
– 1 –

Lisa Yan and Jerry Cain
CS109

Lecture Notes #25
November 9, 2020

Linear Regression and Gradient Ascent
Based on a chapter by Chris Piech and Lisa Yan

Pre-recorded lecture: Sections 1, 2, 3.1, and 3.3.
In-lecture: Rest of Section 3.

1 Regression
Regression is a second category of Machine Learning prediction algorithms. You have a prediction
function 𝑌 = 𝑔(X) as before, but you would like to predict a 𝑌 that takes on a continuous number.

We won’t elaborate on the regression task too much, because classification (with discrete𝑌) already
has a plethora of modern computer science applications—image recognition, sentiment analysis
of text, and text authorship, to name a few. However, we will explore linear regression (where
we model 𝑔 as a linear function) and learn a truly valuable iterative optimization algorithm (the
“butter” to machine learning’s “bread,” if you will) called gradient ascent.

2 Gradient Ascent Optimization
In many cases we can’t solve for argmax mathematically. Instead we use a computer. To do so
we employ an algorithm called gradient ascent (a classic in optimization theory). The idea behind
gradient ascent is that if you continuously take small steps in the direction of your gradient, you
will eventually make it to a local maxima.

– 2 –

Start with theta as any initial value (often 0). Then take many small steps towards a local maxima.
The new theta after each small step can be calculated as:

𝜃 new
𝑗 = 𝜃 old

𝑗 + 𝜂 · 𝜕𝐿𝐿 (𝜃
old)

𝜕𝜃 𝑗

Where “eta" (𝜂) is the magnitude of the step size that we take. If you keep updating 𝜃 using the
equation above you will (often) converge on good values of 𝜃. As a general rule of thumb, use a
small value of 𝜂 to start. If ever you find that the function value (for the function you are trying
to argmax) is decreasing, your choice of 𝜂 was too large. Here is the gradient ascent algorithm in
pseudo-code:

2.1 Example: Gradient Ascent
Let’s take a function that has an analytical maximum and see how we can use gradient ascent to
reach a computational maximum:

𝑓 (𝑥) = −𝑥2 + 4, where − 1 < 𝑥 < 2.

Analytically, we can set the first derivative to zero and solve.
𝑑𝑓

𝑑𝑥
= −2𝑥 = 0, and therefore

arg max𝑥 𝑓 (𝑥) = 0.

Computationally, we could start at a particular value of 𝑥 and perform gradient ascent to update
𝑥 until we reach the maximal value of 𝑓 (𝑥). The below algorithm starts with an initial guess of
𝑥 = −1.8 and updates with a learning rate 𝜂 = 0.1:

– 3 –

eta = 0.1 # learning rate
x = -1.8 # initial argmax guess
niters = 100 # number of updates

for i in range(niters):
x += eta * (-2*x)

Depending on the learning rate 𝜂 that you pick, gradient ascent will take different steps to converge
to the maximum; if your learning rate is too large, your algorithm may not converge at all. Supposing
we started with an initial guess of 𝑥 = 1.5 and picked different learning rates:

(a) 𝜂 = 0.1 (b) 𝜂 = 0.8 (c) 𝜂 = 1.0

For many of the gradient ascent tasks we study, a reasonable initial guess to start with is 𝑥 = 0.
For more advanced tasks, you will want to perturb the initial guess by some random value (e.g., a
Gaussian around zero).

3 Linear Regression
Suppose we are working with 1-dimensional observations, i.e., X =< 𝑋1 >= 𝑋 . Linear Regression
assumes the following linear model for prediction, which has two parameters: 𝑎 and 𝑏:

𝑌 = 𝑔(X) = 𝑎𝑋 + 𝑏

Using this model, we would like to determine the optimal parameters according to some optimiza-
tion objective. We discuss two approaches: an analytical approach that minimizes mean squared
error, and a computational approach that maximizes training data likelihood. With one important
assumption (which we’ll get to later), the two approaches are equivalent.

– 4 –

3.1 Analytical Solution with Mean Squared Error
For regression tasks, we usually decide a prediction 𝑌 = 𝑔(𝑋) that minimizes the mean squared
error (MSE) “loss” function:

𝜃𝑀𝑆𝐸 = argmin
𝜃

𝐸 [(𝑌 − 𝑌)2] = argmin
𝜃

𝐸 [(𝑌 − 𝑔(X))2] = argmin
𝜃

𝐸 [(𝑌 − 𝑎𝑋 − 𝑏)2]

With our linear prediction model, we determine 𝜃𝑀𝑆𝐸 = (𝑎𝑀𝑆𝐸 , 𝑏𝑀𝑆𝐸) by differentiating the mean
squared error with respect to 𝑎 and 𝑏:

𝜕

𝜕𝑎
𝐸 [(𝑌 − 𝑎𝑋 − 𝑏)2] = 𝐸 [−2(𝑌 − 𝑎𝑋 − 𝑏)𝑋] = −2𝐸 [𝑋𝑌] + 2𝑎𝐸 [𝑋2] + 2𝑏𝐸 [𝑋]

𝜕

𝜕𝑏
𝐸 [(𝑌 − 𝑎𝑋 − 𝑏)2] = 𝐸 [−2(𝑌 − 𝑎𝑋 − 𝑏)] = −2𝐸 [𝑌] + 2𝑎𝐸 [𝑋] + 2𝑏

Setting derivatives to 0 and solving for simultaneous equations:

𝑎𝑀𝑆𝐸 =
𝐸 [𝑋𝑌] − 𝐸 [𝑋]𝐸 [𝑌]
𝐸 [𝑋2] − (𝐸 [𝑋])2 =

Cov(𝑋,𝑌)
Var(𝑋) = 𝜌(𝑋,𝑌)𝜎𝑋

𝜎𝑌

𝑏𝑀𝑆𝐸 = 𝐸 [𝑌] − 𝑎𝐸 [𝑋] = 𝜇𝑌 − 𝑎𝜇𝑋

𝑌 = 𝜌(𝑋,𝑌) 𝜎𝑌
𝜎𝑋

(𝑋 − 𝜇𝑋) + 𝜇𝑌

Wait, those are our best parameters? But we don’t know the distributions of 𝑋 and 𝑌 , and therefore
we don’t know true statistics on 𝑋 and𝑌 . We estimate these statistics based on our observed training
data, Our model is therefore as follows (where 𝑋̄ and 𝑌 are the sample means computed from the
training data:

𝑌 = 𝑔(𝑋 = 𝑥) = 𝜌̂(𝑋,𝑌) 𝜎𝑌
𝜎𝑋

(𝑥 − 𝑋̄) + 𝑌

𝑎̂𝑀𝑆𝐸 =

∑𝑛
𝑖=1(𝑥 (𝑖) − 𝑋̄) (𝑦 (𝑖) − 𝑌)∑𝑛

𝑖=1(𝑥 (𝑖) − 𝑋̄)2

𝑏̂𝑀𝑆𝐸 = 𝑌 − 𝑎̂𝑀𝑆𝐸 𝑋̄

The estimator that minimizes MSE is useful for regression tasks because 𝑌 and 𝑌 tend to be real
numbers, and hence the expected error of 𝐸 [(𝑌 −𝑌)2] will also be a smooth, differentiable function.
On the other hand, for classification tasks, 𝑌 and 𝑌 will be discrete class labels, and therefore the
MSE may not be a smooth, differentiable function—so we’ll need another objective function to
optimize. We’ll talk about this more next time.

– 5 –

3.2 Computational Solution with Maximum Likelihood
That seemed somewhat anticlimactic: we had this optimal prediction function, but we had to
estimate the parameters of the prediction function by averaging the training data. Let’s borrow an
idea from our parameter estimation days by maximizing the likelihood of seeing our training data!

Recall that our training data has 𝑛 datapoints: ((𝑥 (1) , 𝑦 (1)), ((𝑥 (2) , 𝑦 (2)), . . . , ((𝑥 (𝑛) , 𝑦 (𝑛)), generated
i.i.d. according to the joint distribution of 𝑋 and 𝑌 , 𝑓 (𝑋,𝑌 |𝜃). We can model this joint distribution
by incorporating our regression model: 𝑌 = 𝑌 + 𝑍 = 𝑎𝑋 + 𝑏 + 𝑍 , where 𝑌 = 𝑔(𝑋) = 𝑎𝑋 + 𝑏 is our
prediction and 𝑍 is our error (i.e., noise) between our prediction 𝑌 and the actual 𝑌 .

We approach the problem of finding 𝑎 and 𝑏 that maximize the likelihood of our train data by first
finding a distribution involving 𝑌 , 𝑋 , and 𝜃 = (𝑎, 𝑏). We then find the value of 𝜃 that maximizes
the log-likelihood function.

If we assume 𝑍 ∼ N(0, 𝜎2) and 𝑋 follows some unknown distribution, then we can calculate
the conditional distribution of 𝑌 given 𝑋 is some number 𝑥 and we have some parameter values
𝜃 = (𝑎, 𝑏) as simply 𝑌 = 𝑎𝑋 + 𝑏 + 𝑍 . This is just the sum of a Gaussian and a number, thereby
implying that 𝑌 |𝑋, 𝜃 ∼ N(𝑎𝑋 + 𝑏, 𝜎2), which has PDF

𝑓 (𝑌 = 𝑦 |𝑋 = 𝑥, 𝜃) = 1
√

2𝜋𝜎
𝑒
− (𝑦−𝑎𝑥−𝑏)2

2𝜎2 .

3.3 Log conditional likelihood
We’d like to find 𝜃𝑀𝐿𝐸 = (𝑎𝑀𝐿𝐸 , 𝑏𝑀𝐿𝐸) which are parameters that maximize our likelihood
function, 𝐿 (𝜃). It turns out that for regression tasks (and classification tasks, which we’ll talk about
next time), it’s often easier to maximize log conditional likelihood—since our problem often has
a conditional distribution of 𝑌 given 𝑋 and parameter 𝜃.

We can prove that 𝜃𝑀𝐿𝐸 maximizes log conditional likelihood, as below.

𝜃𝑀𝐿𝐸 = arg max
𝜃

𝑛∏
𝑖=1

𝑓 (𝑥 (𝑖) , 𝑦 (𝑖) |𝜃)

= arg max
𝜃

𝑛∑
𝑖=1

log 𝑓 (𝑥 (𝑖) , 𝑦 (𝑖) |𝜃) (𝜃𝑀𝐿𝐸 also maximizes 𝐿𝐿 (𝜃))

= arg max
𝜃

𝑛∑
𝑖=1

log
(
𝑓 (𝑥 (𝑖)) 𝑓 (𝑦 (𝑖) |𝑥 (𝑖) , 𝜃)

)
(chain rule)

= arg max
𝜃

𝑛∑
𝑖=1

log 𝑓 (𝑥 (𝑖)) +
𝑛∑
𝑖=1

log 𝑓 (𝑦 (𝑖) |𝑥 (𝑖) , 𝜃) (properties of logarithms)

= arg max
𝜃

𝑛∑
𝑖=1

log 𝑓 (𝑦 (𝑖) |𝑥 (𝑖) , 𝜃) (𝑓 (𝑥 (𝑖)) constant w.r.t. 𝜃)

– 6 –

3.4 Gradient of Log Conditional Likelihood
Continuing where we left off, we sub in the conditional distribution of 𝑓 (𝑦 (𝑖) |𝑥 (𝑖) , 𝜃) from our
model:

𝑛∑
𝑖=1

log 𝑓 (𝑦 (𝑖) |𝑥 (𝑖) , 𝜃) =
𝑛∑
𝑖=1

log
1

√
2𝜋𝜎

𝑒−(𝑦
(𝑖)−𝑎𝑥 (𝑖)−𝑏)2/(2𝜎2)

=
𝑛∑
𝑖=1

log
1

√
2𝜋𝜎

𝑒−(𝑦
(𝑖)−𝑎𝑥 (𝑖)−𝑏)2/(2𝜎2) (more logs)

= −𝑛 log
√

2𝜋 − 1
2𝜎2

𝑛∑
𝑖=1

(𝑦 (𝑖) − 𝑎𝑥 (𝑖) − 𝑏)2 (using natural log)

Our goal is to find parameters 𝑎, 𝑏 that maximize likelihood. Remember that argmax is invariant
of logarithmic transformations and positive scalar constants and additive constants? Let’s remove
positive constant multipliers and terms that don’t include 𝜃. We are left with trying to find a value
of 𝜃 that maximizes:

𝜃 = argmax
𝜃

[
−

𝑛∑
𝑖=1

(𝑦 (𝑖) − 𝑎𝑥 (𝑖) − 𝑏)2
]

3.5 Use Gradient Ascent
To solve this argmax we are going to use Gradient Ascent. In order to do so we first need to find
the derivative of the function we want to argmax with respect to both parameters in 𝜃:

𝜕

𝜕𝑎

[
−

𝑛∑
𝑖=1

(𝑦 (𝑖) − 𝑎𝑥 (𝑖) − 𝑏)2

]
= −

𝑛∑
𝑖=1

𝜕

𝜕𝑎
(𝑦 (𝑖) − 𝑎𝑥 (𝑖) − 𝑏)2

= −
𝑛∑
𝑖=1

2(𝑦 (𝑖) − 𝑎𝑥 (𝑖) − 𝑏)(−𝑥 (𝑖))

= 2
𝑛∑
𝑖=1

(𝑦 (𝑖) − 𝑎𝑥 (𝑖) − 𝑏)(𝑥 (𝑖))

𝜕

𝜕𝑏

[
−

𝑛∑
𝑖=1

(𝑦 (𝑖) − 𝑎𝑥 (𝑖) − 𝑏)2

]
= 2

𝑛∑
𝑖=1

(𝑦 (𝑖) − 𝑎𝑥 (𝑖) − 𝑏)

This first derivative can be plugged into gradient ascent to give our final algorithm:

If you run gradient ascent for enough training (i.e., update) steps, you will find that for linear
regression, the maximum likelihood estimators (assuming zero-mean, normally distributed noise
between predicted 𝑌 and actual 𝑌) is equivalent to the mean squared error estimators. Cool!!

– 7 –

3.6 Interpreting the Gradient Step
This is probably your first time seeing gradient ascent in action on your linear regression model—and
it may seem like magic. We’re going to take a deep dive and see that the magic is in computational
power, but the theory is understandable and intuitive.

For each training example 𝑥 (𝑖) , notice that our linear regression model for some parameters 𝜃 = (𝑎, 𝑏)
is going to give us an estimated ˆ𝑦 (𝑖) = 𝑎𝑥 (𝑖) + 𝑏. We know that it’s going to be off by some 𝑦 − 𝑦 (𝑖) ,
because that’s our error (remember that normal noise 𝑍?). This error term is actually in the gradient
ascent step!

Gradient ascent is effectively using this prediction error to update its current parameters 𝑎 and 𝑏!
The lower the error, the smaller the update. We love it when iterative computations make sense!

	Regression
	Gradient Ascent Optimization
	Example: Gradient Ascent

	Linear Regression
	Analytical Solution with Mean Squared Error
	Computational Solution with Maximum Likelihood
	Log conditional likelihood
	Gradient of Log Conditional Likelihood
	Use Gradient Ascent
	Interpreting the Gradient Step

