require computing
the first derivative of the function.

3 Maximum Likelihood Estimators of Common Random Variables
3.1 Bernoulli MLE Estimation
For our first example, we are going to use MLE to estimate the 𝑝 parameter of a Bernoulli
distribution. We are going to make our estimate based on 𝑛 data points which we will refer to as IID
random variables 𝑋1, 𝑋2, . . . 𝑋𝑛. Every one of these random variables is assumed to be a sample
from the same Bernoulli, with the same 𝑝, 𝑋𝑖 ∼ Ber(𝑝). We want to find out what that 𝑝 is.

Step one of MLE is to write the likelihood of a Bernoulli as a function that we can maximize. Since
a Bernoulli is a discrete distribution, the likelihood is the probability mass function.

You may not have realized before that the probability mass function of a Bernoulli 𝑋 can be written
as 𝑓 (𝑋) = 𝑝𝑋 (1− 𝑝)1−𝑋 . Interesting! Where did that come from? It’s an equation that allows us to
say that the probability that 𝑋 = 1 is 𝑝 and the probability that 𝑋 = 0 is 1 − 𝑝. Convince yourself
that when 𝑋𝑖 = 0 and 𝑋𝑖 = 1 the PMF returns the right probabilities. We write the PMF this way
because it is differentiable.

Let’s do some maximum likelihood estimation:

𝐿 (𝜃) =
𝑛∏
𝑖=1

𝑝𝑋𝑖 (1 − 𝑝)1−𝑋𝑖 first write the likelihood function

𝐿𝐿 (𝜃) =
𝑛∑
𝑖=1

log 𝑝𝑋𝑖 (1 − 𝑝)1−𝑋𝑖 then take the log

=
𝑛∑
𝑖=1

𝑋𝑖 (log 𝑝) + (1 − 𝑋𝑖) log(1 − 𝑝)

= 𝑌 log 𝑝 + (𝑛 − 𝑌 ) log(1 − 𝑝) where 𝑌 =
𝑛∑
𝑖=1

𝑋𝑖
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We have a formula for the log likelihood. Now we simply need to chose the value of 𝑝 that maximizes
our log likelihood. As your calculus teacher probably taught you, one way to find the value which
maximizes a function that is to find the first derivative of the function and set it equal to 0.

𝛿𝐿𝐿 (𝑝)
𝛿𝑝

= 𝑌
1
𝑝
+ (𝑛 − 𝑌 ) −1

1 − 𝑝
= 0

𝑝 =
𝑌

𝑛
=

∑𝑛
𝑖=1 𝑋𝑖

𝑛

All that work to find out that the maximum likelihood estimate is simply the sample mean...

3.2 Poisson MLE Estimation
Practice is key. Let us estimate the best parameter values for a Poisson distribution. Like before, sup-
pose we have 𝑛 samples from our Poisson, which we represent as random variables 𝑋1, 𝑋2, . . . , 𝑋𝑛.
We assume that for all 𝑖, 𝑋𝑖 are IID and 𝑋𝑖 ∼ Poi(𝜆). Our parameter is therefore 𝜃 = 𝜆. The PMF
of a Poisson is 𝑓 (𝑥 |𝜆) = 𝑒−𝜆𝜆𝑋/𝑋!. Let’s write the log-likelihood function first:

𝐿 (𝜃) =
𝑛∏
𝑖=1

𝑒−𝜆𝜆𝑋𝑖

𝑋𝑖!
(likelihood function)

𝐿𝐿 (𝜃) =
𝑛∑
𝑖=1

−𝜆 log 𝑒 + 𝑋𝑖 log𝜆 − log(𝑋𝑖!) (log-likelihood function)

= −𝑛𝜆 + log𝜆
𝑛∑
𝑖=1

𝑋𝑖 −
𝑛∑
𝑖=1

log(𝑋𝑖!) (use log with base 𝑒)

Then, we differentiate with respect to our parameter 𝜆 and set it equal to 0. Note that
∑𝑛

𝑖=1 log(𝑋𝑖)
is a constant with respect to 𝜆:

𝜕𝐿𝐿 (𝜃)
𝜕𝜆

= −𝑛 + 1
𝜆

𝑛∑
𝑖=1

𝑋𝑖 = 0

Finally, we solve and find that

𝜆̂ =
1
𝑛

𝑛∑
𝑖=1

𝑋𝑖 .

Yup, it’s the sample mean again!

3.3 Uniform MLE Estimation
Coming soon. Stay tuned!
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3.4 Normal MLE Estimation
Let’s keep practicing. Next, we will estimate the best parameter values for a normal distribution.
All we have access to are 𝑛 samples from our normal, which we represent as IID random variables
𝑋1, 𝑋2, . . . 𝑋𝑛. We assume that for all 𝑖, 𝑋𝑖 ∼ 𝑁 (𝜇 = 𝜃0, 𝜎

2 = 𝜃1). This example seems trickier
because a normal has two parameters that we have to estimate. In this case, 𝜃 is a vector with two
values. The first is the mean (𝜇) parameter, and the second is the variance (𝜎2) parameter.

𝐿 (𝜃) =
𝑛∏
𝑖=1

𝑓 (𝑋𝑖 |𝜃)

=
𝑛∏
𝑖=1

1
√

2𝜋𝜃1
𝑒
− (𝑋𝑖−𝜃0)2

2𝜃1 Likelihood for a continuous variable is the PDF

𝐿𝐿 (𝜃) =
𝑛∑
𝑖=1

log
1

√
2𝜋𝜃1

𝑒
− (𝑋𝑖−𝜃0)2

2𝜃1 We want to calculate log likelihood

=
𝑛∑
𝑖=1

[
− log(

√
2𝜋𝜃1) −

1
2𝜃1

(𝑋𝑖 − 𝜃0)2
]

Again, the last step of MLE is to choose values of 𝜃 that maximize the log likelihood function. In
this case, we can calculate the partial derivative of the 𝐿𝐿 function with respect to both 𝜃0 and 𝜃1,
set both equations to equal 0, and then solve for the values of 𝜃. Doing so results in the equations
for the values 𝜇̂ = 𝜃0 and 𝜎2 = 𝜃1 that maximize likelihood. The result is: 𝜇̂ = 1

𝑛

∑𝑛
𝑖=1 𝑋𝑖 and

𝜎2 = 1
𝑛

∑𝑛
𝑖=1(𝑋𝑖 − 𝜇̂)2.

3.5 Multinomial MLE Estimation
Coming soon. Stay tuned!
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